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Abstract: This work theoretically investigates the frequency noise (FN) characteristics of 
quantum cascade lasers subject to the optical injection through a set of coupled rate equations 
with Langevin noise sources. It is shown that the low-frequency FN is completely suppressed 
by the optical injection, and the suppression bandwidth increases with the increasing injection 
ratio. The optimal FN peak suppression ratio at an injection ratio of 10 dB reaches 2.9 dB. In 
addition, it is found that the optical injection at positive frequency detunings close to the 
locking boundary invokes an additional peak in the FN spectrum, which can be higher than 
the carrier noise-induced one of free-running lasers. This peak amplitude strongly depends on 
the value of the linewidth broadening factor. Unlike injection-locked interband lasers, the FN 
peak does not necessarily exhibit a resonance. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

The optical injection technique synchronizes one laser of high spectral purity (master laser) 
with another laser (slave laser) through an optical isolator. Semiconductor lasers subject to the 
optical injection produces a large variety of nonlinear dynamics including stable injection 
locking, periodic and aperiodic pulsations, and chaotic oscillations [1]. The stable locking 
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regime is bounded by the Hopf bifurcation and the saddle-node bifurcation, where the phase 
of the slave laser is synchronized to that of the master laser [2]. Inside the injection locking 
regime, the optical injection can considerably improve dynamical performances of 
semiconductor lasers, including enhancement of the modulation bandwidth, reduction of the 
frequency chirp, as well as suppression of the relative intensity noise (RIN) and the frequency 
noise (FN, or phase noise) [3]. Owing to the above benefits, the injection locking technique 
attracts increasing interests for quantum cascade lasers (QCLs) as well. In recent years, 
researchers have theoretically investigated the injection locking regime [4,5], the modulation 
bandwidth enhancement properties [6], and the RIN suppression characteristics [7] of QCLs 
subject to the optical injection. In experiments, Taubman et al. demonstrated a locking range 
of 1.0 GHz at an injection ratio of −16 dB [8]. Juretzka et al. proved that the RIN of a QCL 
was reduced up to 10 dB by the optical injection [9]. On the other hand, most work employs 
the optical injection to narrow the spectral linewidth of QCLs. Bielsa et al. locked a 9.2 μm 
QCL to a single-mode CO2 laser, and reduced the laser linewidth from several MHz down to 
the kilohertz range [10]. An alternative popular method is locking mid-infrared or terahertz 
QCLs to near-infrared optical frequency combs through the difference-frequency generation 
process, where the linewidth of QCLs is governed by the frequency comb [11–13]. 

In our recent work, it was demonstrated theoretically that the FN spectrum of free-running 
QCLs exhibited a broad peak due to the carrier noise induced carrier variation [14]. In this 
work, we theoretically investigate the FN characteristics of a QCL subject to the optical 
injection. It is found that the optical injection significantly suppresses the FN of QCLs in the 
low frequency range, and the suppression bandwidth increases with the injection strength. At 
an injection ratio of 10 dB, the optimal FN peak suppression ratio reaches 2.9 dB, which is 
achieved at detuning frequency of −3.3 GHz. In addition, the optical injection at frequency 
detuning close to the positive locking boundary invokes a peak in the FN spectrum, and the 
peak amplitude is strongly dependent on the linewidth broadening factor. 

2. Rate equation model of injection-locked QCLs 

The electronic structure model of the QCL takes into account the upper laser level, the lower 
laser level, and the bottom level [4]. Electrons are firstly injected from the injector region into 
the upper laser level in the gain region. Then, electrons scatter into the lower laser level with 
a time τ32, and into the bottom level with a time τ31 through longitudinal-optical phonon 
emissions [15]. Subsequently, electrons in the lower laser level deplete into the bottom level 
with a time τ21, and finally escape the gain region with a tunneling out time τout into the next 
stage. The stimulated emission occurs upon the population inversion between the upper and 
the lower laser levels. Correspondingly, the rate equations describing the carrier numbers in 
the upper level (N3), in the lower level (N2), and in the bottom level (N1) are given by 

 3 3 3
0 3

32 31

( )
dN N NI

G NS F t
dt q

η
τ τ

= − − − Δ +  (1) 
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where I is the pump current, η is the current injection efficiency, G0 is the gain coefficient, 
and ΔN is the population inversion as ΔN = N3-N2. Based on the classical injection-locking 
model developed by [16], the photon number (S) and the phase (φ) of the injection-locked 
QCL are derived as 
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where τp is the photon lifetime, τsp is the spontaneous emission lifetime, β is the spontaneous 
emission factor, αH is the linewidth broadening factor (LBF), and m is the gain stage number. 
Sinj is the photon number of the master laser, and the injection ratio is defined as Rinj = Sinj/S0, 
with S0 being the photon number of the free-running laser. injFΔ  is the frequency detuning 

defined as the lasing frequency difference between the master laser and the slave laser. kc is 

the coupling coefficient of the two lasers as (1 ) / (2 )c gk v R L R= − , with vg being the light 

group velocity, L being the laser cavity length, and R being the facet reflectivity [17,18]. 
The rate equation model includes the carrier noise and the spontaneous emission noise 

through the Langevin approach [19]. The time averages of all the carrier (F3,2,1), photon (FS), 
and phase (Fφ) noise sources are zero due to the random nature [20], and the correlation 
relations of the noise sources are: 

 ( ) ( ') ( ')i j i jF t F t U t tδ= −  (6) 

with the correlation strengths 
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where correlations related to F1 are not listed, because F1 does not contribute to the FN of 
QCLs. It is remarked that the noise of the master laser is not considered in the above rate 
equation model. In addition, technical noise (flicker noise) and thermal photon noise of the 
QCL are not included as well [21,22]. In the following sections, the steady-state solutions and 
the optical spectra are calculated through the numerical approach, while the FN spectra are 
obtained through the semi-analytical approach. 

Table 1. QCL material and optical parameters [23–27] 

Symbol Description Value 

G0 Gain coefficient 5.3 × 104 /s
τp Photon lifetime 3.7 ps 
τsp Spontaneous emission time 7.0 ns 
β Spontaneous emission factor 1.0 × 10−6 
αH Linewidth broadening factor 0.5 
m Gain stage number 30 
τ32 Scattering time upper to lower 2.0 ps 
τ31 Scattering time upper to bottom 2.4 ps 
τ21 Scattering time lower to bottom 0.5 ps 
τout Tunneling out time 0.5 ps 
kc Injection coupling coefficient 2.0 × 1010 /s 

3. Results and discussion 

Table 1 lists the QCL parameters used for the simulations in this work, unless stated 
otherwise [23–27]. The free-running QCL exhibits a lasing threshold current of Ith = 223 mA, 
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and the laser is pumped at 1.5 × Ith in all the simulations of this work. Based on the analysis of 
the integrated time series of the photon number, Fig. 1 illustrates the stable injection-locking 
boundaries, which are formed by the Hopf bifurcation and the saddle-node bifurcation [2,4]. 
The same as interband semiconductor lasers, the two bifurcations strongly depend on the 
value of LBF. QCLs usually show near-zero LBFs, and the reported values range from 0 up to 
3.0 [28, 29]. The non-zero LBF in QCLs has been found to originate from the non-
parabolicity of the band structure, the many-body effect, the resonant tunneling transport, as 
well as the counter-rotating wave contribution [30, 31]. The bifurcation diagram is symmetric 
for a zero LBF, while a non-zero LBF leads to an asymmetric diagram. The stable locking 
regime broadens with the increasing LBF—at an injection ratio of 0 dB, the locking range 
increases from 6.4 GHz for αH = 0 to 15.3 GHz for αH = 2.0. In the following sections, we 
discuss the injection strength effect and the frequency detuning effect on the FN spectrum of 
QCLs within the stable locking regime, respectively. 

 

Fig. 1. Stable locking boundaries of the QCL for different LBFs. 

 

Fig. 2. Injection strength effect on the photon number at zero detuning. The dashed line 
indicates that of the free-running laser. 

3.1 Injection strength effect on the FN 

Within the stable locking regime, the steady-state solutions of the injection-locked QCL are 
derived as 
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It will be shown that the above formulas are helpful for understanding the injection strength 
and the frequency detuning effects on the FN characteristics. Figure 2 shows the injection 
strength effect on the photon number at zero frequency detuning. As suggested in Eq. (8), the 
photon of the injection-locked QCL at zero detuning increases with the injection ratio while 
decreases with the LBF [17]. 

In rating Eqs. (1)-(5), all the noise sources perturb the laser system slightly away from the 
steady-state condition. Based on the standard small-signal analysis in the Appendix, the FN 
spectrum of the injection-locked QCL is calculated by [19]: 

 
22( ) ( )FN f f fδϕ=  (11) 

with δϕ  being the phase variation due to the noise perturbation. When the Fourier frequency 

approaches zero or infinite, the FN of the injection-locked QCL becomes 

 ( 0) 0FN f → =  (12) 

 
( )0 3 3 0 3

2 2 2
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8 8

spm G N S N mG N
FN f

S S

β τ
π π

+
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For 0f → , the FN of the QCL is reduced to zero because the master laser has no optical 

noise. For f → ∞ , the FN is linearly proportional to the carrier population N3 in the upper 

laser level, while inversely proportional to the photon number S. 

 

Fig. 3. (a) Injection strength effect on the FN at zero detuning for αH = 0.5. The dashed curve is 
–3 dB of the free-running laser’s FN, and the arrow indicates the suppression bandwidth. (b) 
The suppression ratio of the FN peak (squares) and the suppression bandwidth (circles) as a 
function of the injection ratio. 
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Figure 3(a) shows that the FN of the free-running QCL is almost constant at 930 Hz2/Hz 
for low frequencies up to 1.0 GHz. Interestingly, the FN exhibits a broad peak in the 
frequency range of 10 GHz to 1.0 THz, which is due to the carrier noise perturbation based on 
our previous analysis [14]. Beyond 10 THz, the FN becomes almost flat at 746 Hz2/Hz, which 
is determined solely by the spontaneous emission noise. The difference between the low- and 
high-frequency FN is governed by a factor of ( 21+ Hα ) [32]. When the QCL is subject to the 

optical injection, the FN in the whole frequency range is reduced, partly owing to the increase 
of the photon number, the decrease of the carrier number in the upper laser level, as well as 
the reduction of the threshold gain [33]. The low-frequency FN undergoes the largest 
reduction, down to almost zero as expressed in Eq. (12). This is because the low-frequency 
phase of the slave laser is strongly locked to that of the master laser without any noise. In case 
the rate equations take into account the optical noise of the master laser, which has no 
correlation with that of the slave laser, the low-frequency FN will be the same as that of the 
master laser [34–36]. Therefore, like injection-locked interband lasers, the spectral linewidth 
of the injection-locked QCL is only governed by the FN of the master laser, and no longer 
follows the Schawlow-Townes limit of the free-running laser [34]. It is worthwhile to 
mention that the relative intensity noise of injection-locked interband lasers is dominated by 
the master laser as well, and the injection-locked QCL is expected to exhibit a similar 
behavior [37,38]. 

In order to quantitatively characterize this low frequency range, we simply define the 
suppression bandwidth, within which the FN is lower than −3 dB of the FN in the free-
running QCL (arrow in Fig. 3(a)). Thus, the FN below the suppression bandwidth is primarily 
determined by the master laser, while that above the bandwidth is mainly governed by the 
slave laser. Figure 3(b) presents that the FN suppression bandwidth (circles) increases with 
the injection strength from 4.0 MHz at Rinj = −60 dB up to 40 GHz at Rinj = 10 dB. However, 
a more rigorous definition of the FN suppression bandwidth for QCLs is required in future 
work. For interband lasers, the FN suppression bandwidth is found to be half-width of the 
stable locking bandwidth at αH = 0 [34, 35]. In order to characterize the FN suppression 
effect, the suppression ratio of the FN peak is defined as the peak amplitude of the free-
running laser divided by that of the injection-locked laser. Obviously, the FN peak 
suppression ratio (squares) in Fig. 3(b) increases with the injection strength and reaches 2.7 
dB at Rinj = 10 dB. 

3.2 Frequency detuning effect on the FN 

Figure 4 shows the frequency detuning effect on the photon number of the QCL at an 
injection ratio of 0 dB. For αH = 0, the maximum photon number occurs at zero frequency 
detuning, and the curve is symmetric for both negative and positive detunings as indicated in 
Eq. (8). On the other hand, the maximum photon number for non-zero LBFs is achieved at a 
negative detuning, where the phase difference φ between the master laser and the slave laser 
is found to be zero. For any LBF, the photon number of the injection-locked laser converges 

to the free running one (dashed line) at the detuning of / 2inj c injF k R πΔ =  (3.2 GHz), where 

the population inversion meets 0 1/ pmG N τΔ =  in Eq. (8). 

Figure 5 shows the frequency detuning effect on the FN at Rinj = 0 dB for different values 
of LBF. For αH = 0 in Fig. 5(a), the FN of the free-running laser (dashed line) is constant over 
the whole frequency range. The minimum FN is achieved at zero frequency detuning while 
both the negative and the positive detunings raise the FN symmetrically. In addition, both 
frequency detunings lead to the appearance of a peak in the FN spectrum, and the peak 
amplitude becomes higher than the free-running case when the detuning is operated close to 
the locking boundaries ( ± 3.2 GHz). For non-zero LBFs in Figs. 5(b) and 5(c), the minimum 
FN is also achieved at a phase difference of zero, where the photon number S reaches 
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maximum (see Fig. 4) and the carrier number in the upper laser level N3 reaches minimum 
(see Eq. (13)) . In addition, the FN peak increases with increasing frequency detuning. At 
some positive detunings (4.0 GHz in Fig. 5(b) and 5.0, 7.0, 9.0 GHz in Fig. 5(c)), the optical 
injection invokes another peak in the FN spectrum in addition to the carrier noise induced one 
of the free-running laser. The frequency of the peak arising from the optical injection is 
smaller, while the amplitude of the peak is higher than the latter one. Especially for αH = 2.0 
in Fig. 5(c), the FN near the positive locking boundary (9.0 GHz) exhibits a giant peak, which 
is five times higher than the free-running case. The appearance of the giant peak near the 
positive locking boundary is similar to that of injection-locked interband lasers [18,39]. The 
peak in interband lasers is attributed to the underdamped resonance arising from the transient 
interference between the injection-locked field and the shifted cavity-resonance field [18]. 
However, it is found that the injection-locked QCL only exhibits a resonance for detunings at 
0, 5.0, 7.0, and 9.0 GHz in Fig. 5(c), while the other cases in Fig. 5 do not have any 
resonance. Thus, the physical mechanism for the peak appearance in QCLs is different to that 
in interband lasers, which requires further investigation in future work. In addition, the FN 
peak frequency decreases with increasing detuning frequency at the positive detuning side, 
which is opposite in interband lasers. The peak frequency eventually merges with the Hopf 
frequency at the positive locking boundary. 

 

Fig. 4. Frequency detuning effect on the photon number at Rinj = 0 dB. The dashed line 
indicates that of the free-running laser. 

 

Fig. 5. Frequency detuning effect on the FN for (a) αH = 0, (b) αH = 0.5, and for (c) αH = 2.0 at 
Rinj = 0 dB. The dashed curves indicate that of the free-running laser. 

Figure 6(a) illustrates the suppression ratio diagram of the FN peak formed by the 
injection ratio and the detuning frequency at αH = 0.5. It is shown that the FN peak of the 
injection-locked QCL is mostly lower than that of the free-running laser, except at very 
positive detuning frequencies. The detuning frequency for achieving the maximum 
suppression ratio (dashed line) reduces with the injection ratio, from −1.4 GHz at Rinj = 0 dB 
down to −3.3 GHz at Rinj = 10 dB. Figure 6(b) shows that the detuning frequency for 
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obtaining the maximum suppression bandwidth (dashed line) also decreases with the injection 
ratio, from −0.9 GHz at Rinj = 0 dB down to −3.3 GHz at Rinj = 10 dB. 

Figure 7 simulates the optical spectra of the injection-locked QCL at Rinj = 0 dB, through 
integrating rate Eqs. (1)-(5) using the Euler-Maruyama method [40]. The time integration step 
is 0.1 ps, the integration length is 1.0 μs, and each integration costs about nine-hour 
computational time. The spectral linewidth of the injection-locked QCL is almost zero for any 
LBF, because the linewidth is determined only by the low-frequency (<100 MHz) FN, which 
is zero in Fig. 5 [41]. For αΗ = 2.0, the optical spectrum of the injection-locked QCL exhibits 
two side peaks (arrows), which arise from the giant FN peak in Fig. 5(c). The frequency 
separation between the side peaks and the central lasing peak is about 6.0 GHz, corresponding 
to the FN peak frequency. 

 

Fig. 6. (a) FN peak suppression ratio (in dB), the dashed line indicates the maximum 
suppression ratio, and the thick-white curve highlights the 0-dB suppression ratio. (b) FN 
suppression bandwidth (in GHz), the dashed line indicates the maximum suppression 
bandwidth. The LBF is set at αH = 0.5. 

 

Fig. 7. Simulated optical spectra of the injection-locked QCL at Rinj = 0 dB for (a) αΗ = 0, (b) 
αΗ = 0.5, and (b) αΗ = 2.0. The optical power is normalized to that of the spectral peak. The 
arrows indicate the side peaks. 

4. Conclusions 

In conclusion, the injection strength and the frequency detuning effects on the FN 
characteristics of the QCL have been numerically investigated through the rate equations. It is 
shown that the stable locking regime is broadened by a large LBF. The FN decreases with the 
increasing injection ratio, and the low-frequency FN reduces to zero when the master laser 
has no optical noise. The optical injection at positive detuning close to the locking boundary 
induces a peak in the FN spectrum, and the peak amplitude strongly depends on the LBF. In 
contrast to interband lasers, the injection-induced FN peak in QCLs does not necessarily have 
a resonance. In addition, the giant FN peak leads to the appearance of side peaks in the optical 
spectrum of the injection-locked QCL. Future work will take into account the optical noise of 
the master laser, and will investigate the optical feedback effect on the FN of QCLs. 
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Appendix,: Small-signal analysis of the rate equations 

In the small-signal analysis of rate Eqs. (1)-(5), all the Langevin noise sources drive the laser 
system away from its steady-state solutions. The small-signal responses of the carriers, the 
photon, and the phase are written as 

 
0 0 0

3 3 3 2 2 2 1 1 1

0 0

N ( ) ( ) ;  N ( ) ( ) ,  N ( ) ( ) ,

( ) ( ) ,  (t) ( ) .

j t j t j t

j t j t

t N n e t N n e t N n e

S t S s e e

ω ω ω

ω ω

δ ω δ ω δ ω
δ ω φ φ δϕ ω

= + = + = +

= + = +
(14) 

where 0
3,2,1N , 0S , and 0φ  are the steady-state solutions, and ω  is the angular frequency. 

Substituting Eq. (14) into rate Eqs. (1)-(5), and neglecting harmonic frequency terms, we 
obtain the linearized differential rate equations in the form of matrix as 

 

311 12 14 3

221 22 24 2
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 (15) 

with the parameters 
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=

 (16) 

Following Cramer’s rule, we obtain the FN spectrum through Eq. (11) based on the semi-
analytical approach. 
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