|
|
SELECTED JOURNAL ARTICLES
(updated 04 July 2024)
Frédéric Grillot's publications are listed below.
Active links allow to download the .pdf version of the publication.
Important Warning and Disclaimer: when downloading, please make sure to comply with the applicable
copyright policy of the Publisher.
| |
Year 2024
[144] Y.-B. Peng, Z. Dai, K.-L. Lin, P.-L. Wang, Z. Shen, B. Chen, F. Grillot and Cheng Wang, Broadband chaos of an interband cascade laser with a 6-GHz bandwidth, Optics Letters, vol. 49, p. 3142, 2024.
[143] S. Ding, S. Zhao, H. Huang, and F. Grillot, Observation of amplitude squeezing in a constant-current-driven distributed feedback quantum dot laser with optical feedback, APL Quantum, vol. 1, p. 026104, 2024.
[142] P. Didier, S. Zaminga, O. Spitz, J. Wu, E. Awwad, G. Maison, and F. Grillot, Data encryption with chaotic light in the long wavelength infrared atmospheric window, Optica, vol. 11, p. 626, 2024.
[141] S. Zaminga, L. Columbo, C. Silvestri, M. Gioannini, and F. Grillot, Impact of spatial hole burning and linewidth enhancement factor on distributed-feedback quantum cascade lasers: A comprehensive
design analysis, IEEE Photonics Journal, vol. 16, p. 0600909, 2024.
[140] O. Spitz, Y. B. Shuai; S. Zhao, P. Didier, D. A. Diaz-Thomas; A. N. Baranov, L. Cerutti, D. Rontani, and F. Grillot, Generation of broadband optical chaos at mid-infrared wavelength with an interband cascade laser, J. Vac. Sci. Technol. B, vol. 42, p. 032213, 2024.
[139] F. Grillot, J. Duan, B. Dong, and H. Huang, Semiconductor quantum dot lasers: Genesis, prospects, and challenges (Invited paper) , Quantum Photonics, Photonic Materials and Applications Series, p. 191, 2024.
|
Year 2023
[138] S. Ding, S. Zhao, H. Huang, and F. Grillot, Impact of external carrier noise on the linewidth enhancement factor of a quantum dot distributed feedback laser, Optics Express, vol. 31, p. 35343, 2023.
[137] Z. Jin, H. Huang, Y. Zhou, S. Zhao, S. Ding, C. Wang, Y. Yao, X. Xu, F. Grillot, and J. Duan, Reflection sensitivity of dual-state quantum dot lasers, Photonics Research, vol. 11, p. 1713, 2023.
[136] D. Cui, J. Chen, A. Bousseskou, H. Huang, and F. Grillot, Sustained feedback-induced oscillations in a hybrid single mode semiconductor plasmonic laser, IEEE Photon. Technol. Letts., vol. 35, p. 1090, 2023.
[135] Q. Chu, S. Zhao, J. Wang, Y. Sun, Y. Yao, X. Xu, F. Grillot, and J. Duan Optical noise characteristics of injection-locked epitaxial quantum dot lasers on silicon, Optics Express, vol. 31, p. 25177, 2023.
[134] T. Renaud, H. Huang, G. Kurczveil, D. Liang, R.G. Beausoleil, and F. Grillot
Improved frequency comb operation of an InAs/GaAs hybrid multisection quantum dot laser on silicon (Editor Pick), Applied Physics Letters, vol. 123, p. 011105, 2023.
[133] E. Alkhazraji, W.W. Chow, F. Grillot, J. E. Bowers, and Y. Wan
Linewidth narrowing in self-injection-locked on-chip lasers, Light: Science & Applications, vol. 12, p. 162, 2023.
[132] P. Didier, H. Knoetig, O. Spitz, L. Cerutti, A. Lardschneider, E. Awwad, D. Diaz-Thomas, A. N. Baranov, R. Weih, J. Koeth, B. Schwarz, and F. Grillot
Interband cascade technology for energy-efficient mid-infrared free-space communication, Photonics Research, vol. 11, p. 582, 2023.
|
Year 2022
[131] S. Zhao and F. Grillot, Stochastic model of sub-Poissonian quantum light in an interband cascade laser, Phys. Rev. Applied, 18, p. 064027, 2022.
[130] P. Didier, H. Dely, T. Bonazzi, O. Spitz, E. Awwad, E. Rodriguez, A. Vasanelli, C. Sirtori, and F. Grillot, High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices, vol. 4, p. 056004 Advanced Photonics, 2022.
[129] T. Renaud, H. Huang, F. Grillot and D. Bimberg, Wave mixing efficiency in InAs/GaAs semiconductor quantum dot optical amplifiers and lasers, Laser Phys. Lett. Vol. 19, p. 116202, 2022.
[128] J. Duan, B. Dong, W. W. Chow, H. Huang, S. Ding, S. Liu, J. C Norman, J. E. Bowers, and F. Grillot, Four-wave mixing in 1.3 micron epitaxial quantum dot lasers directly grown on silicon, Photonics Research, vol. 10, p. 1264, 2022.
[127] S. Zhao and F. Grillot, Modeling of Amplitude Squeezing in a Pump-Noise-Suppressed Interband Cascade Laser, IEEE Photonics Journal, vol. 14, p. 1924208, 2022.
[126] F. Grillot, W. W. Chow, B. Dong, S. Ding, H. Huang, and J. E. Bowers, Multimode Physics in the Mode Locking of Semiconductor Quantum Dot Lasers (Invited paper), MDPI Applied Physics, vol. 12, p. 3504, 2022.
[125] W. W. Chow, Y. Wang, J. E. Bowers, and F. Grillot, Analysis of the Spontaneous Emission Limited Linewidth of an Integrated III-V/SiN Laser , Laser Photonics Reviews, p. 2100620, 2022.
[124] S. Ding, B. Dong, H Huang, J. E. Bowers, and F. Grillot, Reflection sensitivity of InAs/GaAs epitaxial quantum dot lasers under direct modulation , Electronics Letters, vol. 58, p. 363, 2022.
[123] S. Ding, B. Dong, H Huang, J. E. Bowers, and F. Grillot, Spectral dispersion of the linewidth enhancement factor and four wave mixing conversion efficiency of an InAs/GaAs multimode quantum dot laser (Editor's Pick), Appl. Phys. Lett. 120, p. 081105, 2022.
[122] O. Spitz and F. Grillot, A review of recent results of mid-infrared quantum cascade photonic devices operating under external optical control (Topical Review), Journal of Physics: Photonics, vol. 4, p. 022001, 2022.
[121] O. Spitz, L. Durupt, and F. Grillot, Competition between entrainment phenomenon and chaos in a quantum cascade laser under strong optical reinjection , MDPI Applied Science, vol. 9, p. 29, 2022.
[120] Y. Deng, Z.-F. Fan, B.-B. Zhao, X.-G. Wang, S. Zhao, J. Wu, F. Grillot, and C. Wang, Mid-infrared hyperchaos of interband cascade lasers , Light: Science & Applications, vol. 11:7, 2022.
[119] O. Spitz, A. Herdt, P. Didier, W. Elsaesser, and F. Grillot, Mid-infrared free-space cryptosystem, Nonlinear Theory and Its Applications (NOLTA), IEICE, vol. 13, p. 44, 2022.
[118] O. Spitz, P. Didier, L. Durupt, D. A. Diaz-Thomas, A. N. Baranov, L. Cerutti, and F. Grillot, Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices, IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, p. 1200109, 2022.
|
Year 2021
[117] H. Dely, T. Bonazzi, O. Spitz, E. Rodriguez, D. Gacemi, Y. Todorov, K. Pantzas, G. Beaudoin, I. Sagnes, L. Li, Alexander G. Davies, E. H. Linfield, F. Grillot, A. Vasanelli, and C. Sirtori, 10 Gbit/s free space data transmission at 9 micron wavelength with unipolar quantum optoelectronics , Laser Photonics Reviews, p. 2100414, 2021.
[116] C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits (Invited), ACS Photonics, vol. 8, p. 2555, 2021.
[115] P. Didier, O. Spitz, L. Cerutti, D.A. Diaz-Thomas, A.N. Baranov, M. Carras, and F. Grillot, Relative intensity noise and intrinsic properties of RF mounted interband cascade laser, Applied Physic Letters, vol. 119, p. 171107, 2021.
[114] B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, and F. Grillot, Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch , Photonics Research, vol. 9, p. 1550, 2021.
[113] F. Grillot, J. Duan, B. Dong, and H. Huang, Uncovering recent progress in nanostructured
light-emitters for information and communication technologies (Review) , Light: Science & Applications, vol. 10, p. 156, 2021.
[112] J. F Ehlert, A. Mugnier, G. He, and F. Grillot, Modeling of a quantum dot gain chip in an external cavity laser configuration , Laser Physics, vol. 31, p. 085002, 2021.
[111] O. Spitz, A. Herdt, W. Elsaesser, and F. Grillot, Stimulating polarization switching dynamics in mid-infrared quantum cascade lasers , Journal of the Optical Society of America B, vol. 38, p. 35, 2021.
[110] S. Zhao and F. Grillot, Effect of Shockley-Read-Hall recombination on the static and dynamical characteristics of epitaxial quantum-dot lasers on silicon, Physical Review A, vol. 103, p. 063521, 2021.
[109] O. Spitz, A. Herdt, J. Wu, G. Maisons, M. Carras, C.-W. Wong, W. Elsaesser, and F. Grillot, Private communication with quantum cascade laser photonic chaos , Nature Communications, vol. 12, p. 3327, 2021.
[108] B. Dong, J.-D. Chen, F.-Y Lin, J. C. Normal, J. E. Bowers, and F. Grillot, Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits , Physical Review A, vol. 103, p. 033509, 2021.
|
Year 2020
[107] O. Spitz, J. Wu, A. Herdt, G. Maisons, M. Carras, W. E. Elsaesser, C.-W. Wong, and F. Grillot, Extreme events in quantum cascade lasers, Advanced Photonics, vol. 2, p. 066001, 2020.
[106] J. Duan, Y. Zhou, B. Dong, H. Huang, J. C. Norman, D. Jung, Z. Zhang, C. Wang, J. E. Bowers, and F. Grillot, Effect of p-doping on the intensity noise of epitaxial quantum dot lasers on silicon, Optics Letters, vol. 45, p. 4887, 2020.
[105] Y. Zhou, J. Duan, F. Grillot, and C. Wang, Optical noise of dual-state lasing quantum dot lasers, IEEE Journal of Quantum Electronics, vol. 56, p. 2001207, 2020.
[104] B. Dong, X. C. de Labriolle, S. Liu, M. Dumont, H. Huang, J. Duan, J. C Norman, J. E. Bowers, and F. Grillot, 1.3 microns passively mode-locked quantum dot lasers epitaxially grown on silicon: gain properties and optical feedback stabilization , Journal of Physics: Photonics, vol. 2, p. 045006, 2020.
[103] F. Grillot, J. C. Norman, J. Duan, Z. Zhang, B. Dong, H. Huang, W. W. Chow, and J. E. Bowers, Physics and applications of quantum dot lasers for silicon photonics (Review) , Nanophotonics, p. 20190570, 2020.
[102] F. Koester, J. Duan, B. Dong, H. Huang, F. Grillot, and K. Luedge, Temperature dependent linewidth rebroadening in quantum dot semiconductor lasers , Journal of Physics D: Applied Physics, vol. 53, p. 235106, 2020.
[101] S Gomez, H Huang, J Duan, S Combrié, A Shen, G Baili, A de Rossi and F Grillot, High coherence collapse of a hybrid III-V/Si semiconductor laser with a large quality factor , Journal Physics: Photonics, vol. 2, p. 025005, 2020.
[100] X.-G. Wang, B.-B. Zhao, F. Grillot, and C. Wang, Spectral linewidth reduction of quantum cascade lasers by strong optical feedback, Journal of Applied Physics, vol. 127, p. 073104, 2020.
[99] H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J.E. Bowers, and F. Grillot, Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback, APL Photonics, vol. 5, p. 016103, 2020.
|
Year 2019
[98] B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. Beausoleil, and F. Grillot, Frequency comb dynamics of a 1.3 micron hybrid-silicon quantum dot semiconductor laser with optical injection, Optics Letters, vol. 44, p. 5755, 2019.
[97] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration, Photonics Research, vol. 7, p. 1222, 2019.
[96] O. Spitz, J. Wu , A. Herdt, M. Carras, W. Elsaesser, C.-W. Wong, and F. Grillot, Investigation of chaotic and spiking dynamics in mid-infrared quantum cascade lasers operating continuous-waves and under current modulation, IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, p. 1200311, 2019.
[95] B. Dong, J. Duan, C. Shang, H. Huang, A. B. Sawadogo, D. Jung, Y. Wan, J. E. Bowers, and F. Grillot, Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55 micron InP-based InAs quantum dash lasers, Applied Physics Letters, vol. 115, p. 091101, 2019.
[94] Y.-G. Zhou, J. Duan, H. Huang, X.-Y. Zhao, C.-F. Cao, Q. Gong, F. Grillot, and C. Wang, Intensity noise and pulse oscillations of an InAs/GaAs quantum dot laser on germanium , IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, p. 1900110, 2019.
[93] O. Spitz, J. Wu, M. Carras, C.-W. Wong, and F. Grillot, Chaotic optical power dropouts
driven by low frequency bias forcing in a mid-infrared quantum cascade laser, Scientific Reports, Vol. 9:4451, 2019.
[92] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman , J. E. Bowers, and F. Grillot, 1.3 micron reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon, IEEE Photonics Technology Letters, vol. 31, p. 345, 2019.
|
Year 2018
[91] J. Duan, X.-G. Wang, Y.-G. Zhou, C. Wang, and F. Grillot, Carrier-noise-enhanced relative intensity noise of quantum dot lasers, IEEE Journal of Quantum Electronics, vol. 54, p. 2001407, 2018.
[90] H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon, Journal of the Optical Society of America B, vol. 35, p. 2780, 2018.
[89] O. Spitz, J. Wu, M. Carras, C.-W. Wong, and F. Grillot, Low-frequency fluctuations of a mid-infrared quantum cascade laser operating at cryogenic temperatures, Laser Physics Letters, vol. 15, p. 116201, 2018.
[88] T. C. Newell, F. Grillot, A. Gavrielides R. Kaspi, C. Lu, C. Yang, T. Bate, and S. Luong, Experimental investigation of broad area quantum cascade lasers under external feedback, Optics Express, vol. 27, p. 17927, 2018.
[87] J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Applied Physics Letters, vol. 112, p. 251111, 2018.
[86] X.-G. Wang, B.-B. Zhao, F. Grillot, and C. Wang, Frequency noise suppression of optical injection-locked quantum cascade lasers, Optics Express, vol. 26, p. 15167, 2018.
[85] J. Duan, H. Huang, Z. G. Lu, P. J. Poole, C. Wang, and F. Grillot, Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers , Applied Physics Letters, vol. 112, p. 121102, 2018.
[84] X.-G. Wang, F. Grillot, and C. Wang, Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers , Optics Express, vol. 26, p. 2326, 2018.
FONT>
[83] H. Huang, L.-C. Lin, C.-Y. Chen, D. Arsenijevic, D. Bimberg, F.-Y. Lin, and F. Grillot, and F. Y. Lin, Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes , Optics Express, vol. 26, p. 1743, 2018.
[82] L.-C. Lin, C.-Y. Chen, H. Huang, D. Arsenijevic , D. Bimberg, F. Grillot, and F. Y. Lin, Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states , Optics Letters, vol. 43, p. 210, 2018.
FONT>
|
Year 2017
[81] K. Schires, S. Gomez, A. Gallet, G. H. Duan, and F. Grillot, Passive chaos bandwidth enhancement under dual optical feedback with hybrid III-V/Si DFB lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, p. 1801309, 2017.
FONT>
[80] C. Redlich, B. Lingnau, H. Huang, R. Raghunathan, K. Schires, P. Poole, F. Grillot, and K. Luedge, Linewidth rebroadening in quantum dot semiconductor lasers, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, p. 1901110, 2017.
FONT>
[79] J. M. Sarraute, K. Schires, S. LaRochelle and F. Grillot, Effects of gain nonlinearities in an optically injected gain lever semiconductor laser (Editor's Pick), Photonics Research, Vol. 5, p. 315, 2017 (Cover Story).
FONT>
[78] S. Ferre, L. Jumpertz, M. Carras, R. Ferreira and F. Grillot, Beam shaping in high-power broad-area quantum cascade lasers using optical feedback, Scientific Reports, Vol. 7:44284, 2017.
FONT>
|
Year 2016
[77] J. Even, C. Wang, and F. Grillot, From basic physical properties of InAs/InP quantum dots to state-of-the-art lasers for 1.55 μm optical communications: An overview, Semiconductor Nanocrystals and Metal Nanoparticles, p. 95, CRC Press, 2016.
FONT>
[76] C. Wang, J.-P. Zhuang, F. Grillot, and S.-C. Chan, Contribution of off-resonant states to the phase noise of quantum dot lasers, Optics Express, Vol. 24, p. 29872, 2016.
FONT>
[75] H. Huang, D. Arsenijevic, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states, AIP Advances, Vol. 6, p. 125114, 2016.
FONT>
[74] H. Huang, D. Arsenijevic, K. Schires, T. Sadeev, D. Erasme, D. Bimberg, and F. Grillot, Efficiency of four-wave mixing in injection-locked InAs/GaAs quantum-dot lasers, AIP Advances, Vol. 6, p. 125105 , 2016.
FONT>
[73] L. Jumpertz, C. Caillaud, C. Gilles, S. Ferre, K. Schires, L. Brilland, J. Troles, M. Carras, and F. Grillot, Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers, AIP Advances, Vol. 6, p. 105201, 2016.
FONT>
[72] C. Wang, K. Schires, M. Osinski, P. J. Poole, and F. Grillot, Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking, Scientific Reports, Vol. 6:27825, 2016.
FONT>
[71] L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, Chaotic light at mid-infrared wavelength, Light Science and Applications, Vol. 5, e16088, 2016.
FONT>
[70] K. Schires, N. Girard, G. Baili, G.-H. Duan, S. Gomez, and F. Grillot, Dynamics of Hybrid III-V Silicon Semiconductor Lasers for Integrated Photonics, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, p. 1800107, 2016.
FONT>
[69] C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation , Optics Letters, Vol. 41, p. 1153, 2016.
[68] L. Jumpertz, F. Michel, R. Pawlus, W. Elsaesser, K. Schires, M. Carras, and F. Grillot, Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques, AIP Advances, Vol. 6, p. 015212, 2016.
|
Year 2015
[67] T. Sadeev, H. Huang, D. Arsenijevic, K. Schires, F. Grillot, and D. Bimberg, Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm, Applied Physics Letters, Vol. 107, p. 191111, 2015.
FONT>
[66] C. Wang, M. E. Chaibi, H. Huang, D. Erasme, P. Poole, J. Even, and F. Grillot, Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers, Optics Express, Vol. 23, p. 21761, 2015.
FONT>
[65] J. M. Sarraute, K. Shires, S. LaRochelle and F. Grillot, Enhancement of the modulation dynamics of an
optically injection-locked semiconductor laser using gain lever, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, p. 1801408, 2015.
FONT>
[64] M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, Time resolved chirp measurement based
on a polarization-maintaining fiber , IEEE Photonics Technology Letters, Vol. 27, p. 1557, 2015.
FONT>
[63] H. Huang, K. Schires, P. J. Poole, and F. Grillot, Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry-Perot laser , Applied Physics Letters, Vol. 106, 143501, 2015.
FONT>
[62] I. Aldaya, C. Gosset, C.Wang, G. Campuzano, F. Grillot and G. Castanon, Periodic and aperiodic pulse generation
using optically injected DFB laser, Electronics Letters, Vol. 51, 280, 2015.
FONT>
|
Year 2014
[61] C. Wang, M. Osinski, J. Even, and F. Grillot, Phase-amplitude coupling characteristics in directly modulated quantum dot lasers, Applied Physics Letters, Vol. 105, 221114, 2014.
[60] L. Jumpertz, K. Shires, M. Carras and F. Grillot, Regimes of external optical feedback in 5.6 μm distributed feedback mid-infrared quantum cascade lasers, Applied Physics Letters, Vol. 105, 131112, 2014.
[59] C. Wang, B. Lingnau, K. Luedge, J. Even, and F. Grillot, Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state, IEEE Journal of Quantum Electronics, Vol. 50, 723-731, 2014.
[58] R. Raghunathan, F. Grillot, J. K. Mee, D. Murrell, V. Kovanis, and L. F. Lester, Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser, Applied Physics Letters, Vol. 105, 041112, 2014.
[57] C. Gosset, I. Aldaya, C. Wang, H. Huang, X. You, J. Even, G. Campuzano, and F. Grillot, Self-referenced technique for monitoring and analysing the non-linear dynamics of semiconductor lasers, Optics Express, Vol. 22, 16528-16537, 2014.
[56] L. F. Lester, N. A. Naderi, F. Grillot , R. Raghunathan, and V. Kovanis, Strong optical injection and the differential gain in a quantum dash laser, Optics Express, Vol. 22, 7222-7228, 2014.
[55] C.-F. Chuang, Y.-H. Liao, C.-H. Lin, S.-Y. Chen, F. Grillot , and F.-Y. Lin, Linewidth enhancement factor in semiconductor lasers subject to various external optical feedback conditions, Optics Express, Vol. 22, 5651-5658, 2014.
[54] C. Wang, J. Even, and F. Grillot, Analysis of frequency chirp of self-injected nanostructure semiconductor lasers, IET Optoelectronics, Vol. 8, p. 51-57, 2014.
[53] C. Wang, F. Grillot, F.-Y. Lin, I. Aldaya, T. Batte, C. Gosset, E. Decerle, and J. Even, Nondegenerate Four-Wave Mixing in a Dual-mode injection-locked InAs/InP(100) nanostructure laser, IEEE Photonics Journal, Vol. 6, 1500408, 2014.
|
Year 2013
[52] Q. Gu, M. Gicquel-Guézo, S. Loualiche, J. Le Pouliquen, T. Batte, H. Folliot, O. Dehaese, F. Grillot, Y. Battie, A. Loiseau, B. Liang and D. Huffaker, Photonics based on carbon nanotubes , Nanoscale Research Letters, Vol. 8, 300-304, 2013.
[51] P. Kumar and F. Grillot, Control of dynamical instability in semiconductor quantum nanostructures diode
lasers: role of phase-amplitude coupling, The European Physical Journal, Vol. 222, 813-820, 2013.
[50] C. Wang, F. Grillot, V. Kovanis, J. D. Bodyfelt, and J. Even, Modulation properties of optically injection-locked quantum cascade lasers , Optics Letters, Vol. 38, 1975-1977, 2013.
[49] F. Grillot, C. Wang, N. A. Naderi, and J. Even, Modulation properties of self-injected quantum dot
semiconductor diode lasers, Journal of Selected Topics in Quantum Electronics, Vol. 19, 1900812, 2013.
[48] R. Raghunathan, M. T. Crowley, F. Grillot, Y. Li, J. K. Mee, V. Kovanis, and L. F. Lester, Pulse characterization of passively mode-locked quantum dot lasers using a delay differential equation model seeded with measured parameters , Journal of Selected Topics in Quantum Electronics, Vol. 19, 1100311, 2013.
[47] C. Wang, F. Grillot, V. Kovanis and J. Even, Rate equation analysis of injection-locked quantum cascade lasers , Journal of Applied Physics, Vol. 113, 063104, 2013.
|
Year 2012
[46] K. Kechaou, F. Grillot, J.-G. Provost, B. Thedrez and D. Erasme, Self-injected semiconductor distributed feedback lasers for frequency chirp stabilization, Optics Express, Vol. 20, 26062, 2012.
[45] M. T. Crowley, N. A. Naderi, H. Su, F. Grillot and L. F. Lester, GaAs based-quantum dot lasers , Semiconductors and Semimetals: Advances in Semiconductor Lasers, Vol. 86, 2012.
[44] C. Wang, F. Grillot and J. Even, Impacts of wetting layer and excited state on the modulation response of quantum dot lasers, IEEE Journal of Quantum Electronics, Vol. 48, 1144, 2012.
|
Year 2011
[43] C.-Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou and L. F. Lester, Performance of quantum dot passively mode-locked laser under optical feedback and temperature control, International Journal of High Speed Electronics and Systems, Vol. 20, p. 679, 2011.
[42] F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley and L. F. Lester, A dual-mode quantum dot laser operating in the excited state , Applied Physics Letters, Vol. 99, 1110, 2011.
[41] C.-Y. Lin, F. Grillot, N. A. Naderi, Y. Li, R. Raghunathan and L. F. Lester, Microwave characterization and stabilization of timing jitter in a quantum dot passively mode-locked laser via external optical feedback, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, 1311, 2011.
[40] C.-Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou and L. F. Lester, RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback, IET Optoelectronics, Vol. 5, 105, 2011.
[39] J. G. Provost and F. Grillot, Measuring the Chirp and the Linewidth Enhancement Factor of Optoelectronic Devices with a Mach-Zehnder Interferometer, IEEE Photonics Journal, Vol. 3, 476, 2011.
[38] H. Nong, M. Gicquel-Guezo, L. Bramerie, M. Perrin, F. Grillot, R. Fleurier, B. Liang, D. L. Huffaker, C. Levallois, J. Le Pouliquen, A. Le Corre, O. Dehaese, and S. Loualiche, Enhanced properties in single-walled carbon nanotubes based saturable absorber for all optical signal regeneration , Japanese Journal of Applied Physics, Vol. 50, p. 040206, 2011.
|
Year 2010
[37] N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin and L. F. Lester, Two-color multi-section quantum dot distributed feedback laser, Optics Express, Vol. 18, 27028, 2010.
[36] C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan and L. F. Lester, Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser, Optics Express, Vol. 18, 21932, 2010.
[35] H. Nong, M. Gicquel, L. Bramerie, M. Perrin, F. Grillot, C. Levallois, A. Maalouf and S. Loualiche, A direct comparison of single-walled carbon nanotubes and quantum-wells based subpicosecond saturable absorbers for all optical signal regeneration at 1.55-μm, Applied Physics Letters, Vol. 96, 061109, 2010.
[34] C. -Y. Lin, F. Grillot, N. A. Naderi, Y. Li and L. F. Lester, RF linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback , Applied Physics Letters, Vol. 96, 051118, 2010.
|
Year 2009
[33] F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard and L. F. Lester, Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes, IET Optoelectronics, Vol. 3, 242, 2009.
[32] D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, S. Loualiche, Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers , Physica Status Solidi C, Vol. 6, 2217, 2009.
[31] N. A. Naderi, M. Pochet, F. Grillot, V. Kovanis, N. B. Terry and L. F. Lester, Modeling the injection-locked behavior of a quantum dash semiconductor laser , IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, 563, 2009.
[30] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, S. Loualiche, Spectral analysis of 1.55-μm InAs/InP(113)B quantum dot lasers based on a multipopulation rate equations model, IEEE Journal of Quantum Electronics, Vol. 45, 872, 2009.
[29] F. Grillot, On the Effects of an Antireflection Coating Impairment on the Sensitivity to optical feedback of AR/HR semiconductor DFB lasers, IEEE Journal of Quantum Electronics, Vol. 45, 720, 2009.
[28] S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese,
R. Piron, S. Loualiche, Q. Zou, A. Ramdane, Optical feedback tolerance of quantum dot and quantum dash-based semiconductor lasers operating at 1.55-μm, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, 764, 2009.
[27] F. Grillot, C.- Y. Lin, N. A. Naderi, M. Pochet and L. F. Lester, Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser, Applied Physics Letters, Vol. 94, 153503, 2009.
[26] D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even and S. Loualiche, Low threshold current density of InAs quantum dash laser on InP(100) through optimizing double cap technique, Applied Physics Letters, Vol. 94, 081107, 2009.
[25] D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even and S. Loualiche, Low threshold current density InAs quantum dash lasers on InP(100) grown by molecular beam epitaxy, Electronics Letters, Vol. 45, 50, 2009. |
Year 2008
[24] F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin and L. F. Lester, Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser, Applied Physics Letters, Vol. 93, 191108, 2008.
[23] D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, Study of the characteristics of 1.55μm quantum dash/dot semiconductor lasers on InP substrate, Applied Physics Letters, Vol. 93,, 161104, 2008.
[22] F. Grillot, B. Dagens, J. G. Provost, H. Su and L. F. Lester, Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers, IEEE Journal of Quantum Electronics, Vol. 44, 946, 2008.
[21] A. Martinez, K. Merghem, S. Bouchoule,
G. Moreau, A. Ramdane, J.-G. Provost, F. Alexandre, F. Grillot, O. Dehaese, R. Piron and S. Loualiche, Dynamic properties of InAs/InP(311B) quantum dot Fabry-Perot lasers emitting at 1.52-μm, Applied Physics Letters, Vol. 93, 021101, 2008.
[20] K. Veselinov, F. Grillot, M. Gioannini, I. Montrosset,
E. Homeyer, R. Piron, J. Even, A. Bekiarski, S. Loualiche, Lasing spectra of 1.55μm InAs/InP quantum dot lasers:
theoretical analysis and comparison with the experiments, Optical and Quantum Electronics, Vol. 40, 227, 2008.
[19] F. Grillot, L. Vivien, E. Cassan and S. Laval, Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides, IET Optoelectronics, Vol. 2, 1-5, 2008.
|
Year 2007
[18] G. Moreau, K. Merghem, A. Martinez, S. Bouchoule, A. Ramdane, F. Grillot, R. Piron, O. Dehease,
E. Homeyer, K. Tavernier and S. Loualiche, P. Berdaguer and F. Pommerau, Demonstration of 1.51μm InAs/InP(311)B
quantum dot single-mode laser operating under continuous , IET Optoelectronics, Vol. 1, p. 255, 2007.
[17] N.F. Massé, I. P. Marko, A. R. Adams, S. J. Sweeney, E. Homeyer, O. Dehaese, R. Piron, F. Grillot, and S. Loualiche, Temperature and pressure dependence of the recombination processes in 1.5μm InAs / InP (311)B quantum dot lasers, Ap. Phys. Lett., Vol. 91, 131113, 2007.
[16] E. Homeyer, R. Piron, F. Grillot, O. Dehaese, K. Tavernier, E. Macé, J. Even, A. Le Corre and S. Loualiche, Demonstration of a low threshold current in 1.54μm InAs/InP(311)B quantum dot laser with reduced quantum dot stacks , Japanese Journal of Applied Physics, Vo. 46, 6903, 2007.
[15] K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini and S. Loualiche, Analysis of the double laser emission occurring in 1.55μm InAs/InP (113)B quantum dot lasers , IEEE Journal of Quantum Electronics, Vol. 43, 810, 2007.
[14] S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou and A. Ramdane, Tolerance to optical feedback of 10-Gb/s quantum dash-based lasers emitting at 1.51μm , IEEE Photonics Technology Letters, Vol. 19, 1181, 2007.
[13] E. Homeyer, R. Piron, F. Grillot, O. Dehease, K. Tavernier, E. Macé, A. Le Corre, and S. Loualiche, First demonstration of a 1520 nm RT InAs/InP(311)B laser with an active zone based on a single QD layer , Semicond. Sci. Technol., Vol. 22, 827, 2007.
[12] G. Moreau, K. Merghem, A. Martinez, S. Bouchoule, A. Ramdane,
F. Grillot, R. Piron, O. Dehease, E. Homeyer, K. Tavernier and S. Loualiche, P. Berdaguer and F. Pommereau, 1516 nm room temperature CW operation of a quantum dot InAs/InP(311)B single-mode laser , Electronics Letters, Vol. 43, 571, 2007.
|
Year 2006
[11] L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J.M. Fedeli, L. El Melhaoui,
Light injection in SOI microwaveguides using high-efficiency grating couplers, Journal of Lightwave Technology,
Vol. 24, 3810, 2006.
[10] K. Veselinov, F. Grillot, A. Bekiarski and S. Loualiche, Modelling of the two-state lasing and the turn-on delay in 1.55μm InAs/InP(113)B quantum dot lasers, IEE Proceedings of Optoelectronics, Vol. 153, 308, 2006.
[9] K. Veselinov, F. Grillot, P. Miska, E. Homeyer, P. Caroff, C. Platz, J. Even, X. Marie, O. Dehaese, S. Loualiche and A. Ramdane, Carrier dynamics and saturation effect in (113)B InAs/InP quantum dot lasers, IEEE Journal of Optical and Quantum Electronics, Vol. 38, 369, 2006.
[8] F. Grillot, L. Vivien, S. Laval and E. Cassan, Propagation loss in single-mode ultra-small square silicon-on-insulator optical waveguides, IEEE/OSA Journal of Lightwave Technology, Vol. 24, 891, 2006. |
Year 2005
[7] L. Vivien, F. Grillot, E. Cassan, D. Pascal, S. Lardenois, A. Lupu, S. Laval, M. Heitzmann and J.-M. Fédéli, Comparison between strip and rib SOI microwaveguides for intra-chip light distribution, Optical Materials, Vol. 27, 756, 2005.
|
Year 2004
[6] F. Grillot, G. H. Duan and B. Thedrez, Feedback sensitivity and coherence collapse threshold of semiconductor
DFB lasers with complex structures , IEEE Journal of Quantum Electronics, Vol. 40, 231, 2004.
[5] F. Grillot, L. Vivien, S. Laval, D. Pascal and E. Cassan, Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides, IEEE Photonics Technology Letters, Vol. 16, 1661, 2004.
|
Year 2003
[4] F. Grillot, B. Thedrez, V. Voiriot and J.L. Lafragette, Coherence collapse threshold of 1.3μm semiconductor DFB lasers , IEEE Photonics Technology Letters, Vol. 15, 9, 2003.
|
Year 2002
[3] F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M.F. Martineau, A. Pinquier, Analysis, fabrication and characterization of 1.55μm selection-free tapered stripe DFB lasers, IEEE Photonics Technology Letters, Vol. 14, 1040, 2002.
[2] F. Grillot, B. Thedrez, J. Py, O. Gauthier-Lafaye, V. Voiriot and J.L. Lafragette, 2.5 Gb/s transmission characteristics of 1.3μm DFB lasers with external optical feedback, IEEE Photonics Technology Letters, Vol. 14, 101, 2002.
|
Year 2001
[1] L.Salomon, F. Grillot, A.V. Zayats and F. de Fornel, Near-field distribution of optical transmission of periodic sub-wavelength holes in a metal Film , Physical Review Letters, Vol. 86, 1110, 2001.
|
© Copyright 2024-Frédéric Grillot-All Rights Reserved.
|