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Analysis of the Spontaneous Emission Limited Linewidth of
an Integrated III–V/SiN Laser

Weng W. Chow, Yating Wan,* John E. Bowers, and Frédéric Grillot

This article describes a calculation of the spontaneous emission limited
linewidth of a semiconductor laser consisting of hybrid or heterogeneously
integrated, silicon and III–V intracavity components. Central to the approach
are a) description of the multi-element laser cavity in terms of composite
laser/free-space eigenmodes, b) use of multimode laser theory to treat mode
competition and multiwave mixing, and c) incorporation of quantum-optical
contributions to account for spontaneous emission effects. Application of the
model is illustrated for the case of linewidth narrowing in an InAs
quantum-dot laser coupled to a high-Q SiN cavity.

1. Introduction

For coherent communication and sensing, there is much effort
toward developing narrow linewidth semiconductor lasers, be-
yond what is achievable with single Fabry-Perot or distributed
feedback (DFB) resonators.[1] To reduce spectral linewidth, many
approaches are being considered, including external cavity,
phase-shifted and chirped grating, discretemodeDFB lasers, and
fiber lasers.[2–6] From the active region aspect, InAs/InP quan-
tum dot (QD) DFB lasers, operating with very low population
inversion, have achieved spectral linewidth down to 30 kHz.[7,8]

Recently, much progress is reported on modal engineering of a
DFB laser, in which light is generated in the III–V material and
stored into the low-loss silicon material. This class of hybrid or
heterogeneous integrated lasers indicates a promising path for-
ward, where wavelengths down to 1 kHz level have already been
demonstrated.[9] The laser structure relies on using a harmonic
potential cavity to produce a large quality factor (Q). A similar de-
sign has been proposed and a long photon lifetime of 103 ps was
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obtained.[10] Further improvement was
achieved with a hybrid integrated laser
that included a commercial DFB laser
butt-coupled to the bus waveguide of the
Si3N4 resonator chip.

[11] With a high cav-
ity Q > 2.5 × 108, an electrically pumped
integrated laser with a linewidth of 1.2Hz
was demonstrated.
This paper describes a calculation of

the spontaneous emission limited spec-
trum of a semiconductor laser consisting
of III–V and SiN sections. A composite-
cavity mode description is used to treat
the effects of optical coupling among
different intracavity components in an

extended cavity.[12] The composite-cavity modes also provide a
treatment of outcoupling that is more consistent with mode
projections used in laser theory.[13,14] Active medium contribu-
tions are described within the context of multimode semiclassi-
cal laser theory, where electron–hole polarization dynamics ac-
counts for both linear gain and carrier-induced refractive index
change, as well as nonlinearities giving rise to saturation, mode
competition and multiwave mixing.[14] Strictly speaking, the in-
trinsic linewidth determination requires radiation field quanti-
zation. We have taken such an approach in the past and found
the numerical evaluation of the two-time field correlations to be
very demanding, especially for parametric studies involving com-
plex resonators and accounting formultimode effects.[15] Instead,
we extracted from the single-mode quantum-optical derivation,
terms arising from spontaneous emission that can be incorpo-
rated into the intensity and frequency determining equations in
laser theory. Our approach resembles a Langevin description[16]

with the added complication of a complex resonator geometry
and a more consistent treatment of outcoupling.
Section 2 describes the formulation of the approach. The con-

cept of composite-cavity modes is discussed, along with their ad-
vantages, in terms of validity for arbitrary coupling between III–V
and SiN sections, and a consistent treatment of laser outcoupling.
Also, the section describes the use of composite-cavity modes in
a multimode semiconductor-laser theory to account for active re-
gion contributions. The section ends with a discussion on the
incorporation of spontaneous emission contributions into the
laser equations. Section 3 demonstrates the application of the ap-
proach to identify and understand the physical mechanisms lead-
ing to spectral narrowing in an extended cavity with III–V active
and SiN passive sections. Results are discussed, that are from
a parametric study involving the lasing linewidth dependences
on the SiN cavity Q and the coupling between III–V and SiN
sections.
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2. Theory

2.1. Composite-Cavity Modes

A difference in our approach is the treatment of the optically
coupled III–V and SiN sections as a combined system. This
composite-cavity treatment provides a description that is valid for
arbitrary coupling (i.e., from completely isolated to totally cou-
pled). Variations of this approach have been used to investigate
cleaved-coupled-cavity lasers, photonic-crystal lasers and isolator-
free, injection-locked lasers.[12,17–20]

Assuming that transverse and longitudinal spatial depen-
dences of the intracavity fieldmay be decoupled, we use the effec-
tive index method to reduce to a 1-dimensional geometry. Then,
Maxwell’s equations become(

𝜕2

𝜕z2
+ n2 (z)

c2
𝜕2

𝜕t2
− 𝛼 (z)

c
𝜕

𝜕t

)
E (z, t) = −μ0

𝜕2

𝜕t2
P (z, t) (1)

where E(z, t) is the radiation field, P(z, t) is the polarization rep-
resenting the active medium, 𝛼(z) describes the losses (such as
intracavity absorption) at various locations, μ0 and c are the per-
meability and speed of light in vacuum. In Equation (1), t is time
and z is the position along the III–V and SiN cavity axis. The
arrangement of intracavity optical components is described by
the z-dependence of the effective refractive index n(z). Setting
ð2P∕𝜕t2 = 𝛼 = 0 and writing:

E (z, t) = Em (t) cos
(
𝜈mt

)
um (z) (2)

we obtain the equation for a composite passive cavity eigenmode:

d2

dz2
um (z) =

n2 (z)
c2

Ω2
mum (z) (3)

where m is the mode index and Ωm is the eigenfrequency.
We also use the composite-cavity modes to circumvent an in-

consistency in laser physics involving the treatment of the active
medium and optical resonator contributions.[13,14] In laser theory,
passive-cavity normal modes are necessary for performing the
projections leading to the laser field amplitude- and frequency-
determining equations. However, the rigorous definition of nor-
mal modes for a laser cavity is not possible because of mirror
outcoupling. One customarily uses a set of quasi modes obtained
from, e.g., a Fox-Li calculation, and accounts for cavity losses
by adding a decay term to the amplitude-determining equation.
Such a phenomenological approach is inadequate for describing
the finer details of laser linewidth, such as the evolution of the
emission spectrumduring the transition from below to above las-
ing threshold. Instead, we follow an earlier paper treating outcou-
pling in a Fabry-Perot laser[21] by extending the effective refractive
index n(z) in Equation (3) to include a very long resonator approx-
imating free-space (see Figure 1).
Strictly speaking, Equation (3) should be solved using the

precise n(z) describing the spatial variations in effective refrac-
tive index from the different material layers making up the dis-
tributed Bragg reflectors, spacer layers and waveguides. Such
a detailed description is unnecessary as well as cumbersome
for our present goal, which is a general understanding of the
linewidth results when a laser is coupled to a very high-Q passive

Figure 1. a) Sketch of an experimental laser operating with an extended
cavity consisting of a high-Q SiN resonator coupled to an III–V laser. b)
Basic III–V/SiN coupled-cavity configuration used in the calculations. In-
put to the laser theory and connection to experimental devices such as
in (a) are the passive cavity resonances. We specify them using the cavity
lengths L1 and L2, and transmissions T0, T1, and T2. The transmission T1
also approximates the effective coupling between SiN and III–V cavities,
via either an index step, diffractive Bragg reflector (DBR) or evanescent
field. The gain and carrier-induced refractive index (G and 𝛿n, respectively)
are calculated from the laser theory. L3 is made sufficiently large to provide
sufficient composite-cavity modes to accurately reproduce the finite-width
(Fox-Li) resonances caused by outcoupling.

resonator. Hence, we will start with the basic 1-d geometry de-
picted in Figure 1b, where the interfaces between optical sections
are treated by “bumps” in n(z).[22] In this case, the composite-
cavity modes have the boundary conditions:

um (0) = um
(
z3
)
= 0 (4)

um
(
z+i

)
= um

(
z−i

)
(5)

d
dz

um
(
z+i

)
− d
dz

um
(
z−i

)
= −𝜂ikum

(
zi
)

(6)

where

𝜂i = 2

√(
1 − Ti

)
Ti

(7)

z−i and z
+
i are located immediately prior and after zi, Ti is the ef-

fective transmission representing the coupling between sections
and k is the average magnitude of the wave vector. The orthogo-
nality relation comes from integrating by parts Equation (3):

z3
∫
0
dzn2 (z) un (z) um (z) = 𝛿n,mNc (8)

where Nc = n1
2 × L1 + n2

2 × L2 + 2 × n3
2 × L3 is the normaliza-

tion.
To illustrate the basic properties of composite-cavity modes,

we consider the example of two cavities of lengths and refrac-
tive indices L1 = 4 mm, n1 = 2.1 and L2 = 600 μm, n2 = 3.6. The
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Figure 2. a) Resonances of individual III–V cavity (black) and SiN cavities (red). The frequency is relative to the central frequency of the composite-cavity
modes used in the calculations. b) Resonances of the coupled system, in the III–V (black) and SiN cavities (red). The labels refer to resonances studied
in the next section: resonant narrow (rn), resonant wide (rw), and non-resonant (nr). c) Higher resolution of double peak resonance within III–V cavity
(black) and SiN cavity (red). Each composite mode contributes to a point in the resonances.

cavities are coupled via T1 = 0.01, and the outcoupling is T0 =
0 and T2 = 0.02. Figure 2a shows the plots of the resonances
of the uncoupled III–V and SiN cavities, obtained by solving
Equation (3). When coupled, the solution to Equation (3) gives
the curves in Figure 2b. They show the resonances in the SiN
and III–V cavities, specifically, the overlap of each composite-
cavity mode within the two sections of the laser cavity: Γ(1)1,m =

N−1
c

z1
∫
z0
dz n21 u

2
m(z) versusΩm andΓ

(1)
2,m = N−1

c

z2
∫
z1
dz n22 u

2
m(z) versus

Ωm. The magnitude of an integral gives of measure of the faction
of the mode residing in a particular section compared to in free
space. The fraction, Γ(1)2,m∕(Γ

(1)
1,m + Γ(1)2,m) is the mode confinement

factor typically present a laser gain formula derived with quasi-
(Fox-Li) modes.
There are basically 3 kinds of resonances. Where the uncou-

pled III–V and SiN resonances coincide, Figure 2b shows two
closely spaced composite-cavity resonances (rn and rw), with
splitting determined by the coupling T1. The other resonances
(e.g., nr) belong to the eigenmodes of the longer SiN cavity. They
also appear in the III–V cavity (black curve) because of cavity cou-
pling.
Without coupling to free-space, the resonances in Figure 2

would be delta functions. Outcoupling leads to finite-linewidth
resonances (Fox-Li quasi modes) as depicted in Figure 2c for
the resonant case. Each resonance is composed of multiple
composite-cavity modes as indicated by the dots. Based on
linewidths, one may associate the broad resonance (rw) with the
III–V cavity, where cavity length L2 = 600 μm and facet transmis-
sions T1 = 0.01, T2 = 0.02 result in 550 MHz full-width at half-
maximum (FWHM) and Q = 3.9 × 105. The narrow resonance
(rn)may be assigned to the SiN cavity, with length L1 = 4mmand
facet transmissions T0 = 0, T1 = 0.01 giving FWHM = 60 MHz

and Q = 3.6 × 106. The red curve in Figure 2c for the SiN cav-
ity also shows a weak, broad resonance injected from the III–V
cavity. Similarly, the black curve in Figure 2c for the III–V cavity
shows a narrow resonance injected from the SiN cavity. The dif-
ference in injection levels between the two cavities is because the
SiN cavity highQ inhibits external influences, whereas the III–V
cavity lower Q is less discriminating, hence, the non-reciprocity
in mutual injection or self-feedback.

2.2. Laser Theory

To include the InAs QD active medium, we follow semiclassical
laser theory[14] and write

P (z, t) = 1
2

∑
n

Pn (t) e
−i[𝜈nt+𝜙n(t)]un (z) + c.c. (9)

where Pn(t) is the complex polarization amplitude. In Equa-
tion (9), the lasing frequency is usually written in two parts:
𝜈n + d𝜙n∕dt, where the large part 𝜈n is typically, 1014s−1 and the
small part d𝜙n∕dt is typically 109s−1. That 𝜈n ≫ d𝜙n∕dt is used
in the derivation of the laser frequency-determining equation. In
addition, the slowly varying phase derivative d𝜙n∕dt accounts for
the active medium modifications to the passive cavity frequency
Ωn. In semiclassical laser theory, the complex polarization am-
plitude connects Equation (1) to a quantummechanical electron-
hole polarization via

Pn (t) = 2
℘N(2d)

QD

hQW
ei[𝜈nt+𝜙n(t)]

Γxy
Nc

z2
∫
z1
dzn2 (z) un (z)

∑
q

⟨bq (t) cq (t)⟩
(10)
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Table 1. Active medium coefficients, where L𝛾 (x) = 1∕[1 + (x∕𝛾)2], F1 = ℘2𝜈0N
(2d)
QD ∕(2ℏ𝛾𝜖Bhqw) and Dy (x) = 1∕(1 + ix∕y).

Parameter Equation

Saturated gain gsatn = gn∕(1 +
∑
m
𝜅nmIm)

Linear gain and frequency pulling gn∕2 + i 𝜎n = F1 ΓxyΓ
(1)
nnΛ

(1)
n Ninv

Inversion Ninv = f (𝜀eq, μe, T) + f (𝜀hq , μh, T) − 1

Frequency locking Bnm = F1 ΓxyΓ
(1)
nmΛ

(1)
m Ninv

Gain compression 𝜅nm = 2Γ(3)nm𝛾Re(Λ
(3)
nm)∕[Γ

(1)
nn 𝛾abRe(Λ

(1)
nn )]

Frequency pushing 𝜏nm = 2F1Γ
(3)
nmIm(Λ(3)

nm)𝛾∕𝛾ab

Linear mode confinement Γ(1)nn = Nc
−1

z2
∫
z1
dz n2(z)un(z)um(z)

Nonlinear mode confinement Γ(3)nm = Nc
−1

z2
∫
z1
dz n2(z)u2n(z)u

2
m(z)

Linear susceptibility spectral contribution Λ(1)
n =

∑
q
D𝛾 (Δnq), where Δnq = Ωn − 𝜔q

Nonlinear suceptibility spectral contribution Λ(3)
nn =

∑
q
D𝛾 (Δnq)L𝛾 (Δnq)Λ

(3)
nm = 𝛾∕𝛾ab

∑
q
D𝛾 (Δnq){2L𝛾 (Δmq)+D𝛾ab

(Ωn − Ωm)[D𝛾 (Δnq) + D𝛾 (Δqm)]}

where we assumed that the gain region extends over the entire
III–V cavity length. In the above equation, Γxy is the transverse
mode confinement factor for the gain region,℘ is the dipole ma-
trix element for the interaction between an electron–hole pair and
the laser field, N(2d)

QD is the 2-dimensional QD density in each em-
bedding quantum well (QW) layer of thickness hQW. The connec-
tion to quantummechanics is through the Heisenberg operators
cq and bq, which are the electron and hole annihilation operators,
respectively. For narrow linewidth lasers, where lasing should in-
volve only the ground-state transition, we use q to label a group
of QDs with the same ground state transition frequency 𝜔q. The
q summation is over the inhomogeneous QD distribution.[23]

The laser derivation gives the intensity- and frequency-
determining equations for each composite laser/free-space
mode,

dIn
dt

=
[
gsatn

(
N(2d)

)
− 𝛾cavn

]
In + Sn

(
N(2d)

)
+

∑
m≠n

2
√
InImRe

[
Bnm

(
N(2d)

)
e−i𝜓nm

]
(11)

d𝜓n

dt
= Ωn +

[
𝜎n

(
N(2d)

)
−
∑
m

𝜏nm
(
N(2d)

)
Im

]
+ iS𝜙

n

(
N(2d)

)

+
∑
m≠n

√
Im
In
Im

[
Bnm

(
N(2d)

)
e−i𝜓nm

]
(12)

where In = (℘En∕(2ℏ𝛾))2 and d𝜓n∕dt are the mth mode dimen-
sionless intensity and lasing frequency, 𝛾 is the dephasing rate
and 𝜓n = 𝜈n t + 𝜙n. In Equation (11), gsatn is the saturated gain
at carrier density N(2d), 𝛾cavn is the passive cavity linewidth de-
termined from the absorption 𝛼(z) and the mode confinement
factors Γ(1)1,m and Γ(1)2,m. The terms in both equations containing
𝜓nm = 𝜓n − 𝜓m are from the first order polarization, present be-
cause the composite-cavity modes are not orthogonal when in-
tegrated over only the gain region. They play an important role
in the line narrowing of integrated III–V/SiN lasers. Also con-

tributing to line narrowing are the effects of carrier-induced re-
fractive index change (square bracket in Equation (12)). It mod-
ifies the passive composite-cavity mode frequency Ωn. In laser
theory, they are referred to as the frequency pulling and push-
ing 𝜎n and 𝜏nm, respectively. In semiconductor laser models, they
describe the carrier-induced refractive index change and is typi-
cally taken into account via the linewidth enhancement factor.[24]

Lastly, the spontaneous emission contributions Sn and S
𝜙
n are in-

corporated as described in Section 2.3. The purely imaginary con-
tribution iS𝜙

n describes the dissipation resulting in broadening of
each composite-cavity mode making up the quasimode.
In our treatment, all the coefficients associated in Equa-

tions (11) and (12) are derived from the electron–hole polariza-
tion equation of motion, and are therefore, calculated instead of
fitting parameters (see equations in Table 1). More details on
the active medium contributions are discussed later, when we
explain the line narrowing mechanisms within the context of a
laser/free-space composite-cavity mode picture. A difference be-
tween a semiconductor laser and an atomic or molecular one
is that it cannot be categorized as either homogeneously or in-
homogeneously broadened. Owing to rapid carrier–carrier scat-
tering, a semiconductor laser tunes inhomogeneously and satu-
rates homogeneoulsy.[23] A consequence is that the intensity- and
frequency-determining equations alone do not determine laser
behavior. An expedient approach is to evaluate all active medium
coefficients at the saturated carrier density N2d. To do this, Equa-
tions (11) and (12) are solved simultaneously with the total carrier
density equation of motion:

dN2d

dt
=

𝜀Bhqw
8ℏ𝜈0

(
℘
2ℏ𝛾

)2
1
Γxy

∑
n

gsatn In +
𝜂pJ

eNQW

− 𝛾nrN2d − B(2d)
spontN

2
2d (13)

where 𝜖B and 𝜈0 are the averaged permittivity and frequency. For
the injection current contributions, 𝜂p is the pump efficiency
due to Pauli blocking, J is the injection current density, NQW
is the number QW layers with embedded QDs in the active
medium. For carrier losses, we use the effective rates, 𝛾nr for the
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nonradiative (Shockley–Read–Hall) carrier loss and B(2d)
spont for the

bimolecular carrier recombination due to spontaneous emis-
sion. While there are more detailed treatments,[23,25] the above
approach has the advantage of reducing numerical demands
and yet remaining connected to microscopic details such as
bandstructure. Its accuracy depends on laser operation close
to quasi-equilibrium condition, which is likely satisfied during
narrow linewidth operation.
Assuming quasiequilibrium conditions, the carrier density

N2d gives the occupation in the QD and QW states. The condi-
tion

N2d = 1
A

∑
q

f
(
𝜀eq, μe, T

)
+
NQW

A

∑
k

f
(
𝜀ek, μe, T

)

= 1
A

∑
q

f
(
𝜀hq , μh, T

)
+
NQW

A

∑
k

f
(
𝜀hk , μh, T

)
(14)

gives the chemical potentials μe and μh for the Fermi function

f
(
𝜀𝜎q , μ𝜎

)
= 1

exp
[(

𝜀𝜎q − μ𝜎
)
∕
(
kBT

)]
+ 1

(15)

(with o = e or h for electron or hole) used in evaluating the gain
medium coefficients in Table 1. In Equations (14) and (15), A
is the active region area, and the electron and hole energies
and chemical potentials are relative to the their respective QD
ground state energies at the centers of the inhomogeneous distri-
butions. Spectifically, 𝜀𝜎q is the QD level energy for the qth group,
𝜀𝜎k = Δ𝜎 + ℏ2k2∕(2m𝜎) is the QW carrier energy, the summations
are over k the momentum of the electron or hole QW state, and
q labels the level in the inhomogeneous QD distribution. For
the InAs QD structure considered, we use the confinement en-
ergies Δe = 100 meV and Δh = 65 meV, and effective masses
me = 0.067m0 andmh = 0.180mh. With this energy scheme, the
QD transition energy is ℏ𝜔q = 𝜀eq + 𝜀hq + 𝜀g, and the chemical po-
tential separation is μeh = μe + μh + 𝜀g, where the InAs bandgap
energy is 𝜀g = 0.943 eV.

2.3. Connection to Quantum Optics

We close this section with an explanation of how we incorpo-
rate the effects of spontaneous emission into our basically semi-
classical laser model. From a cavity-QED derivation, we obtain
the equation of motion for the single-mode intracavity photon
number. Assuming that the electron-hole polarization changes
sufficiently fast to follow any time variation in the photon and
carrier populations (rate equation approximation and consistent
with quasi-equilibrium condition), the polarization may be adi-
abatically eliminated. In the resulting photon number equation
of motion, the spontaneous emission contribution appears ex-
plicitely as a bimolecular carrier recombination term.[26] Using
the conversion,

In =
(

℘
2ℏ𝛾

)2
ℏ𝜈n

𝜀BVmode
nn (16)

we obtain

Sn =
𝜀gNqwwLg
𝜀BVmode

(
℘
2ℏ𝛾

)2

Γ(1)nn𝛽spontB
(2d)
spontN

2
2df

(
𝜀en,𝜇e, T

)
× f

(
𝜀hn,𝜇h, T

)
(17)

where nn is the photon number in the nth composite-cavitymode,
Vmode is the composite-mode volume, w and Lg are the stripe
width and length of the active region, 𝛽spont is the spontaneous
emission factor, f (𝜀en, μe, T) and f (𝜀hn, μh, T) are the electron and
hole populations (assuming Fermi functions) contributing to the
spontaneous emission.
To obtain the spontaneous emission contribution to the fre-

quency determining Equation (12), we derive the equaton of mo-
tion for the photon annihilation operator in a composite-cavity
mode. Working in the Interaction Picture, the equation of mo-
tion for the photon annihilation operator in a composite-cavity
mode, to 3rd order in light-matter interaction, is[14]

dA
dt

=
(
g −

𝛾cav

2

)
A − 𝛽AA†A +G (18)

where g and 𝛽 are the linear and nonlinear amplitude gain coeffi-
cients, G is the Langevin force operator from spontaneous emis-
sion and for brevity, we drop themode index. Assuming that pho-
ton number fluctuation is negilible and ⟨A(0)⟩ = √

np, we write
for the slowly varying photon annihilation operator,

< A (t) > =
√
np < exp [−i𝜙 (t)] >, (19)

=
√
np < 1 + i𝜙 (t) − 1

2
𝜙 (t)𝜙 (t) +⋯ >

=
√
np exp [− < 𝜙 (t)𝜙 (t) > ∕2] (19)

assuming that the phase noise from spontaneous emission has
a Gaussian probability distribution specified by zero mean and
second order correlation function with 𝛿 function time correla-
tion from the Markoff approximation.[16] Recalling that we ne-
glect photon number fluctuation, we obtain from Equation (18)
the quantum optical contribution to the frequency-determining
equation:

d𝜙 (t)
dt

= i
2
√
np

[
G (t) ei𝜙(t) −G† (t) e−i𝜙(t)

]
(20)

which we formally integrate and perform more algebra to get

⟨𝜙 (t)𝜙 (t)⟩ = 1
4np

t

∫
0
dt1

t

∫
0
dt2⟨G† (t1) e−i𝜙(t1)G (

t2
)
ei𝜙(t2)

+ G
(
t1
)
ei𝜙(t1)G† (t2) e−i𝜙(t2)⟩ (21)

For the correlations involving the Langevin force operators, we
perform a separate lengthy calculation, where we make use of
Einstein relation,[16,27] to obtain the 2nd order two time Langevin
force correlation:

⟨G† (t)G
(
t′
)⟩ + ⟨G (

t′
)
G† (t)⟩ = 2𝛾cav𝛿

(
t − t′

)
(22)

Laser Photonics Rev. 2022, 2100620 © 2022 Wiley-VCH GmbH2100620 (5 of 10)

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Equations (21) and (22) give ⟨𝜙(t)𝜙(t)⟩ = 𝛾cav t∕(2np). Hence, to
account for phase diffusion due to spontaneous emission, we add
to the semiclassical frequency determining equation a damping
term,

S𝜙

n = 𝛾cavn

𝜀BVmode

2ℏ𝜈n

(
℘
2ℏ𝛾

)2
1
In

(23)

In reaching Equation (23) we followed the derivation for a two-
level system and assume clamping of the gain to the cavity loss
rate 𝛾cav.

[14] For bulk or QW lasers, more detailed descriptions of
the 2nd order two-time Langevin force correlation may be found
in the literature.[28,29] Work in in progress to derive an expression
starting with a fully quantized QD laser model.[30]

3. Intrinsic Linewidth of Integrated III–V/SiN Laser

This section describes application of the approach in Section 2
to study the physical processes occurring when a laser is cou-
pled to a high-Q passive resonator. We consider laser configu-
rations giving the composite-cavity spectra such as in Figure 2b.
Furthermore, we assume that an intracavity filter, such as a DBR,
is present to enable single quasi (Fox-Li) mode operation. For the
active region, we use a design that has performed very well in
experiments.[31] It consists of 5 In0.15Ga0.85As QWs, each 7 nm
thick and embedding a density of 2 × 1010 cm−2 InAs QDs. From
electronic structure calculations, the dipole matrix element ℘ =
e × 0.6 nm and ground-state transition energy is ℏ 𝜔0 = 0.943 eV.
Base on quantum kinetic calculations and single-section laser
measurements,[32] we use 𝛾 = 2 × 1012s−1 for the dephasing rate,
𝛾ab = 1011 s−1 and 𝛾nr = 109 s−1 for the inter-QD population relax-
ation and nonradiative decay rates, respectively, carrier injection
efficiency 𝜂 = 0.35 and QD inhomogeneous broadening Δinh =
15 meV.[33,34]

To obtain the results in this section, we first solve Equation (3)
with boundary conditions Equations (4)–(6) for the composite-
cavity mode frequencies and eigenfunctions. Using the latter, we
compute the mode confinement and overlap factors Γ(1)nm and Γ(3)nm
for evaluating the laser coefficients in Table 1. A typical quasi-
mode (Fox-Li) resonance consists of a few hundred composite-
cavitymodes. Themode intensities and lasing frequencies are de-
termined by intensity- and frequency-determining Equations (11)
and (12). We numerically solve the coupled Equations (11)–(13)
until steady state is reached and compute the output power and
lasing spectrum for a given current:

P = 𝛾out
1
4
𝜀BVmode

(
℘
2ℏ𝛾

)−2 ∑
n

Γ(2)nnIn (24)

S
(
Δf

)
= 1

T

t+T
∫
t
dt1

∞
∫
0
d𝜏Etot

(
t1 + 𝜏

)
Etot

(
t1
)
ei2𝜋Δf 𝜏 (25)

where

𝛾out = −c ln
(
1 − T2

)
∕
(
2L2n2

)
and
Etot(t) =

∑
n

√
In(t)exp

[
i𝜓n(t)

] (26)

To use Equation (25), we first integrate the laser Equa-
tions (11)–(13) until time t, when the modal intensities reach
steady state. Each d𝜏 integration gives a lasing spectrum. Then,
we repeat the process for different times t1 to obtain a distribution
of lasing spectra. From the time averaged spectrumwe extract the
lasing linewidth.
Figure 3a,b shows the computed injection current depen-

dences of output power and lasing linewidth for three composite-
cavity modes. The light–current (L–I) curves are essentially simi-
lar for both resonant and non-resonant configurations. Displace-
ments of the linewidth curves are according to the width of
the passive composite-cavity mode resonances. However, their
shapes are similar and indicate that spectral narrowing occurs
in two stages. From the onset of lasing to twice the threshold,
there is already appreciable stimulated emission occurring to pro-
duce noticeable narrowing of the spontaneous emission spec-
trum. The linewidth decreases from the passive cavity value with
increasing intracavity intensity from gain clamping or narrow-
ing, as in single-Fabry Perot or distributed feedback (DFB) lasers.
At excitations above twice the lasing threshold, a behavior unique
to coupled cavities comes into play. There is a drastic further de-
crease in linewidth caused by frequency locking of composite-
cavity modes. The mechanism involves the term containing the
relative phase 𝜓nm in Equation (12). With higher injection cur-
rent, the linewidth settles to a value solely determined by S𝜙

n in
Equation (23).
The simulations uncover two interesting features of the emis-

sion spectra during the transition to narrow linewidth opera-
tion. One is a change in spectral shape from below to above
lasing threshold. Below threshold, the entire amplified sponta-
neous emission spectrum is exactly a Lorentzian function (Fig-
ure 3c). Above the lasing threshold, the lineshape deviates from
the Lorentzian function (compare black solid and red dashed
curves in Figure 3d). The blue dotted curves suggest a better fit
to a Gaussian function down to about 20% of the spectral peak.
This lineshape change has been reported earlier.[35,36] A quan-
tum optical calculation using a quasi-mode description of out-
coupling, is unable to describe the new shape. In the present pic-
ture, the slightly flatter shape close to the spectral peak and the
sharper drop at the spectral tails come from partial locking of the
composite-cavity modes.
The partially locked regime is the second interesting feature.

For a closer examination, we monitor time dependences of the
lasing frequency d𝜓n∕dt for the three composite-cavity modes
indicated in Figure 4a. In the absence of locking, one has a
straight line with unity slope. Deviation, as depicted by the
dashed curve, indicates the onset of frequency locking. When
completely locked, one has a flat line with zero slope. Figure 4b
shows that the lasing frequencies are mostly tightly bunched, ex-
cept when interrupted by spikes. Earlier reports have associated
the spikes with dark solitons.[37,38] Comparison of Figure 4b,c for
I = 10 mA and I = 15 mA shows an increased period between
spikes. This results in narrower average linewidth from the dt1 in-
tegration in Equation (25). For I = 20 mA, stable, complete lock-
ing occurs, the spikes vanish and one has the narrowest achiev-
able lasing spectrum that reverts to a Lorentzian lineshape.
In the composite-cavity mode picture, the spikes are instances

of coherence collapse when the system breaks lock. The top inset
in Figure 4b shows the coherence collapse region in greater
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Figure 3. Calculated a) output power and b) linewidth (full width at half maximum) versus injection current. The effective coupling between III–V and
SiN sections is T1 = 0.02 and the curves are for the composite-cavity modes (nr, rn, and rw) as indicated. Emission spectra from III–V/SiN laser c) below
and d) above lasing threshold, respectively. The black curves are calculated, the red dashed and blue dotted curves are the fits using Lorentzian and
Gaussian functions, respectively. The spectra are for the nr mode.

Figure 4. a) Modal intensity and lasing frequency (solid and dashed curves, respectively) versus passive composite-cavity frequency after reaching
steady-state with 10 mA injection current. The frequencies are relative to Ω0, the frequency at the quasi-mode peak. The points indicate the modal
frequencies whose time dependences are tracked. We label those modes (from left to right) n = −1, 0 and 1. b) Time dependences of tracked modal
frequencies at 10 mA. The top inset shows higher resolution of the coherence collapse. The bottom inset shows laser spectra at coherence collapse
(250 μs) and during narrow linewidth operation (260 μs). c) The time dependences of tracked modal frequencies at 15 mA.
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Figure 5. a) L–I and b) FWHM versus excitation for non-resonant (nr) configuration and effective coupling between III–V and SiN sections as indicated.
c) Threshold current versus effective coupling between III–V and SiN sections. T1 is an effective transmission representing the interfacial or evanescant
coupling between III–V laser and high-Q SiN cavity. d) Minimum lasing linewidth versus effective coupling between III–V and SiN sections. e) Maximum
lasing linewidth reduction versus effective III–V/SiN optical coupling. For d,e), I∕Ith = 3 where the lasing composite-cavity modes are fully locked. The
curves in (c)–(e) are for non-resonant (black solid) and resonant wide (red dotted) and resonant narrow (blue dashed) configurations. e) Summarizes the
combined effects of cavityQ and optical coupling on theminimumachievable laser linewidth. Plotted is the linewidth reduction (SiN cavity linewidth/laser
linewidth) versus optical coupling for resonant and non-resonant operation. The calculations are performed for 3 times threshold current to ensure
complete locking of the lasing composite-cavity modes, so as to have the maximum linewidth reduction. For the non-resonant (nr) case, the simulations
show a relatively constant, large reduction of ≈ 1.5 × 106 for T1 > 0.01 (black solid curve). For smaller T1, the curve shows the detrimental effect of too
little III–V/SiN coupling, resulting in a sharp drop in linewidth reduction. The curves for the resonant (rn and rw) cases show independence of linewidth
reduction on III–V/SiN optical coupling. The reason is that resonant operation is always strongly coupled regardless of optical coupling. Factored into
the results of Figure 5e is that when coupled to the III–V laser cavity, the SiN cavity Q factor varies nonlinearity with T1. As an indication, at T1 = 0.1, the
SiN cavity Q factors for the nr, rn, and rw configuratons are 7.2 × 106, 1.96 × 107, and 4.4 × 105, respectively. At T1 = 0.01, the corresponding SiN cavity
Q factors are 6.3 × 107, 1.53 × 106, and 3.6 ×105. At T1 = 0.001, the corresponding SiN cavity Q factors are 6.1 × 108, 7.0 × 105, and 4.7 ×105.

detail. The n = 0 trace indicates a blue shift of the entire spec-
trum by roughly 4 MHz, and the greater separation between
traces indicates significant spectral broadening. This is clearly
evident in the bottom inset, where we plot the spectra between
spikes and close to the spike maximum (black solid and red
dashed curves, respectively). The coherence collapse behavior
may be described by Adler’s equation, d𝜓∕dt = a + bsin(𝜓),
when b ≳ a, i.e., operation just outside the lockband. As b
increases, the duration between spikes increases as shown in
Figure 4b,c. The duration of the spikes also decreases. The
average spectral width (averaged over several pike periods) then
further decreases, until complete frequency locking is reached
and coherence collapse disappears completely.
When formulating our theory, we made sure that it is suitable

for parametric studies to produce timely results that are useful
for engineering design. We will demonstrate this by presenting
results from a parametric study on the effects of optical coupling
between III–V and SiN sections. The experimental implementa-
tions of coupling include quantum-well intermixing and evanes-
cent field coupling. For the present study, we use the effective
transmission T1 as a measure of the net coupling effect. As in an
experiment, varying the optical coupling also alters the passive

cavity linewidths, the most important being that of the high-Q
SiN cavity. In the parametric study, we vary T1 to investigate the
competing effects of cavity-Q increase and optical coupling de-
crease with decreasing optical coupling.
Figure 5a,b show the results for operating with different opti-

cal coupling for the non-resonant (nr) mode. Simulations indi-
cate little change in L–I behavior until T1 reduces below 0.01. Af-
ter which,mode confinement factor reduction leads to significant
degradation in L–I behavior, as shown in Figure 5a by the red dot-
ted curve for T1 = 0.001. In Figure 5b, we plot the FWHM of the
lasing spectrum versus injection current relative to the thresh-
old value. The vertical displacement of the curves indicates the
linewidth narrowing from increasing passive SiN cavity Q . For
T1 ≥ 0.01, spectral narrowing takes place in two stages as dis-
cussed earlier. With further decrease in coupling, there is a grad-
ual merging of the gain narrowing and frequency locking stages,
that eventually results in a single abrupt drop in lasing linewidth
as depicted by the T1 = 0.001 curve.
The above calculations are repeated for the resonantmodes (rn

and rw). We operate the laser at I∕Ith = 3, which is sufficiently
high to fully frequency lock the lasing composite-cavity modes,
thus giving the minimum possible linewidth. Figure 5c shows
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the dependences of threshold current on III–V/SiN coupling. The
increase in threshold current with decreasing coupling for the
non-resonant (nr) mode is from the decrease in mode confine-
ment factor in the III–V cavity, consistent with Figure 5a. For the
resonant modes there is no change in threshold current because
two identical oscillators are always strongly coupled regardless
of the coupling. Figure 5d indicates a decreasing laser linewidth
with decreasing T1, because of increasing SiN cavity Q , consis-
tent with Figure 5b. At T1 = 0.002, the linewidth narrowing sat-
urates, when the increase in SiN cavity Q is balanced by the de-
crease in III–V/SiN coupling. Figure 5d also indicates that the
dependence of linewidth on III–V/SiN optical coupling is van-
ishing small, in comparison, for the resonant modes (rn and rw).
Again, the reason is that for the resonant modes the III–V and
SiN cavities are always strongly coupled.

4. Conclusion

This paper describes a theoretical approach to investigate the
linewidth narrowing when a semiconductor quantum-dot laser
is optically coupled to a high-Q silicon nitride resonator. The ap-
proach uses composite-cavity eigenmodes to treat the III–V laser,
passive SiN resonator and free-space as one combined system.
There are two advantages. One is validity for arbitrary optical cou-
pling between III–V and SiN sections (from completely isolated
to totally coupled). Second is a consistent treatment of outcou-
pling, which enables the derivation of the laser equations to be
more rigorous than possible with the customary one using quasi
(non-normal) cavitymodes. The description of the activemedium
follows multimode semiclassical laser theory, where electron–
hole polarization dynamics accounts for both linear gain and
carrier-induced refractive index change, as well as nonlineari-
ties giving rise to saturation, mode competition and multiwave
mixing. Quantum optical contributions are incorporated via a
Langevin approach, with modifications to deal with the added
complication of having a complex resonator geometry and cou-
pling to free space.
Application of the approach identifies two physical processes

underlying linewidth reduction. One is the gain clamping as is
the case in single-cavity lasers. The second mechanism (unique
to coupled cavities) is frequency locking of composite-cavity
modes. Both mechanisms combine to describe details of emis-
sion spectra from below to above lasing threshold, such as de-
viation from a Lorentzian lineshape after the onset of lasing,
as observed in experiments. Also described is coherence col-
lapse because of incomplete frequency locking of composite-
cavity modes. The periodic occurrences of coherence collapse
may correspond to the experimentally observed periodic dips in
intensity in heterogeneously integrated III–V/SiN lasers.
Parametric studies suggest the possibility of laser linewidth

reduction by six orders of magnitude from that of the high-Q
passive cavity. We presented results showing width (FWHM) of
0.6 Hz with SiN cavity Q = 6 × 107. The parametric studies also
indicate the role of the optical coupling between III–V and SiN
sections. Preliminary results suggest that the interdependence
of the optical coupling and passive-cavity Q places a limit on the
minimum intrinsic linewidth achievable through increasing the
passive cavity Q-factor.

Lastly, the present formulation provides the basis of more de-
tailed models for analyzing experiments and optimizing device
engineering. An improvement is to use composite-cavity modes
exactly for 2-D device geometries and model precisely the grat-
ings and intermixing regions. In terms of laser theory, the strong
signal treatment has room for greater rigor. Lastly, one should
examine if there are consistency issues with our incorporation
of quantum optical effects into a basically semiclassical laser the-
ory. Given the goal of an analytical tool for engineering integrated
III–V/SiN lasers, improvements should be introducedwithout in-
creasing numerical complexity to the point of making paramet-
ric studies impractical. In fact, there is motivation for reducing
the complexity of the present equations. The reason is so that
bifurcation-continuation techniques may be used to systemati-
cally and extensively analyze the rich nonlinear dynamics found
in closely resonant, very weakly coupled oscillators (in our case rn
and rw operation for T1 < 0.001).[39,40] The next series of investi-
gations will concentrate on high coherence lasers made with har-
monic potential. Such complex semiconductor QW or QD lasers
heterogeneously integrated with silicon photonics exhibit a large
cavityQ, indicating their vast potential for optical radars, on-chip
atomic clocks, and future coherent technologies.
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