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Abstract: Quantum dot lasers are an attractive option for light sources in silicon photonic integrated
circuits. Thanks to the three-dimensional charge carrier confinement in quantum dots, high ma-
terial gain, low noise and large temperature stability can be achieved. This paper discusses, both
theoretically and experimentally, the advantages of silicon-based quantum dot lasers for passive
mode-locking applications. Using a frequency domain approach, i.e., with the laser electric field
described in terms of a superposition of passive cavity eigenmodes, a precise quantitative description
of the conditions for frequency comb and pulse train formation is supported, along with a concise
explanation of the progression to mode locking via Adler’s equation. The path to transform-limited
performance is discussed and compared to the experimental beat-note spectrum and mode-locked
pulse generation. A theory/experiment comparison is also used to extract the experimental group
velocity dispersion, which is a key obstacle to transform-limited performance. Finally, the linewidth
enhancement contribution to the group velocity dispersion is investigated. For passively mode-locked
quantum dot lasers directly grown on silicon, our experimental and theoretical investigations provide
a self-consistent accounting of the multimode interactions giving rise to the locking mechanism, gain
saturation, mode competition and carrier-induced refractive index.

Keywords: quantum dot; semiconductor lasers; mode locking; frequency domain

1. Introduction

In recent years, the market for data center servers has been boosted by a huge in-
crease in demand from the digitalization of data in commercial and home applications,
including media and social networks. Optical interconnects play a crucial role in sup-
porting the enormous volume of data that propagates in short- and long-haul fiber-optic
networks. Presently, optical interconnect bandwidth and power consumption contribute
to a bottleneck limiting further increase in transmission capacity. Dense wavelength-
division multiplexing (DWDM) technologies provide a solution to increase link capacity [1].
Silicon photonic integrated circuits (PICs) based on a mature complementary metal–oxide–
semiconductor (CMOS) industry is paving the way with low-cost and energy-efficient
solutions [2].

DWDM requires high-performance on-chip laser sources. Mode-locked (ML) lasers
producing optical frequency combs are ideal for DWDM systems owing to their small
footprint and low power consumption [3,4]. Pulsed ML lasers are also highly desired
for applications including optical time-division multiplexing [5], metrology [6], LIDAR
systems for self-driving automobiles [7] and optical clocks for distribution and recovery in
future computer processors [8].
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A quantum dot (QD) medium is regarded as an important option for monolithically
integrated light sources and photodiodes in silicon photonic PICs due to its improved
tolerance for dislocations arising during the epitaxial growth of III–V on silicon [9–11]. In
addition, the three-dimensional charge carrier confinement in QDs contributes to high
material gain [12], low noise [13] and remarkable temperature stability [10]. Additionally,
the inherently low linewidth enhancement factor is important, which results in a high
degree of tolerance for chip-scale back reflections [14,15]. In terms of mode locking, a recent
study revealed that QDs are beneficial for generating ultra-short ML pulses and supporting
a high transmission rate over 4 Tbits/s [16]. Moreover, rich QD optical nonlinearities,
specifically a high χ(3) coefficient from four-wave mixing (FWM), is found to be sufficiently
strong to overcome group velocity dispersion and result in self-mode locking. A self-ML,
single-section laser has a significantly smaller footprint and less electronic complexity than
a typical two-section ML laser with forward- and reverse-bias sections [17]. In the near
future, QD FWM may generate quantum states of light for quantum photonic integrated
circuits (QPICs) [18].

On the basis of the above arguments, our experimental and theoretical studies focus
on passively ML QD lasers epitaxially grown on silicon. Mode locking in both single- and
multi-section diode lasers is typically described in the time domain or traveling wave do-
main, because it has the advantage of giving a physical picture of pulse train formation [19].
We have, instead, returned to the earlier complimentary frequency domain description [20].
There are several motivations, including a direct connection of optical nonlinearities to elec-
tronic structure via multimode semiclassical laser theory, where the quantum mechanical
electron–hole polarization treats the locking mechanism, gain saturation, mode competition
and carrier-induced refractive index on an equal footing [21,22]. Equally important and
useful from using the frequency-based approach is that it allows a precise and physically
intuitive description of the mode locking process to be made from the Adler equation
perspective [23].

Section 2 describes the frequency domain approach. Three important advantages are
discussed. Section 2.1 describes a precise quantitative description of the conditions for
frequency comb and pulse train formation. Section 2.2 presents a concise explanation of the
progression to mode locking via Adler’s equation. Section 2.3 shows the equation for the
mode-locking strength derived from multimode laser theory. It allows the computation of
the mode-locking coefficient with band structure properties as input parameters. Section 2.4
presents the FWM process of an epitaxial QD laser using both the simulation and the
experiment. The case for another commercial quantum well (QW) laser is investigated for
comparison. Section 3 discusses the path to transform the limited performance. Section 3.1
compares the experimental beat-note spectrum and mode-locked pulse to theory and
to the expected ideal transform-limited result. Section 3.2 uses the theory/experiment
comparison to extract the experimental group velocity dispersion, which is the key obstacle
to transform-limited performance. Section 3.3 discusses the importance of the linewidth
enhancement contribution to the group velocity dispersion and suggests its mitigation via
QD active medium engineering.

2. Multimode Mode-Locking Approach
2.1. Conditions for Frequency Comb and Pulse Train Formation

For this discussion, we describe the intracavity laser field as a superposition of the
passive cavity modes un(z):

E(z, t) = ∑
n

En(t)un(z)cos[ψn(t)] (1)

where En(t) and ψn(t) are the mode amplitude and phase, and the summation is over all
lasing modes. One has a frequency comb when:

ψn(t) = (ν0 + n∆)t + φn (2)
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where v0 is a reference frequency, φn is the time-independent part of ψn and the fre-
quency differences between adjacent lasing modes are equal and given by the beat-note ∆
(Figure 1a). One has a mode-locked pulse train (Figure 1b) when in addition in Equation (2),
and the phases are equal, i.e.,

φ0 = φ1 = φ3 = · · · (3)

Note that Equation (3) is sufficient but not necessary. The passive cavity resonance
satisfies Ωm = mc/(2LnB), where m is the mode number, c is the speed of light in vacuum,
L is the cavity length and nB is the background refractive index. A useful quantity for
characterizing material dispersion and for optical design is the derivative dnB/dλn, where
the wavelength λm = 2L/m [24]. We found from Equation (1) that a constant dnB/dλn may
also result in a transform-limited pulse train.
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2.2. Progression to Mode-Locking Adler’s Equation

The mode-locking conditions in Equations (2) and (3) do not occur naturally because
of group velocity dispersion experienced by the laser field. At a minimum, there are
contributions from the passive waveguide material and from the carrier-induced refractive
index change in the active region. A comparison of the mode spectra in Figure 2a shows
the net effect of these contributions. In the upper spectrum with no dispersion, one has a
frequency comb, i.e., an equal beat-note between adjacent modes. The shifts indicated in
the lower spectrum with dispersion show differences in the beat-notes between adjacent
modes. In this case, one has neither a frequency comb nor a mode-locked pulse train.

A concise description of the path towards mode locking comes from Adler’s equa-
tion [23]:

dψ

dt
= a + bsinψ (4)

which has been very useful in studies involving frequency locking, e.g., the synchronization
of clocks, the locking of lasers (both mutually and via external injection), deadband in laser
gyroscopes, etc. The beauty of Equation (4) is that it contains only two parameters: a for
the obstacle and b for the fix. With mode locking, dψ/dt is the difference between two beat-
notes, a is the corresponding difference due to dispersion and b is the locking coefficient.

To illustrate how Adler’s equation gives a well-defined progression towards locking,
we consider three adjacent modes n = −1, 0, and 1 (see Figure 2a). When a > b, numerically
integrating Equation (4) gives dψ/dt ≈ a, with modifications from bsinψ, as shown by the
solid curve in Figure 2b. When a < b, ψ initially increases according to ψ = at. However,
when bsinψ = a (which is, of course, possible only when b ≥ a), dψ/dt = 0. This causes ψ
to remain constant and, consequently, because of Equation (4), dψ/dt stays as zero, i.e., the
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system stays locked (dashed curve in Figure 2b). Without locking, the phase ψ increases
constantly, as shown by the solid curve in Figure 2c. With locking, it assumes the value:

ψ = sin−1
( a

b

)
(5)

as shown by the dashed curve in Figure 2c.
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Of course, the production of a frequency comb or pulse train involves many lasing
modes. Then, one has many Adler’s equations, each for the difference between two beat-
notes. In practice, one tracks the phase of each lasing mode ψn, which, from a semiclassical
laser theory derivation, evolves according to

.
ψn = an + ∑

m
bnmsin(ψn − ψm) [21,22]. One

looks for steady state solutions where the difference
.
ψn −

.
ψn−1 −

.
ψm +

.
ψm−1 vanishes

for all combinations of n and m for a frequency comb to occur. The steady-state phase
difference ψn− ψn−1− ψm + ψm−1 for all combinations of n and m determines the closeness
to a transform-limited mode-locked pulse performance

As an example, we can look at a simulation involving 11 lasing modes. For an, we
assume only dispersion from GaAs, so that the passive cavity frequency for the mth mode
is Ωm = mc/(2LnGaAs), where m ranges from 1900 to 2100 for lasing around 1.315 µm in
a cavity of length 1.33 nm. For the refractive index nGaAs(λ), we use the Sellmeier-type
function with coefficients extracted from GaAs experiments [24].

With b ≥ 5.0 MHz, one obtains Equation (2) for −5 ≤ n ≤ 5. Figure 3a shows the
modification to the beat-note, with the creation of a flat section (lock band) between n = −5
and 5. A Fourier transformation of E(z, t)2 will show an infinitely narrow resonance at
the radio frequency (RF) of 30.60 GHz, indicating a perfect frequency comb. However, a
mode-locked pulse train may not result, as depicted in Figure 3b, because the condition
specified by Equation (3) is unsatisfied. It is only by increasing the locking coefficient b
to reduce the differences in phase, as given by Equation (5), that the pulses approach the
transform limit (see Figure 3c,d).
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2.3. Physics of the Locking Mechanism

To investigate the physical origin of the locking coefficient b, we generalize Adler’s
equation with the help of multimode semiclassical laser theory to obtain [22]:

.
ψn = Ωn + σn − τnε2

n − ∑
m 6=n

τn,mε2
m

− ∑
{n′ ,m,m′}

Im
[
ϑnn′mm′ e

−iψnn′mm′
]
εn′(t)εm(t)εm′(t)ε

−1
n (t) (6)

where the right-hand side of the first line corresponds to a in Equation (4) and the lock-
ing coefficient b is contained within the expression in the second line. The uncluttered
appearance of Equation (6) is obtained by defining a dimensionless electric field amplitude
εn = ℘En/2}γ, where γ is the dephasing rate, ℘ is the electron–hole dipole matrix element,
En is the modal electric field amplitude in Equation (1) and } is the Planck constant divide
by 2π. In the equation, Ωn is the passive cavity frequency including waveguide dispersion,
and the remaining terms describe the carrier-induced refractive index change and its cor-
rection due to saturation, according to the coefficients σn and τn, respectively. [21,22]. In
the second line, the bracket { } denotes summing up only the combinations of n′, m, m′ not
included in the terms in the first line. The phase difference,

ψnn′mm′ = ψn − ψn′ + ψm − ψm′ (7)

and associated coefficient ϑnn′mm′ come from the relative phase angle contributions, either
from the saturable absorber in a two-section laser or from four-wave mixing in the gain
medium in a single-section laser. The general equations for ϑnn′mm′ for both homogeneously
broadened lasers and Doppler-broadened lasers may be found in early laser physics papers
and textbooks [21]. The equation, specifically for an inhomogeneously broadened QD gain
medium, is given in one of our recent papers [22]. The equation of motion for ψnn′mm′ for
a given set of indices has the form of Adler’s equation in Equation (4). In the numerical
model, we track directly the set of Equation (6) and look for steady-state solutions where
dψn.n+1,m,m+1/dt vanishes for a combination of indices.
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According to multimode laser theory, ϑnn′mm′ includes spatial and spectral hole burn-
ing, with input parameters involving electronic structure, material constants and carrier
relaxation rates. An examination of the expression for ϑnn′mm′ indicates that spatial hole
burning dominates in a two-section laser with a saturable absorber, while spectral hole burn-
ing is important in determining the strength of self-mode locking in a single-section laser.

Lastly, unlike Adler’s equation, the locking term in Equation (6) contains the electric
field amplitudes, giving rise to rich dynamical behaviors. To allow the treatment of these
behaviors, the model has additional equations of motion that are solved simultaneously
with that for the laser phase. They are:

.
εn =

[
gsat

n −
Ω0

2Q

]
εn (8)

dN
dt

=
η J
e

1− N

2N(2d)
QD

− γnr N − 4ε0}d
Ω0

(
γnB
℘

)2

∑
n

gsat
n (N)ε2

n (9)

where,
gsat

n =
gn

1 + Anε2
n + ∑m 6=n Bn,mε2

m
(10)

is the saturated gain, Ω0/Q is the passive cavity decay rate and multimode laser theory
separates the gain compression to self- and cross-contributions, An and Bn,m. The total
carrier density equation of motion is included to give the carrier distributions used in the
evaluation of the linear and nonlinear gain medium coefficients. In Equation (9), the pump
term consists of the current density J, injection efficiency from electrodes to QD states η

and carrier blocking due to the exclusion principle
(

1− N/2N(2d)
QD

)
, where N(2d)

QD is the QD
density and e is the magnitude of the electron change. Additionally, in Equation (9), γnr is
the nonradiative carrier loss rate and nB is the background refractive index. In Equation (10),
gn is the small signal laser gain. Details on the derivation of Equations (6)–(10), expressions
for evaluating the gain medium coefficients and the input parameters, are given in an earlier
report [22]. The calculation of band structure parameters, such as conduction and valence
band dispersion and dipole matrix element, is given by k·p theory [25] The scattering rates
entering into the expression for the gain and refractive index coefficients are taken from
quantum kinetic calculations of InAs quantum dots [26].

2.4. Enhanced Frequency Conversion Efficiency

In this paragraph, FWM experiments are performed on both QD and QW lasers.
The QD Fabry–Perot (FP) laser is directly grown on silicon. Further details about the
structure have already been published elsewhere [12]. The QW laser is a commercial FP
laser provided by Almae Technologies. Figure 4 depicts the experimental setup for the
nondegenerate pump–probe FWM operation. To maximize the FWM efficiency, two single-
frequency tunable sources with narrow linewidths serve as the drive and the probe photons.
The outputs of those two pump photons are firstly incorporated by a 90/10 fiber-based
optical coupler, and then they are sent into the QD or QW laser from port 1 to port 2 of
an optical circulator and a lens-end fiber. To further maximize the frequency conversion
efficiency, the polarization controllers are added into the paths of the drive and the probe
sources to align the polarization of these two pump photons with that of the QD/QW
laser. To eliminate the back reflections from the setup, the isolation between port 2 and
port 1 of the optical circulator must be higher than 30 dB. The output of the FWM light is
finally coupled out from port 2 and it is sent to a high-resolution optical spectrum analyzer
(OSA) through port 3. The measurements are performed at 25 ◦C, which is controlled by a
thermoelectric cooler. Depending on the frequency of the drive and the probe photons, υd
and υp, respectively, the FWM operation includes two processes. The Stokes case takes place
when the frequency detuning ∆υ = υp − υd is negative, whereas the case for anti-Stokes
occurs at the positive frequency detuning condition.
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Benefiting from the three-dimensional charge carrier confinement in QDs, the en-
hanced third-order nonlinear susceptibility gives rise to the improvement of FWM efficiency.
In this study, the FWM efficiency is determined by the relationship between the ratio of the
signal power to the drive power rsd and the ratio of the probe power to the drive power rpd.
Figure 5 displays the calculated rsd as a function of the rpd for an epitaxial QD laser on Si
with p-modulation doping in the active region (solid burgundy line) and for a commercial
QW laser (solid jade line), with the frequency detuning ∆υ ≈ −300 GHz in the Stokes
condition and the bias current fixed to twice the threshold. The calculated dependencies
are performed with multimode semiclassical laser theory. The optical nonlinearities are
analyzed based on a microscopic level model containing quantum mechanical electron–hole
polarization. The theory gives access to the active medium nonlinearities, contributing to
gain saturation, mode competition and multi-wave mixing [17]. In particular, it provides
the FWM efficiency, which is plotted in Figure 5. The corresponding experimental results
are performed by the different markers in the same colors. Despite the fact that the FWM
efficiency of the QD laser has not attained its theoretical limit yet, it is still more than
10 times higher than that of the QW device. This remarkable improvement results from
both the enhanced third-order optical nonlinearity and the p-type doping, whose presences
contribute to the increase in the intensity of the signal photon in the QD laser [17]. Central
to single-section ML lasers is the self-mode-locking mechanism allowed by four-wave
mixing in the gain medium itself. The improved susceptibility in the QD laser is sufficient
to produce stable, sub-picosecond mode-locked pulse trains in InAs QDs grown on Si.
However, one clearly sees that both the susceptibility of four-wave mixing and the signal
gain are noticeably lower than those of QDs.
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3. Towards Transform-Limited Performance
3.1. Experiment versus Transform Limit

Here, we give an example of the insight gained into experimental device performance
by comparing experiment and theory. The device is a single-section InAs QD laser still
epitaxially grown on silicon, with device parameters available in Refs. [12,22,27]. In Figure 6,
the red curves are from measurements and the black curves are from numerically solving
Equations (6), (8) and (9). The operating current for the experimental spectrum (red
curve) and the calculated spectrum (black curve) is 14 times and 10 times the threshold,
respectively. The calculated RF linewidth is 143 kHz, compared to the 100 kHz measured
value (Figure 6a). There is also good agreement on the measure pulse shape (Figure 6b),
where fitting with a sech pulse shape gives approximately 500 fs of pulse duration [28].
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Figure 6. (a) RF spectrum and (b) mode-locked pulse from theory (solid black curves) and experiment
(solid red curves). The frequency and time are referenced to the peak values. The dashed blue curve
in (b) shows the transform-limited pulse based on the lasing bandwidth.

Reproducing the measured results with the multimode mode-locking model allows
us to understand the experimental laser performance. In Figure 7a, the intensity of each
cavity mode is shown by the solid gray curve. The solid black curve from theory indicates
only partial locking of the beat-notes in the experimental laser, with the flat portion of
the black curve covering only 30% of the cavity modes that are calculated to be above
the lasing threshold. Additionally, we found that the carrier-induced refractive index
change leads to a nonlinear dispersion across the lasing modes (dashed blue curve). This
results in appreciable phase variation, contributing to considerable deviation from the
transform limit (dashed blue curve in Figure 6b). In Figure 7a, the difference between the
solid black curve and dotted red curve indicates the improvement made with the present
experimental device.
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Figure 7. (a) Effects of mode locking on beat-notes. The solid black curve is the beat-notes spread
over the lasing spectrum (thin black curve). The red dotted curve is the variation in beat-note in the
absence of mode locking. The solid gray curve is the mode intensities. (b) The red dotted curve is
the total variation in beat-notes (same as in a). The contributions to it are from the GaAs waveguide
(solid black curve) and InAs QD carrier-induced refractive index change (blue dashed curve).
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At a minimum, there are contributions from the passive waveguide material and from
the carrier-induced refractive index change in the active region. Figure 7b shows these
contributions for the example of an InAs QD active region embedded in a GaAs waveguide.
In order for the beat-notes to lock, some optical nonlinearity is necessary to overcome the
dispersion. This nonlinearity may be from saturable absorption incorporated inside the
optical cavity or from four-wave mixing within the gain medium itself.

3.2. Group Velocity Dispersion

The group velocity dispersion (GVD) is regarded as a limiting factor for generating
high-bandwidth optical frequency combs (OFC) due to the increased mismatch between
the frequency comb modes and the cavity modes that decreases the four-wave mixing
efficiency [29]. The GVD is performed by the variation of the free spectral range (FSR)
of the resonant cavity with respect to the optical frequency. Such an inconvenience has
been observed in both semiconductor laser-based and micro-resonator-based OFC, which
is no longer negligible if the pulse duration is reduced to the level of a hundred femtosec-
onds [30]. It is worth stressing that a low GVD is beneficial for shortening the pulse width
and increasing the optical bandwidth. Approaches such as the dual grating dispersion
compensators allow for reducing the cavity dispersion, thus reducing the pulse duration
by a factor of more than 15 [31]. The QD laser is known for its high efficiency in optical
frequency comb generation [32]. In particular, self-mode locking (SML) has been widely
observed in single-section QD or quantum-dash (QDash) lasers [27,28]; however, the SML
behavior is rarely observed for the QW devices. It is worth stressing that the contribution
of GVD can be a crucial factor that leads to the generation of SML from a single section
QD laser. Figure 8a depicts the optical spectrum (blue) and the corresponding free spectral
range (FSR, red curve) as functions of optical frequency for the single-section epitaxial
QD laser on Si operating at twice the threshold current. The same measurements of a
commercial QW laser are also investigated and are displayed in Figure 8b. Due to the
different FP cavity lengths, the FSR of the QD laser is smaller than that of the QW device.
In this study, the QD laser exhibits a low GVD in the presence of the FSR ≈ 28 GHz, which
shows a high degree of stability against the variation of the optical frequency within a
range of 6 THz. In contrast, the QW laser exhibits a much larger GVD than its counterpart.
With the increase in optical frequency from 231.6 to 237.6 THz, its FSR reduces from 104 to
102 GHz. The ultra-low GVD, along with the rich optical nonlinearities offered by QD,
thus enables the laser to generate a high-efficiency frequency comb [17]. The OFCs can,
thus, take advantage of the low-dispersion semiconductor QDs to realize high-performance
SML lasers.
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3.3. Linewidth Enhancement Factor

Amplitude phase coupling, namely, the dynamic change of the active medium refrac-
tive index in relation to changes in the gain, commonly characterized by the linewidth
enhancement factor (αH factor) reflects a basic characteristics of semiconductor lasers. It is
associated with several basic characteristics of the QD laser, such as linewidth, conversion
efficiency of four-wave mixing and other nonlinear properties [33]. Let us stress that in our
model, described in the previous sections, the contributions to the alpha factor, i.e., the real
and imaginary parts of the active medium’s susceptibility, come out of the perturbation
analysis in the form of the frequency pulling and linear gain, respectively. There are several
ways to measure the αH-factor. Typically, the αH-factor is extracted using peak shift and
intensity change to reflect the dynamics of the refractive index and gain change, which we
call the amplified spontaneous emission (ASE) method [34]. While this method can extract
the spectral dependence of the αH-factor, it is fundamentally restricted to the ASE regime
and cannot be used to extract the αH-factor above the threshold current. Alternatively, an
interferometric method relying on a Mach–Zehnder interferometer and optical injection
locking can be used to extract an αH-factor above the threshold current, but both can only
be applied to single-mode lasers [34]. The effective extraction of an αH-factor above the
threshold current of a multimode laser helps to analyze the nonlinear dynamics with the
current or wavelength. In this study, the phase modulation (PM) method is used to obtain
information on the longitudinal modes of a multimode laser in order to extract an αH-factor
above the threshold value [35]. Recently, the αH-factor of the quantum cascade laser was
also extracted using this method [36].

In what follows, the effects of different modulation frequencies on the αH-factor are
measured on a silicon-based FP QD laser. In order to confirm the advantages of such
lasers, we also compare the αH-factor results with those obtained from quantum well lasers
heterogeneously grown on silicon. The experimental set-up for optical phase modulation is
shown in Figure 9. The QD laser was kept at an operating temperature of 30 ◦C during the
test. The laser maintains a bias current of twice the threshold value. The two RF signals
(fm) are split by the RF power divider (RFPS) and then modulate both the QD laser and the
phase modulator (PM). In order to operate the laser in a small signal modulation range,
the sinusoidal signal applied to the QD laser needs to be controlled by an RF attenuator.
A bias tee (BT) channels the direct current pumping and RF signal transmission. Once
the laser is running, the beam travels through an optical delay line (ODL) and is fed to
a phase modulator to control the delay between the optical and electrical signals. With
this method, an optical spectrum analyzer (OSA) records spectra at four different delays
(1/(4fm)) to extract the αm-factor, which is related to the modulation frequency. These are
the normalized spectra for four different delays at a modulation frequency of 8.5 GHz, as
shown in Figure 10a.
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The αm-factor can be obtained by extracting the intensity of the side modes using
the phase modulation method [7]. The relationship between the αH-factor and the corner
frequency (fc), modulation frequency (fm) and αm-factor is αm = αH [1 + (fc/fm)2]1/2 [34]. Thus,
we obtain the spectral dependence αm at different modulation frequencies from 6.5 GHz to
8.5 GHz. From the above equation, the corner frequency fc ~21 GHz >> fm is calculated.
Then, the αH-factor is obtained from the above equation. The spectral dependence of
the αH-factor extracted for 19 longitudinal modes near the gain peak is illustrated with
the red dots in Figure 10b. The αH-factor of this silicon-based epitaxial QD laser exhibits
values ranging between 1.0 and 1.6 across the entire optical spectrum at twice the threshold
current. Interestingly, we can compare such values with those measured on a QW laser
heterogeneously grown on silicon. We observe that the αH-factor extracted from the ASE
at the threshold is more than three times larger than that of the QD laser measured well
above the threshold. The asymmetric variation of the gain and refractive index of the
quantum well in relation to the carriers does contribute to the widely varying αH-factor,
and optimizing the material and structural parameters of QD lasers has the potential to
obtain an αH-factor close to zero [37]. Therefore, we can conclude that silicon-based QD
lasers have much better physical parameters thanks to the near-zero αH-factor offered by
the QDs, hence offering multiple ways for developing highly performing OFC generators.

In a two-section laser, there is flexibility in increasing the saturable absorption to
compensate for dispersion. With a single-section laser, the ability to increase the relative
phase angle terms to increase mode locking is constrained because they couple strongly
to other gain medium nonlinearities, such as mode competition. This leaves reducing
dispersion as the only avenue.

Fortunately, with quantum dots, the carrier-induced refractive index may be mini-
mized with the laser design. Experiments and calculations with the linewidth enhancement
factor αH found that QD lasers may be configured to operate with vanishingly small carrier-
induced refractive index changes. The mapping shown in Figure 11a depicts the threshold
gain at gain peak Gth as a function of the inhomogeneous width ∆inh and the p-dope density
Np. The corresponding mapping of the minimum linewidth enhancement factor at gain
peak |αH(υpk)|min with the same combinations is shown in Figure 11b. The calculated
results show that a sizable region with a zero linewidth enhancement factor at the gain
peak for combinations of inhomogeneous linewidth, p-dope density and threshold gain are
reachable by present QD lasers.
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4. Conclusions

In conclusion, QDs exhibit a strong potential to serve as the gain medium for on-chip
laser sources. Benefiting from the quantized density of states, the QD laser has superior
performance compared to QW solutions. The experiments reveal a higher FWM conversion
efficiency, a lower linewidth enhancement factor and a lower GVD, which makes the QD
lasers appear to be promising for self-mode-locked pulse production and high-bandwidth
optical frequency comb generation. Given the results reported in this article, applications
ranging from silicon-based photonic integrated circuits to integrated quantum technologies
could benefit from the high-performance self-assembled semiconductor QDs.

A motivation of this review is to explain the multimode interactions that have sig-
nificant roles in the mode locking of both single- and two-section lasers. Gain saturation
and mode competition determine the number of modes above the lasing threshold and,
hence, the maximum frequency comb bandwidth and minimum mode-locked pulse du-
ration. Wave mixing provides the mode-locking mechanism, and its strength determines
the closeness one obtains to transform-limited performance. One of our purposes is to
describe the underlying physics for the general audience. Hence, we left out much of
the details involving the calculations of coefficients and input parameters, which may be
found in the cited publications. It is fortuitous that a mature and rigorous theory already
exists for describing multimode laser physics. To go a step further, this paper discusses the
application of multimode laser physics to semiconductor mode-locked lasers. Therefore, we
reviewed experimental and modeling results that help distinguish the different multimode
contributions, trace the physical sources (all arising with the leading term being FWM) and
show device examples where the contributions may differ in strengths. As a consequence,
this study paves the way for developing single-section QD lasers on silicon with remarkable
RF linewidth. Last but not least, the switch from the typical time domain mode-locking
treatment back to a frequency domain that was used first in mode-locking investigations
may be of interest to three different audiences. One is laser device engineers, where the
connection of laser performance to band structure provided by multimode laser theory is
useful for designing devices. The second is the atomic, molecular and optical (AMO) com-
munity, who can see the laser physics it pioneered used in manufacturing millions of lasers
per year. The third is the complex dynamics researchers, because instances of complex
dynamics, such as dynamical instabilities and chaos, are very much a part of mode-locked
lasing. With this invited paper, scientists, researchers and engineers can obtain a good
sense of the utilizations of semiconductor QD technology for mode-locking applications.
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