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Abstract— This paper theoretically investigates the optical
noise characteristics of the simultaneous ground-state (GS) and
excited-state (ES) lasing quantum dot lasers. The optical noise
dynamics of both states are analysed through coupling the
Langevin noise sources into a set of coupled rate equations.
It is pointed out that the ES emission significantly changes the
evolution scenario of the relative intensity noise, the frequency
noise (spectral linewidth), and the linewidth broadening factor of
the GS emission, as a function of the bias current. In the vicinity
of the ES lasing threshold, the relative intensity noise and the
frequency noise of the GS emission is lower than those of ES
emission. However, the linewidth broadening factor of the GS
emission is larger than the latter.

Index Terms— Semiconductor lasers, quantum dots, relative
intensity noise, frequency noise, spectral linewidth, linewidth
broadening factor.

I. INTRODUCTION

QUANTUM dot (QD) lasers are silicon-compatible laser
sources for developing photonic integrated circuits

(PICs), which is witnessing rapid growth driven by the
increasing demands for 5G infrastructures, high speed optical
interconnects in data centers and LIDAR for self-driving auto-
mobiles [1], [2]. Thanks to the low sensitivity of QDs to the
epitaxial growth defects [3], [4], the steady-state performances
of QD lasers epitaxially grown on silicon are becoming com-
parable to their counterparts grown on the native GaAs or InP
substrate, including the low threshold current density and the
high temperature stability [3]–[6]. QD lasers also exhibit low
optical noise characteristics, including both relative intensity
noise (RIN) and frequency noise (FN) [7]–[10]. It has been
shown that the RIN of QD lasers reached down to -160 dB/Hz
[7], [11], [12], and the record spectral linewidth was as low as
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60 kHz [8]. In addition, QD lasers are highly tolerant to optical
feedback, owing to the large damping factor and/or small
linewidth broadening factor (LBF) [10], [13], [14], which are
significantly beneficial for isolator-free integration in silicon-
based PICs.

In addition to the usual ground-state (GS) emission,
QD lasers can also emit solely on the excited state (ES),
or simultaneously on both states [15]–[19]. The ES-lasing QD
lasers usually exhibit higher modulation bandwidth than that
of GS-lasing ones, owing to the faster carrier relaxation rate
and higher differential gain [16], [17], [20], [21]. In addition,
the ES emission shows a smaller LBF than the GS emission
[21], [22]. However, the ES-lasing QD lasers are found to
be more sensitive to the optical feedback due to the smaller
damping rate [22], [23]. On the other hand, dual-state lasing
in QD lasers enhances the modulation bandwidth as well
[19], [24]. Interestingly, dual-state laser emission exhibits
lower intensity noise than sole GS or ES emission, which is
attributed to the quasi-antiphase dynamics through the carrier
relaxation process. [25]. Optical feedback usually triggers
mode switching or mode competition between the GS and the
ES [26], [27], while feedback with finely controlled phase is
helpful to reduce the RIN of two-state lasing QD laser [28].
However, the QD laser operated at the ES lasing threshold is
very sensitive to the optical feedback [29]. Recently, Xiong
and Zhang theoretically proved that the the phonon bottleneck
effect and the inhomogenous broadening effect play crucial
roles on the dual-state lasing behavior [30].

In this work, we theoretically investigate the optical noise
characteristics of InAs/InP QD lasers emitting simultaneously
on the GS and the ES. We present a dual-state lasing QD
rate equation model including all the Langevin noise sources.
Increasing the bias current generally reduces the RIN and the
spectral linewidth of the GS emission, except at the ES lasing
threshold. However, the ES emission is found to significantly
change the evolution scenario of the GS emission noise,
with respect to the bias current. We also analyze the optical
noise characteristics of ES emission, which show monotonic
reduction with increasing bias currents. It is shown that in
the vicinity of the ES lasing threshold, the optical noise of
ES emission is higher than that of GS emission. Finally,
through the analysis of FN spectra, we obtain LBFs of the
GS emission and the ES emission, respectively. Below the ES
lasing threshold, raising the bias current increases the LBF
of the GS emission. Above the ES lasing threshold, however,
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Fig. 1. The schematic of carrier dynamics in a QD laser.

the LBF of the GS emission is reduced while the LBF of
the ES emission is almost constant. The paper is organized as
follows: In Section II, we introduce the rate equation model of
dual-state lasing InAs/InP QD lasers, as well as its linearized
form in the frequency domain. Section III discusses the dual-
sate lasing characteristics including the RIN, the FN, and the
LBF. Section IV summarizes this work.

II. RATE EQUATION MODEL OF DUAL-STATE

LASING QD LASERS

Figure 1 illustrates the schematic of the carrier dynamics
in QD lasers [21], [31]. It is assumed that the active region
consists of only one ensemble, that is, all the QDs have the
same size. Therefore, the inhomogeneous effect due to the
dot size dispersion is not considered in this work. The QD
laser is simplified as a three-level system: a two-dimensional
carrier reservoir (RS), a four-fold degenerate ES, and a two-
fold degenerate GS, where the electron-hole pairs are treated
as neutral excitons. Carriers are injected directly from the
electrodes to the RS, followed by a capture process into the
ES with a capture time τ RS

E S . Finally, carriers relax into the GS
with a relaxation time τ E S

GS . It is noted that the direct carrier
capture process from the RS to the GS is neglected, which
otherwise can accelerate the carrier scattering rate to the GS
[32]. However, the incorporation of the direct carrier capture
channel will not affect the conclusion of this work. On the
other hand, due to the thermal excitation, some carriers are
excited from the GS to the ES with a time τ GS

E S , and from
the ES to the RS with a time τ E S

RS , respectively. Carriers
in all the three states recombine spontaneously with times
τ

spon
RS,E S,GS, respectively. Both the GS and the ES exhibit

stimulated emission simultaneously. Dynamics of the carrier
numbers NRS,E S,GS, the photon numbers SE S,GS , and the
phases of the two electric fields φE S,GS are expressed as:

d NRS

dt
= I

q
+ NE S

τ E S
RS

− NRS

τ RS
E S

(1 − ρE S) − NRS

τ
spon
RS

+ FRS (1)

d NE S

dt
=

(
NRS

τ RS
E S

+ NGS

τ GS
E S

)
(1 − ρE S) − NE S

τ E S
GS

(1 − ρGS)

− NE S

τ E S
RS

− �pvg gE S SE S − NE S

τ
spon
E S

+ FE S (2)

d NGS

dt
= NE S

τ E S
GS

(1 − ρGS) − NGS

τ GS
E S

(1 − ρE S)

− �pvg gGS SGS − NGS

τ
spon
GS

+ FGS (3)

d SE S

dt
=

(
�pvg gE S − 1

τp

)
SE S + βsp

NE S

τ
spon
E S

+ FSE S (4)

d SGS

dt
=

(
�pvg gGS − 1

τp

)
SGS + βsp

NGS

τ
spon
GS

+ FSGS (5)

dφE S

dt
= 1

2
�pvg(gGSκ

GS
E S + gE SαE S + gRSκ

RS
E S ) + FφE S

(6)
dφGS

dt
= 1

2
�pvg(gGSαGS + gE Sκ E S

GS + gRSκ
RS
GS ) + FφGS

(7)

where I is the injected current, q is the elementary charge,
and ρE S,GS are the carrier occupation probabilities in each
state [33]. τp is the photon lifetime, �p is the optical
confinement factor, βsp is the spontaneous emission fac-
tor, and vg is the group velocity of the light. αE S,GS

are self-contributions of the carrier population in the ES,
GS to the LBF of ES, GS, respectively. κ RS,GS

E S are cross-
contributions of carrier population in the RS, GS to the
LBF of ES, respectively. κ RS,E S

GS are cross-contributions of
carrier population in the RS, ES to the LBF of GS, respec-
tively. gE S,GS are material gains of each state, which are
expressed as [33]:

gE S = aE S

1 + ξE S
SE S
VS

NB

VB
(2ρE S − 1) (8)

gGS = aGS

1 + ξGS
SGS
VS

NB

VB
(2ρGS − 1) (9)

where aE S,GS are the differential gains, and ξE S,GS are the
gain compression factors of each state. NB is the total number
of QDs, VB is the volume of the active region, and VS is the
volume occupied by the photons in the laser cavity. gRS is the
RS gain [33].

The carrier noise and the spontaneous emission noise are
characterized by the Langevin approach [34]. FRS,E S,GS are
the carrier noise sources in each state. FSE S,GS are the photon
noise sources of spontaneous emission, and FφE S,GS are the
phase noise sources of spontaneous emission. Both the carrier
noise and the spontaneous emission noise are white noise, and
hence the expectation values of all the above Langevin noise
sources are zero. The auto- and cross-correlations of all the
noise sources are given by:

〈Fi (t)Fj (t
′)〉 = Ui, j δ(t − t ′) (10)

where i, j are representing RS, E S, GS, SE S , SGS , φE S , and
φGS . The correlation coefficients Ui, j are derived using the
classical method described in [34], and non-zero coefficients
are given by (11)-(18):

URS,RS = 2 ×
[

NRS

τ RS
E S

(1 − ρE S) + NRS

τ
spon
RS

]
(11)
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4
�pvgaE SαE S
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2
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2
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2
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2
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E S
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2
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Through standard small signal analysis of the rate equations
(1)-(7), the linearized rate equations in the frequency domain
is derived in (19) and the matrix components are expressed

Fig. 2. (a) Photon numbers emitted from the GS, the ES, and their summation.
(b) Carrier numbers of GS, ES and RS as a function of the bias current.
I G S
th = 49 mA, I E S

th = 284 mA.

in (20). In the small signal analysis, the gain compression
effect is approximated by considering apE S,GS with dgE S,GS =
aE S,GSd NE S,GS − apE S,GS d SE S,GS [34]. Applying Cramer’s
rule, small-signal variations of the carrier number δN , the pho-
ton number δS, and the phase δφ can be obtained. The RIN
and the FN of each lasing state are defined as:

RI N(ω)i = |δSi (ω)

Si
|2 (21)

F N(ω)i = | jω

2π
δφi (ω)|2 (22)

with i being ES and GS, ω being the angular frequency, S
being the average photon number, δS(ω) being the photon
number variation, and δφ(ω) being the phase variation. The
laser under study is an InAs/InP QD laser, and the laser
parameters used for the simulations are listed in Table I [21],
[31]. It is worthwhile to mention that the optical confinement
factor is dependent on the QD density, the number of stacked
QD layers, and the structure of cladding layer [35]–[37]. The
value of the optical confinement factor used in the simulation
is 0.06 [38].

III. RESULTS AND DISCUSSION

Figure 2(a) depicts SGS , SE S , and the total photon number
Stotal as a function of the bias current. The GS lasing threshold
is I GS

th = 49 mA, and the ES one is I E S
th = 284 mA. Above the

ES lasing threshold, the slope efficiency of the GS emission
significantly decreases, which is smaller than that of the ES
emission. On the other hand, the slope efficiency of the total
laser emission slightly increases. This behavior is consistent
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TABLE I

MATERIAL AND OPTICAL PARAMETERS OF THE QD LASER

with the experimental observation in [32]. In Fig. 2(b), both
NGS and NE S have clear kinks at both lasing thresholds.

The above-threshold NE S is higher than the above-threshold
NGS , due to the larger degeneracy of the ES. Both carri-
ers are not completely clamped but slightly increased with
increasing bias current. This is due to the gain compression
effect, which is characterized by the gain compression factor
in (8) and (9). Increasing the photon number reduces the
effective differential gain, and hence more carrier populations
(or higher carrier occupation probabilities) are demanded to
maintain a constant gain value, which is governed by the
cavity loss [34]. On the other hand, the RS carrier number
NRS is much smaller than NGS and NE S for all the bias
currents.

A. Relative Intensity Noise Characteristics

Figure 3(a) shows the RIN of the GS emission (RINGS) at
several bias currents. Below the ES lasing threshold, RINGS

shows a clear resonance peak, and the resonance frequency
increases with the bias current as expectation. Meanwhile,
increasing the bias current reduces the whole RIN spectrum.
Above the ES lasing threshold, the resonance peak of RINGS

is almost completely suppressed. The RIN evolution of the
ES emission (RINE S) in Fig. 3(b) is similar as RINGS below
the ES lasing threshold. However, the resonance frequency of
RINE S is about 3 times larger than the latter, which leads to the
higher modulation bandwidth of the ES emission as observed
in [16], [21].

Figure 4 depicts the low-frequency (at 1.0 MHz) RINs of
both GS and ES emissions as a function of the bias current.
Below the ES lasing threshold, RINGS decreases rapidly from -
126.3 dB/Hz at 1.2×I GS

th down to -154.9 dB/Hz at 5.2×I GS
th .

However, at the ES lasing threshold, RINGS abruptly increases
to -149.4 dB/Hz. This significant increase of RINGS is in
agreement with the experimental observation in [25]. The high
RINGS can be attributed to the large optical power fluctuations
induced by the strong spontaneous emission of the ES, due
to the coupling of the GS and the ES through the carrier
relaxation process [25]. Beyond the ES lasing threshold,
RINGS reduces slightly, and becomes almost constant
around -155 dB/Hz. On the other hand, RINE S significantly
decreases from -135.4 dB/Hz at 1.1×I E S

th to -156.8 dB/Hz at
2.0×I E S

th .

UE S,GS = −
[

NGS

τ GS
E S

(1 − ρE S) + NE S

τ E S
GS

(1 − ρGS)

]
(17)

UE S(GS),SE S(GS) = −
[

2βsp
NE S(GS)

τ
spon
E S(GS)

SE S(GS) − �pvg gE S(GS)SE S(GS)

]
(18)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ11 + jω −γ12 0 0 0 0 0
−γ21 γ22 + jω −γ23 −γ24 0 0 0

0 −γ32 γ33 + jω 0 −γ35 0 0
0 −γ42 0 γ44 + jω 0 0 0
0 0 −γ53 0 γ55 + jω 0 0

−γ61 −γ62 −γ63 −γ64 −γ65 jω 0
−γ71 −γ72 −γ73 −γ74 −γ75 0 jω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δNRS

δNE S

δNGS

δSE S

δSGS

δφE S

δφGS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

FRS

FE S

FGS

FSE S

FSGS

FφE S

FφGS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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Fig. 3. RIN spectra of laser emitted from (a) the GS and (b) the ES at
several bias currents. I E S

th ≈5.8×I G S
th .

Fig. 4. Low-frequency RINs at 1 MHz of GS emission and ES emission as
a function of the normalized bias current.

B. Frequency Noise Characteristics

Figure 5(a) shows that the FN of the GS emission (FNGS)
generally decreases with increasing bias current, and the reso-
nance peak is suppressed. However, at the ES lasing threshold,
the low frequency part of FNGS is significantly increased, due
to the high LBF described in Fig. 7. The FN of the ES emission
(FNE S) in Fig. 5(b) shows similar evolution as FNGS below
the ES lasing threshold.

From the low-frequency value of the FN spectrum,
we obtain the intrinsic linewidth of semiconductor lasers
through the simple relation �νO L = 2π F N |(f=1.0 MHz)
[33], [39]. The intrinsic linewidth is determined by both the

Fig. 5. FN spectra of laser emissions from (a) the GS and (b) the ES at
several bias currents. I E S

th ≈5.8×I G S
th .

Fig. 6. Intrinsic linewidths of GS emission and ES emission as a function
of the normalized bias current.

spontaneous emission noise and the LBF [34]. It is noted
that the rate equations do not take into account technical
noise sources including current source noise, temperature
fluctuation, and mechanical vibration, which can significantly
raise the low-frequency FN. Figure 6 depicts that the intrinsic
linewidth of the GS emission decreases from 6.7 MHz at
1.2×I GS

th down to 0.5 MHz at 5.2×I GS
th . At the ES lasing

threshold, the intrinsic linewidth exhibits an abrupt increase
to 2.0 MHz as the low-frequency RIN in Fig. 4. Above the
ES lasing threshold, the intrinsic linewidth of the GS becomes
almost constant around 0.26 MHz. Meanwhile, the intrinsic
linewidth of the ES emission declines from 7.6 MHz at
1.1×I E S

th to 0.88 MHz at 2.0×I E S
th .
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Fig. 7. LBFs of the GS and the ES as a function of the normalized bias
current.

On the other hand, from the high-frequency value of the FN
spectrum, the Schawlow-Townes linewidth of semiconductor
lasers is extracted through �νST = 2π F N |(f=100 GHz). The
intrinsic linewidth �νO L of semiconductor lasers is broadened
by the LBF from the Schawlow-Townes linewidth �νST as

�νO L = �νST (1 + α2) (23)

Using the above formula, Fig. 7 extracts the LBFs of both
the GS and the ES. Below the ES lasing threshold, the LBF
of the GS increases from 0.7 at 1.2×I GS

th to 1.2 at 5.2×I GS
th ,

due to the increased contribution of carrier variations in the
ES and in the RS [21], [33]. At the ES lasing threshold,
the LBF dramatically increases to 2.9, due to the strong
carrier perturbation induced by the onset of ES emission. This
increased LBF results in the poor resistance to optical feedback
at the ES lasing threshold, as experimentally observed in [29].
Interestingly, the LBF of the GS becomes declining for bias
currents above the ES lasing threshold. This phenomenon
is qualitatively in good agreement with the experimental
observation in [40], where a giant LBF is observed around
the ES threshold. The LBF reduction can be attributed to the
stimulated emission of the ES, which stabilizes the carrier
vibration induced by the spontaneous emission, because the
stimulated emission consumes much more carriers than the
spontaneous emission [41]. On the other hand, the LBF of the
ES is almost constant around 0.57, which is slightly smaller
than the LBF of the GS for the same bias current.

IV. CONCLUSION

In summary, we propose a rate equation model of dual-
state lasing InAs/InP QD lasers including the Langevin noise
sources, which enables the investigation of RIN and FN
dynamics. The RIN and the intrinsic linewidth of both GS
emission and ES emission generally decrease with increasing
bias current. However, at the ES lasing threshold, both the low-
frequency RIN and the linewidth of the GS emission abruptly
increase. Beyond the ES lasing threshold, both become almost
constant. In addition, it is found that the LBF of the GS
increases with bias current below the ES lasing threshold,
while becomes decreasing when it is above the ES threshold.
Interestingly, the QD laser exhibits a giant LBF at the ES
lasing threshold. On the other hand, the LBF of the ES is also

almost constant, which is slightly smaller than the GS one.
The findings in this work suggest that the ES emission in QD
lasers hardly degrades the noise performance of the GS emis-
sion, except at the ES lasing threshold. Therefore, practical
applications of QD lasers should avoid current operation in the
vicinity of the ES threshold. Finally, although the simulations
in this work are based on InAs/InP lasers, we believe that
the conclusions are also suitable for InAs/GaAs dual-state
emission QD lasers, which can be obtained by replacing the
parameters in Table I with the InAs/GaAs ones.
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