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Feedback Sensitivity and Coherence Collapse
Threshold of Semiconductor DFB Lasers
With Complex Structures
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Abstract—A general method for evaluating the feedback sensi-
tivity of semiconductor lasers is proposed based on Green’s func-
tions approach. The rate equations derived in this paper generalize
works already published to any type of laser cavities such as those
with axially varying parameters. The variation of the lasing fre-
quency occurring under external optical feedback is then used to
predict the coherence collapse threshold. The approach is validated
for conventional DFB lasers by comparing the calculated feedback
sensitivity with those obtained from analytical expressions. Both
feedback sensitivity and coherence collapse thresholds are then cal-
culated and analyzed for DFB lasers with a chirped grating. A re-
markable agreement on the critical feedback level between simula-
tions and measurements is obtained for all the lasers under study.

Index Terms—DFB lasers, Green function, optical feedback,
transfer function matrix.

1. INTRODUCTION

T IS WELL KNOWN that the performances of a semicon-

ductor laser are strongly altered by any source of external op-
tical feedback. The laser sensitivity can be such that, even under
a very weak feedback level, the laser becomes unstable and
starts operating within the so-called coherence collapse regime
[1]. The main consequence of such a regime on the semicon-
ductor laser is a drastic broadening of the laser linewidth up to
several gigahertz which is very detrimental to most applications.
In the important case of optical fiber transmission, the coher-
ence collapse leads to a strong degradation in the bit error rate
(BER) when the laser is used as a transmitter, as theoretically
[2] and experimentally [3] demonstrated. More generally, the
prediction of the coherence collapse threshold is an important
feature for all applications requiring either a low noise level or
a proper control of the laser coherence.

Based on a weak coherent feedback hypothesis, the determi-
nation of the critical feedback threshold was analytically derived
for Fabry—Perot lasers in [4]. An analytical method was also pro-
posed by Favre to determine the feedback sensitivity, or the cou-
pling strength coefficients, of DFB lasers [5]. Both approaches
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concluded the importance of calculating the coupling strength
coefficients of the laser cavity [6]. Following [5], the coher-
ence collapse threshold of DFB lasers having an antireflection
(AR) coating on the emission facet and a high-reflection (HR)
coating on the rear facet has been calculated and compared to
experimental results [7]. It was both theoretically and experi-
mentally shown in [7] that, due to the HR-facet, the feedback
sensitivity as well as the coherence collapse threshold exhibit a
facet phase dependence through a quasi-parabolic distribution.
The large dispersion among the critical feedback levels observed
for a given set of DFB lasers leads to a wide range of behavior
under external optical feedback which is detrimental to applica-
tions. However, the feedback sensitivity of chirped grating DFB
lasers for which excellent performance uniformity has been re-
ported [8] could not be assessed with the method described in
[5] due to the complicated nature of the grating. The method in
[5] therefore needs to be extended by a new approach that can
provide a general method of calculation of the feedback sensi-
tivity and of the coherence collapse valid for any type of laser.
Developing and validating such an approach is the main goal of
this paper.

The paper is organized as follows. In Section II, the Lang
and Kobayashi rate equations describing a semiconductor laser
operating under external optical feedback are generalized using
Green’s functions approach [9]. An expression of the varia-
tion of the lasing angular frequency serving for the calcula-
tion of both the feedback sensitivity and of the coherence col-
lapse is then derived from our generalized dynamical equations.
A very general expression of the feedback sensitivity valid for
any laser cavity comes as a consequence of these equations. In
Section III, the feedback sensitivity of DFB lasers is calculated
by using this new method and compared to the Favre analyt-
ical method described in [5] to validate the new approach. In
Section IV, chirped grating DFB lasers are investigated. After
coupling strength coefficient calculations, the coherence col-
lapse threshold is determined for several designs. A successful
comparison between calculated and measured coherence col-
lapse thresholds confirms the validity of the approach. Finally,
we summarize our results and conclusions in Section V. Overall,
the generalization of the Lang and Kobayashi equations allows
us to demonstrate a new successful and powerful numerical tool
serving to evaluate the feedback sensitivity and the coherence
collapse threshold of semiconductor DFB lasers with complex
structures.
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II. GENERALIZED THEORY OF OPTICAL FEEDBACK

In this section, a new method of calculation of both the
feedback sensitivity and the coherence collapse threshold is
reported. This new method covers most type of laser structures
at and above threshold. In particular, longitudinal variations
along the laser axis as well as spatial hole burning effects [10]
are included.

A. Generalized Rate Equations Including External Optical
Feedback

In what follows, it is assumed that the cavity medium is
isotropic and the laser perfectly index-guided. In addition
to these conditions, the longitudinal axis only is explicitly
taken into account. Both transverse and lateral variations are
accounted for by the effective dielectric constant . The starting
point is the wave equation for the electromagnetic field. From
Maxwell’s equations under the previous assumptions, the
complex Fourier component E,, (z) of the electric field in the
laser cavity is governed by the one-dimensional (1-D) scalar
wave equation [9], [12], [13]

V2E,(2) + k3eE,(2) = F(2). ()

In (1), V2 = 0?02z is the Laplacian operator for the longitu-
dinal coordinate z, w/2 is the lasing frequency, ko = w/c is
the wavenumber, where c is the velocity of light in vacuum, ¢
is the complex dielectric constant, and F,, (z) is the frequential
Langevin force term accounting for the distributed spontaneous
emission. It has been shown that the propagation wave equation
can be solved by using Green’s functions theory and that the
general solution of (1) can be written through the integral rela-
tion [9], [12], [13]

E.(z) =
J(L)
In (2), the integration is done over the total laser cavity length L
and includes the Green’s function G, (z, z’) whose expression
is given by [9]

Gu(z,2" ) F,(2)d . ()

Z4(25)Z—(2<)

Gy, (2,7) = W(w, N(z), pr)

3)
where z. and z- correspond to the lesser or greater values
of z and 2/, Z,(z) and Z_(z) are two independent solutions
of the homogeneous part of (1) with respect to the boundary
conditions, respectively, on the left and right facets. Finally,
it is important to point out that, in (3), W(w, N(z), pr) is
the Wronskian term of the previous solutions depending on
the lasing frequency w/2m, the carrier density N(z), and the
amplitude reflectivity pj of the k-facet (with k = r for the
right facet and & = [ for the left facet). The dependence of the
Wronskian on the facet reflectivity will be used later to take
into account external optical feedback coming from a distant
reflecting point of amplitude reflectivity v < 1. By injecting
(3) into (2), the general solution giving the electric field in the
laser cavity becomes

[ Ze()Z(59) oy g
E“(Z)_.(m W (o, NG ) )5 @
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It is well known that the oscillation condition corresponds to a
zero in the Wronskian term which serves to determine the laser
longitudinal mode. Such a condition can be written as follows:

W (wo, No(2), pr) = 0. ©)

As the Wronskian is complex, both the lasing frequency
wo/2m and the carrier density distribution at threshold Ny
are completely determined from (5). Assuming that the
semiconductor laser operates only in one longitudinal mode,
the field distribution can be simplified and is denoted by
Z(2) = Z_(2) = Zo(z). When the laser is exposed to
external feedback, the lasing frequency and the carrier density
distribution deviates from their original values. As a result,
the new Wronskian describing the lasing conditions under
feedback can be developed as [13], [14]

ow
W(W7N(z)7pk,eq) = W(UJQ,NO(,Zka) + EAW

L[ ow ow
L[ AN+ ZAp 6
+L/(L)8N St op o ©

where Aw = w —wo, AN = N — Ny, and Apy, = preq — Pk
is the variation of the k-facet reflectivity induced by external
optical feedback [5], [15] as follows:

Apr = (1 - pj) e 7. 7

In (7), w/2x is the lasing frequency in the presence of optical
feedback and 7 = 2L, /c is the external round-trip time (where
L, is the external cavity length and c is the velocity of light
in vacuum). As was mentioned at the beginning of this section,
spatial hole burning effects are also taken into account in (6)
through the integral term over the cavity length. By multiplying
the two sides of (4) by jW (w, N(z), pr.)/Zo(z) and using (6),
the rate equation for the electric field is thus obtained after the
inverse Fourier transform of (4), [9], [13] as follows:

déo(t) _ | _ L ow/jon
=) lj(wo w) L/(L> o Jaw SN 42| &(0)
I (L= ) alt = 1)+ F(O) ®)

where &q(t) represents the slowly varying envelope of the elec-
trical field in the laser cavity

o[t
/ &7 dw 9)

:% .

€o(?)

where {,, = E.,/Zy(z), and F(t) is the Langevin force in the
time domain. It is important to note that (8) can be applied to
any type of semiconductor lasers. The third term of (8) extends
the known Green’s function approach [12], [13] to the case of
external optical feedback and constitutes a generalization of the
Lang and Kobayashi rate equations. To convert the field com-
plex amplitude rate equation into photon density P and phase ¢
rate equations, let us write the complex electrical field as

&o(t) = /P(t)e’*®

where P(t) is the photon number inside the cavity and ¢ is the
phase of the electrical field. By injecting (10) into (8) and after

(10)
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having separated the real and imaginary parts, the dynamic evo-
lution of the electric field of a semiconductor laser operating
under external optical feedback is given by

P 2

+2Im {va (1-r) %&)ﬂ} P+ Fy(t) (11)
dp
T —wo—w—f' (L)WNTANdZ

~ Re [pr (1-02) %} +Fg(t)  (12)

where Wy, =  Re(OW/ON)/(OW/dw), W, =
Im(0W /ON)/(0W/0w), and W), = (0W /9py,)/(OW/Ow).
According to (8), the system described by (11) and (12)
constitutes again a generalization of the well-known Lang and
Kobayashi rate equations [15] used to study Fabry—Perot lasers
operating in the presence of optical feedback. Through the
generalized equations, both the static and dynamical behavior
of every type of laser structure can be analyzed. The dynamic
evolution of the carrier density is governed by the usual relation

dN _ I(t) N(t)

ARSI 0

1
dt e Te (13)

where N(t), 7., and I(t) are the carrier density within the active
zone, the carrier density lifetime, and the pump current, respec-
tively. The optical gain G in the active region is linked to the
carrier density through the relation
99

G(N) =T-2(N = Ny)
where dg/ON is the differential gain and NV, is the carrier den-
sity at the transparency (e.g., G(N;) = 0). The confinement
factor I takes into account the fraction of the optical power in
the active region. According to (11) and (12), the change in the
steady-state phase condition due to external optical feedback
can be derived as follows:

(14)

1 / Wy, AN dz = —Im [W,y (1 - p})] (15

L Jry

Aw=—2 [ Wy ANdz—Re[W,y (1-2)] (16)
L Jry

By using the definition of Wy, and Wy, the effective phase-
amplitude coupling coefficient a.g is defined as the ratio [14]

WNFAN dz
et = Jay W AN = 17
f(L) WNi AN dz

By injecting (17) into (16), the variation of the angular fre-
quency induced by external optical feedback can be rewritten
following the relation

Aw =L [ Wy ANdz = Re [Wyy (1= p})]  (18)
J(L)
and from (15) to yield
Aw =17 (1 - p%) (—aeprIm[W,] — Re[W,]). (19)

Equation (19) gives the change in the lasing angular frequency
when a semiconductor laser operates under optical feedback. As

the parameter W, is complex, it can be written as
Wy = [Wple™/* (20)

where |Wp| is the module and ¢ is the argument. According to
(20), the angular frequency variation described by (19) can be
written as follows:

Aw=—v(1- p%) [Wp|(aegtIm|e™? | + Rele™7¢]) (21)

leading to

Awt; = =2C,74/1 + o2g sin(p + arctan(aes))

where 7; the internal round-trip time and C} is the coupling
strength coefficient of the k-facet (assumed to be subjected to
optical feedback) defined as

(22)

O = % (1= p2) W, . (23)

Equation (23) constitutes a general expression of the coupling
strength coefficient which takes into account the coupling be-
tween the k-facet to an external cavity. The coupling strength
coefficient serves to quantify the sensitivity to external optical
feedback of both the threshold gain and frequency variations
[5], [15] of a semiconductor laser as well as to determine its co-
herence collapse threshold. But, above all, (23) shows the possi-
bility of calculating the coupling strength coefficient of any type
of laser structure. For instance, let us apply this general relation
to a Fabry—Perot laser and to a straight-section DFB laser.

1) Application to a Fabry—Perot Laser: In what follows, the
spatial hole burning effects are not taken into account. Under
such a condition, it has been already shown that the Wronskian
of a Fabry—Perot laser can be written following the relation [9],
(14]

W = 2.7.[3,07(pr16_2ng - 1)

—258L

(24)

where p,.pe — 1 is the oscillation condition and f3 is the
complex propagation constant which can be expressed as
g—«
2

where n is the refractive index, g is the optical gain, and « is the
internal loss, all in the active region. After calculating W, it is
easy to show that, by using (23) and (24), the coupling strength
coefficient for a Fabry—Perot laser can be written as

B =nko+j (25)

1— Ry
Cr = Vk=r1 26
k 2\/R_k7 r, ( )

where Ry, = |px|? is the reflectivity in intensity of the k-facet.
Equation (26) coincides with the well-known value of the
Fabry—Perot coupling strength coefficient published in [16].

2) Application to a Uniform Grating DFB Laser: It was
shown that the Wronskian of a conventional DFB laser can be
written as follows [5], [14]:

) o F(aL)
W = 405 rags (- %) (5 - %)

where (Bagg is the Bragg wavenumber, L is the length of the
laser cavity, and & is the coupling coefficient (e.g., internal feed-

27
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back induced by the grating). In (27), pi is the complex am-
plitude reflectivity on the k-facet whose expression is given
by pr = pre’?* where py, is the amplitude reflectivity of the
k-facet and ¢y, is the facet phase that describes the position of
the facet in the corrugation. o is the complex propagation con-
stant such as 02 = k2 + ¢® where ¢ = ag — jéo with ag and
0o the laser losses and the Bragg deviation, respectively, both
without optical feedback. The definition of the Bragg deviation
(e.g., the detuning) &y is given by the relation

0y = /8 - /BBragg

where (3 is the emission wavenumber. In (27), the terms X and
X are defined by X = 0 + g and X=—-0+ q. Finally, the
function F'(o L) describing the threshold condition is expressed
following the relation

F(oL) = (1—;51%) (1—@%)
- <ﬁz - .5) (ﬁr _ 5) 2L (29)
K jK

Let us assume a straight-section DFB laser having an HR
coating on the rear facet (k = r) and an AR coating on the
emission facet (k = [). As the external optical feedback is
assumed to be produced on the emission facet (k = [), let us
only focus on the determination of the coefficient C;. Thus, by
using (23), (27), and (29), the coupling strength coefficient of
such a structure can be written as

[(¢L)* + (5L)] [2p, (L) /6L — j (1 + p7)]
qL[L (1 +p7) = jpr] + 2jpr(aL)? — kL~
This relation is identical to that obtained by Favre [5] in his
description of feedback effects in DFB lasers.

The above analytical expressions of C' are obtained when the
Wronskian can be expressed explicitly. For complex laser struc-
tures such as a chirped grating structure and for lasers exhibiting
spatial hole burning above threshold, there are no known ana-
Iytical solutions for the Wronskian. To cope with this difficulty,
we propose to introduce a new method of calculations to deter-
mine the coupling strength factor for any kind of laser structure.
The method can be applied above threshold and can take into
account such effects as the spatial hole burning.

(28)

Cr= (30)

B. Numerical Implementation of the Method

By using (7), the amplitude of the reflection can be rewritten
as

wT

v = (€29)
1-p}

where Apy = preq — Pk is the overall variation of the reflec-

tivity subjected to external optical feedback. Thus, by injecting

(31) into (22), the variation of the lasing angular frequency can

be written following the relation:

A
Awr; = =205 —L2 1+ a24h(p)
1—pg

where h(p) = /¥ sin(p + arctan(aeg)), h(y) is a circular
function such that |h(¢)| < 1. Equation (32) describes the in-
terference condition between emitted and reflected fields lasing

(32)
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at frequencies wo /27 and w/2m. Equation (32) serves to study
the stability and the dynamic evolution of the system [17], [18]
and clearly shows that, when 0 < ¢ < 27, every variation of the
emission frequency can be explicitly calculated. More particu-
larly, when |h(¢)| = 1, (32) reaches its maximum (Aw7;)max
and allows us to determine the coupling strength coefficient of
the k-facet subjected to optical feedback through the relation

B (AwT;) o 1— p%
" a/Ttal Mok

According to (33), the calculation of the coupling strength coef-
ficient is clearly obtained from the determination of the change
in the lasing angular frequency Aw introduced by the variation
of the facet reflectivity. In Fig. 1, the algorithm used for the cal-
culation of the coupling strength coefficient is outlined. At first,
self-consistent calculations were made to predict the spectral be-
havior of the laser by using the transfer matrix method (TMM)
[19]. In those simulations, variations of the effective index, of
the confinement factor, and of the grating strength were taken
into account. The spatial hole burning effect [10] was simulated
by truncating the devices into small constant carrier density re-
gions. The lasing conditions were then self-consistently found
for any input current. In order to take into account the optical
feedback, a variation of the facet reflectivity subjected to the
external reflection is introduced by changing the facet reflec-
tivity from py to pi + dpre?®. Under those conditions, the op-
tical spectrum is recalculated as well as the new emission an-
gular frequency w for each value of # such as 0 < 6 < 2. The
knowledge of wg and w (#) allows us to determine explicitly the
overall variation Aw(f) = w(f) — wo. According to (33), the
coupling strength coefficient C, is given when Aw () reaches
its maximum value (Aw)max-

(33)

C. Calculation of the Coherence Collapse Threshold

Due to the coupling strength coefficient, the onset of the co-
herence collapse regime occurring at a certain feedback level
v = 7¢ can be determined by using the well-known analytical
relation [4]

wir?
e = r . 34
= TGO (1 + a2) .
In (34), w./2m is the relaxation frequency whereas
wq/2r = 2n/K is the damping frequency. The damping

K-factor is linked to the material structure and usually ex-
pressed as [20]

K:4_7f2(

Vg

ENL 1
dg9/ON  « ) (35)
where v, is the group velocity and €x, is the nonlinear gain
coefficient. In what follows, the K -factor is close to 0.5 ns, cor-
responding to a damping frequency of 12 GHz. It is important
to stress that (34) holds under the assumption of weak optical
feedback v¢ < —30dB, aeg > 1, and w, g7 > 1. Itis also im-
portant to note that (34) is derived from an analysis based on the
feedback loop theory where the laser and the feedback term are
described by a general transfer function [4]. The theory leading
to (34) can be applied to any laser provided that all the param-
eters appearing in (34) are properly defined through the gener-
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Fig. 1.

Scheme of the algorithm used for the calculation of the coupling strength coefficient. The variation of the k-facet reflectivity subjected to the external

reflection is done from py, to py + dpye??. The knowledge of w, and w (#) allows us to determinate explicitly the overall variation Aw(6) = w(#) — wy as well

as the coupling strength coefficient C', through (15).

alized rate equation (8). The coherence collapse is a common
name given to describe the dramatic spectral broadening occur-
ring for a large range of feedback levels. Many papers describe
the coherence collapse regime as coexisting chaotic attractors
induced by the complicated irregular dynamics that occurs when
the laser is operating above and not too close to threshold [21].
This regime can also be explained intuitively as an enhancement
of the spontaneous emission occurring when the laser and the
reflected fields are not correlated [22], [23]. Although the co-
herence collapse state is very detrimental to most applications,
it has been shown that the induced spectral broadening may find
useful applications. For instance, it has been utilized to stabilize
apump laser at alocked frequency by using a fiber Bragg grating
[24].

By injecting (33) into (34), the coherence collapse threshold
of the semiconductor laser can be expressed following the final
relation

ir2 Apy,
cap = 101 rTs 36
Ye,dB og 4(.4}3 (AWTi)max(l — pz) ( )

In the case of a DFB laser, it also appears from (34) that the co-
herence collapse threshold at a given output power P depends
on facet phase effects via the complex coefficient Cj, and the
resonance frequency w, /2w whose expression is given by the
relation (w,/2m) = A+/(P/n(¢r)) [25] where A and 7(¢p,)
are a constant coefficient and the external efficiency (which de-
pends on the facet phases), respectively. Such a dependence is
taken into account in our numerical calculations.

In Section III, we propose to apply our proposed coupling
strength coefficient method to conventional AR/HR DFB lasers.
These simulations will be compared to (30), which matches
the results of [5]. In Section IV, the method will be applied to
chirped grating DFB lasers, and a comparison of the predicted
coherence collapse threshold will be made through experiments.

III. APPLICATION TO AR/HR UNIFORM GRATING DFB LASERS

In this paragraph, the method which has been described in
Section II is numerically applied to AR/HR DFB lasers such as
that depicted in Fig. 2. Let us assume that the external optical
reflection is produced on the AR-coated left facet while the rear
facet on the right has an HR coating. The amplitude reflectivity
of the laser is assumed to be 5, = 0.97¢7#" for the HR facet and
= 0.00e?#! for the AR-coated facet. Due to the AR coating,
the optical field depends only on the HR facet phase ¢,.. In order
to check the method proposed in the previous section, we first
calculate the coupling strength coefficients by using the ana-
lytical method described in [5]. In Fig. 3, the variation of the
coupling strength coefficient C; versus the normalized grating
coupling coefficient xL derived from (30) is reported for two
different facet phase cases ¢, = 7 and ¢, = /2. The nor-
malized grating coupling coefficient L is in the range from
0.30 to 0.90. A decrease of the coefficient C; when the normal-
ized grating coupling coefficient increases is observed as ex-
pected in [5]. The previous values reported in Fig. 3 can be re-
calculated by using the numerical method based on the laser an-
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~ -
Pr=ppe’®

pr=pye’®

Fig. 2. Design of the AR/HR straight-section studied laser. The amount ~
denotes the optical feedback reinjected into the cavity through the left facet and
x L is the normalized coupling coefficient. p; and p, correspond to the complex
amplitude reflectivities on the AR and HR facets, respectively.

8 -
] X
7 +  o=n/2
1 X o=n
6 +
U" p
& 5-
g
o
E 4 x
[}
g
Q 3.‘
+ X
2 X
+
14 +
T T — T T T T 1
0.2 04 06 08 1,0
Normalized Coupling Coefficient k1.
Fig. 3. Variations of the calculated coupling strength coefficient versus the

normalized grating coupling coefficient (0.3 < sL < 0.9) for a 350-pm
AR/HR conventional DFB laser. The phase of the HR facet .. is fixed either to
7/2 (4 points) or 7 (X points).

gular frequency variation. The emission angular frequency wy
without optical feedback (y = 0) is first calculated for each
value of kL. Then, let us assume that an external reflection on
the left facet induces a variation of the reflectivity from p; to
p1 + 6piet®. In the calculations, the external optical feedback
is chosen such that v2 = 2.10~%. By varying the phase # from
0 to 2, the new emission angular frequency w in the presence
of optical feedback is calculated. In Fig. 4, the overall variation
AwT;(0) = (w(f) — wo)7; is reported for each value of L. In
the simulations, the laser cavity length is kept to 350 um and
corresponds to an internal round-trip time of 7; = 7.5 ps. Each
point is obtained for a given feedback phase 6 and a fit is then
added for visual help. According to the theory, the response to
optical feedback from the front facet is sinusoidal. Taking into
account the AR coating, the coupling strength coefficient on the
left facet described by (33) can be simply written and calculated
following the relation:

(Aw’ri>max

C= ———F—F——=
: 20p1\/1+ g

where |Ap|* = ~2 [see (7)]. In the simulations, the linewidth
enhancement factor az is chosen to be equal to 3.00. In Fig. 5,
a comparison among the coupling strength coefficients C cal-
culated either with the analytical method (+ symbol) or with the
method of the angular frequency variation (x symbol) is shown.
In Fig. 5(a), the facet phase on the right facet is ¢, = 7 while
it is assumed to be equal to ¢, = 7/2 in Fig. 5(b). Both fig-
ures show that the coupling strength coefficients calculated from

(37

| 2
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Awr; (radians)

0 (radians)

Fig. 4. Variations of the calculated normalized laser angular frequency
Awr; versus the phase 8 for a 350-um AR/HR conventional DFB laser and
for different normalized grating coupling coefficients kL: (a) kL = 0.3,
(b) kL = 0.5, (c) kL = 0.7, and (d) kL = 0.9.

6 X ¥ Angzialar frequency variabion method (sermi-analytcal)
|+ + Amnalytical method
5 -
J 4+
o
=
L
£
g 1 X
027
1 X
1 -
| o¢mn X
0 T T T T T T T T T T T T T
0,3 0,4 0,5 0,6 0,7 0,8 0,9
Normalized coupling coefficient KL
(@)
87 X X Angular frequency variation method (semi-analytical)
+ Analytical method
7 -
~6-
o
T
=
.8 54
o
& X
(o)
C 4
O
34
©O=Tt/2 S
24 X
T T T T T T T T T M T T T
0.3 0.4 0.5 06 0,7 0.8 0.9
Normalized coupling coefficient kL.
(®)
Fig. 5. Variations of the coupling strength coefficients C; versus the

normalized grating coupling coefficient calculated either with the analytical
method (4 points) or with the method of the angular frequency variation (X
points). The laser is a 350-um AR/HR conventional DFB. Two facet phase
cases i, are investigated: (a) . = 7 and (b) ¢, = 7/2.

(37) are the same as those calculated by using (30). These com-
parative results demonstrate that both methods can be equiv-
alently used for calculating the coupling strength coefficient.
In the next paragraph, we propose to apply the method of the
angular frequency variation to the case of chirped grating DFB
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Fig. 6. Designs of the chirped-grating DFB lasers investigated with their
different marks. They are made of a straight section followed by a varying
width stripe section and have an AR coating on both facets so as to suppress
facet phase effects. Design (a): the tip width p is in the range from 1.1 to
1.7 ppm. Design (b): the grating coupling coefficient is in the range from 10 to
100 cm~t.
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Fig. 7. Light—current characteristic relative to design (a) in Fig. 6. Threshold
current at 25 °C: Iy, = 12 mA, External efficiency at 25 °C: n = 0.19 W/A.
Experimental optical spectra recorded at 3 mW (i), 6 mW (ii), and 15 mW (iii)
are reported in the inset.

laser structures. The coupling strength coefficients as well as
the coherence collapse thresholds of two different designs are
compared to each other as well as to experimental results.

IV. CHIRPED-GRATING DFB LASERS
A. Description of Chirped-Grating DFB Structures

It has been shown in the previous section that AR/HR de-
vices suffer from dispersion from laser to laser [7]. Indeed, due
to interference effects between the grating and the facets, the
lasing properties are highly dependent on cleavage plane vari-
ations as small as a fraction of a wavelength. To clear the fab-
rication process from such dependence, AR coatings on both
facets can be used when combined to an appropriate structure
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Fig. 8. Variations of the calculated normalized laser angular frequency Awr;

versus the phase 8 for design (a). The grating coupling coefficient is equal to
80 cm~!. Simulations are conducted for the following values of the parameter
p:@p=11pum,(b)p=14pum,(c)p=1.6 gm,and (d)p = 1.7 pgm.

(1.4pm ; -29.1dB)
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11 1,2 1,3 14 15
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Fig. 9. Variations of the calculated coherence collapse threshold versus the tip
width for design (a). Each point corresponds to a calculated value whereas a fit
has been added to improve clarity.

such as a phase-shift laser [26]. However, in most cases, a high
fabrication accuracy is needed to control the laser spectral char-
acteristics and the production of such structures remains a tech-
nological challenge. Another way to clear the problem is to use
chirped-grating DFB lasers which are based on a stripe engi-
neering approach [27], [28]. The two designs of Fig. 6(a) and (b)
will be investigated in this paper. The lasers can be divided into
a straight section (left) followed by a varying-width stripe sec-
tion (right). The lasers have an AR coating on both facets so as
to suppress facet phase effects. A uniform grating is built using
conventional holographic techniques. However, its optical pitch
varies along the device due to the dependence of the effective
index with the stripe width. The variation of the effective index
in the device is designed such as to break the symmetry of a
uniform grating laser and to allow for a proper spectral selec-
tion. Due to those structures, single-mode operations have been
achieved and already reported elsewhere [8], [29], [30]. As an
example, the light current characteristic L(I) corresponding to
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for design (b).

design (a) is shown in Fig. 7 together with the experimental op-
tical spectra recorded at 3 mW (i), 6 mW (ii), and 15 mW (iii).
Low threshold currents of 12 mA combined with an external
facet efficiency of 0.19 W/A are obtained. No deleterious ef-
fect from the spatial hole burning is observed, neither kinks nor
spectral variations, even under high injected current.

B. Calculation of the Coherence Collapse Threshold

In the calculations, the design parameters are the width of the
tip p (i.e., the width of the end of the varying width stripe section
on the emission facet) which varies from 1.0 to 1.7 pum for de-
sign (a). The straight section has a grating coupling coefficient
+ of 80 cm~!. The grating coupling coefficient varies from 10
to 100 cm ~? for design (b). The tip width is 0.2 zm. Due to the
variation of the effective index and of the confinement factor,
both the grating coupling coefficient and the Bragg wavelength
are dependent on stripe width. As a consequence, the determi-
nation of the coupling strength coefficients cannot be realized
with the analytical method described in [5] [see (30)]. These
calculations have therefore been realized with the method of
the angular frequency variation. The reflection is assumed to be
produced on the emission facet (right facet) for all designs. For
the simulations, the linewidth enhancement factor is a g = 3.0
whereas optical feedback is again equal to 42 = 2 - 10~* GHz.
The resonance w, /27 and damping wy/2m frequencies are 8
and 12 GHz, respectively. In Fig. 8, the angular frequency vari-
ation (AwT;) induced by optical feedback is plotted for design
(a) versus the feedback phase 6 for different values of the tip
width. As predicted, a sinusoidal behavior is obtained whose
maxima serve again to calculate the coupling strength coeffi-
cient of the right facet C,. as well as the coherence collapse
threshold. In Fig. 9, the calculated coherence collapse threshold
variation is reported versus the tip width p. Each point corre-
sponds to a calculated value whereas a fit has been added for
improved clarity. As it is clearly shown, the resistance to op-

tical feedback decreases with the tip width. We explain this ef-
fect by the reduced average coupling coefficient since x de-
creases with the stripe width. Now, let us consider design (b)
whose tip width is 0.2 pum (cf. Fig. 6). The laser parameters are
ag = 3.5, w,/2r = 8 GHz and wy/2r = 12 GHz for the
linewidth enhancement factor, the resonance frequency, and the
damping frequency, respectively. The coupling grating coeffi-
cient is now a parameter in the range from 10 to 100 cm ~!.
In Fig. 10, variations of coupling strength coefficients (black
dots) and of coherence collapse threshold (black squares) are
reported. As predicted by theory, the sensitivity to optical feed-
back decreases when a higher grating coupling coefficient is
used. In the calculations, the coupling strength coefficient is in
the range from 2 to 10 while the coherence collapse threshold
varies from —48 to —32 dB. In the case of k = 80 cm ™!, the cal-
culated coupling strength coefficient C,. is equal to 1.8, leading
to a coherence collapse threshold of —33 dB.

C. Comparison With Measurements

The lasers used for the experimental work are buried ridge
stripes (BRS) with proton implantation whose vertical struc-
ture has already been published in detail [31]. Design (a) (with
p = 1.4 yum and p = 1.7 pm) and design (b) (x = 80 cm™!)
have been fabricated and tested. In order to avoid undesirable
reflections, an AR coating in the range of 10~% was applied on
each facet. The onset of the coherence collapse is determined
when a drastic broadening of the emission line occurs (at =1 dB)
with respect to the return loss (RL) level. An optical spectrum
analyzer having a resolution of 10 pm was used for this purpose.
Two lasers have been measured for each design with similar re-
sults. Taking into account the coupling loss coefficient 1 from
the laser into the fiber which was optically measured to be equal
to 3 dB, the coherence collapse threshold can be derived from
the critical return loss level RL,. according to the relation

Yo = RL¢ + 2nqB (38)
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(for a prediction of —29.1 dB). Design (a): p = 1.7 pm, y¢ = —22 dB (for
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where the factor 2 is due to the round trip in the external cavity.
In all cases, the injected power was fixed to 10 mW leading to a
resonance frequency of w, /2w = 8 GHz whereas the damping
frequency was measured to be equal to wy/2m = 12 GHz. By
using the experimental method described in [32], the effective
linewidth enhancement factor was also measured to be equal to
3.0 [for design (a)] and 3.5 [for design (b)].

In Fig. 11, a comparison of the simulation results with the
measured coherence collapse threshold (in gray) for both de-
sign (a) (tip width p = 1.4 pum and p = 1.7 pm) and (b) (x =
80 cm 1) are reported. Two lasers have been experimentally in-
vestigated for each configuration under study. Thus, for a tip
width of 1.4 um [design (a)], the average coherence collapse
threshold is -28 dB for —29.1 dB predicted. In the case of a
tip width of 1.7 um, the average critical return loss increases
leading to a measured coherence collapse threshold of —22 dB
for —20.7 dB predicted. Concerning design (b), the average co-
herence collapse threshold is —34 dB for —33 dB predicted.
For all designs, a very good agreement between calculations
and measurements is clearly obtained. In conclusion, based on
the lasing angular frequency variation induced by optical feed-
back, the prediction of the feedback sensitivity via the coupling
strength coefficient and then of the coherence collapse threshold
of all laser structures is demonstrated.

It is important to point out that this general method of calcu-
lation does not make use of the knowledge of the Bragg wave-
length and can be used at and above threshold. Finally, even
though this has not been studied in this paper, it is important to
highlight that this method can be used experimentally to mea-
sure the coupling strength coefficient of a semiconductor pro-
vided the feedback phase € as well as the feedback level -y are
properly controlled.

V. CONCLUSION

The use of Green’s functions theory has led to a generaliza-
tion of the well-known Lang and Kobayashi equations. These
generalized rate equations can be applied to any type of laser
cavity and allow us to derive a very general expression of
the coupling strength coefficients. This expression shows that
the variation of the lasing angular frequency can always be

expressed using a circular function when written with respect
to the feedback phase. More importantly, the knowledge (or
measurement) of this function suffices to predict the laser
sensitivity to optical feedback. As a main consequence of our
approach, the laser feedback sensitivity can be evaluated at a
very early stage of the design optimization of complex laser
structures. The newly proposed approach has first been applied
to Fabry—Perot and uniform DFB lasers with AR/HR coatings.
Identical results compared to previous publications have been
found, demonstrating the validity of the new approach. More
importantly, the sensitivity to optical feedback of chirped
grating DFB lasers that could not be described by previous
theories has been investigated. Excellent qualitative and quan-
titative agreement between the theory and our experimental
measurements in terms of coherence collapse threshold has
been obtained on all the designs under study.

In summary, we have demonstrated new and powerful tools
for calculating the coherence collapse threshold of any laser
structures. These results are of prime importance to evaluate
the sensitivity to external optical feedback of semiconductor
lasers and to predict their dynamical behavior in transmission.
They apply even in the case of strong spatial hole burning and
may also lead to the experimental measurement of the coupling
strength coefficients of semiconductor lasers.
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