Comments and Corrections

Corrections to “Enhanced Dynamic Performance of Quantum Dot Semiconductor Lasers Operating on the Excited State”

Cheng Wang, Benjamin Lingnau, Kathy Lüdge, Jacky Even, and Frédéric Grillot

In [1, Fig. 5], its description should be replaced. In [1, Fig. 5], the phase-amplitude coupling $A_{ES,QD}^{ES}(j\omega)$ was not computed for the value of the gain compression factor given in [1, Table 1].

In this correction, Figure 5 presents the phase-amplitude coupling of the electric field $A_{ES,QD}^{ES}(j\omega)$ and the modulation index ratio $2\beta(j\omega)/m(j\omega)$ as a function of modulation frequency. At low modulation frequencies less than 0.1 GHz, $A_{ES,QD}^{ES}(j\omega)$ remains almost constant while $2\beta(j\omega)/m(j\omega)$ exhibits giant value due to the gain compression. Increasing the modulation frequency beyond a few gigahertz, both functions decrease down to a plateau ([1, [62]]), which gives the conventional α-factor as indicated by the horizontal line. The LEF obtained from [1 (19)] matches quite well with the one calculated from [1, (18)], i.e., $\alpha_{H,QD}^{ES,FM,AM} \approx \alpha_{H,QD}$. In contrast to QW lasers, further increase of the modulation frequency could raise the coupling ratio as already reported in Refs. [52] and [63] [1].

Fig. 5. Frequency dependence of the phase-amplitude coupling $A_{ES,QD}^{ES}(j\omega)$ and the ratio $2\beta(j\omega)/m(j\omega)$ for the ES lasing at $I = 1.2 \times I_{th}$. Note that the gain compression effect is included in the plot for the value of the gain compression factor given in [1 Table 1]. The minimum level of the curve gives the LEF value (dotted line). The curve of the “phase-amplitude coupling” is corrected in this Erratum.

REFERENCES