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Linewidth Rebroadening in Quantum
Dot Semiconductor Lasers

Christoph Redlich, Benjamin Lingnau, Heming Huang, Ravi Raghunathan, Kevin Schires, Philip Poole,
Frédéric Grillot, and Kathy Lüdge

Abstract—We investigate the interplay between linewidth and
α-factor in quantum dot lasers using experimental data and a
minimal quantum dot laser rate equation model. The rebroad-
ening of the laser linewidth found experimentally at high injec-
tion currents is explained by analytical means and traced back to
nonlinear scattering processes. Important differences of the pump
current dependent linewidth evolution of quantum dot lasers are
highlighted especially if compared to conventional laser devices.
Furthermore, we provide a scheme to extract the amplitude-phase
coupling as well as effective carrier scattering rates with standard
characterization techniques, i.e., linewidth, light versus injected
pump current and modulation response measurements.

Index Terms—Semiconductor lasers, quantum well lasers,
nonlinear optics, nonlinear dynamical systems, photonics.

I. INTRODUCTION

S EMICONDUCTOR lasers with quantum dots (QDs) as
the active material have been of deep interest in the last

decades [1], [2]. With their highly confined carriers, i.e. their
atom-like electronic structure, they have shown many interest-
ing properties, such as very low bias currents, high modula-
tion bandwidths, temperature insensitivity. Compared to bulk or
quantum-well (QW) lasers, the self-organized grown QD lasers
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consist of differently sized quantum dots, consequently leading
to an inhomogeneously broadened gain spectrum [3]. Due to the
dynamical coupling of the charge carriers to the reservoir states,
quantum dot lasers offer very rich dynamical properties [4]. In
this sense, the laser linewidth can be seen as the dynamical an-
swer of the quantum dot laser to spontaneous emission noise,
therefore characterizing the dynamic response to optical pertur-
bations. Here, the amplitude-phase coupling, often referred as
α or Henry-factor, is of particular importance as it measures the
connection between refractive index shift and the carrier den-
sity changes in the gain medium [5]. For quantum-well lasers,
it is well known that the refractive index and the gain show a
linear dependence, leading to a constant α-factor[6] and an en-
hancement of the optical laser linewidth [7]. For quantum-dot
lasers the situation is more involved [8]–[11] and standard tech-
niques as, e.g., FM/AM techniques, are not suitable to derive a
single value for the α-factor [12]–[14] or properly describe the
phase noise of a QD laser [15]. In the following, we investi-
gate the rebroadening of the laser linewidth that was found in
QD lasers within a semi-classical theory. In the literature, one
already finds QD rate equation models that capture linewidth
rebroadening and show an analytic formula for α [10]. Their
findings are included within our theory for special parameters.

Based on a minimal variable rate-equation QD laser model,
we find a (semi-)analytical formula for the laser linewidth
and the corresponding α-factor. In contrast to former research,
the minimal model not only describes the phase fluctuations
and linewidth properties of the QD laser, but also investigates
the effect of gain compression on the rebroadening of the
laser linewidth. In comparison to existing minimal QD laser
models[10], [16], we explicitly include scattering processes
allowing the escape of charge carriers from the QDs. The quasi-
equilibrium QD occupation is then given by the detailed balance
of in and out-scattering processes, which we show to play an
important role in the calculation of the laser linewidth. The
charge carrier dynamics are also important for the performance
of the QD laser under current modulation [17]–[19]. An analytic
formula for the modulation response is derived and its depen-
dence on the injection current is shown. All results, including
the light vs injected pump current (LI)-curve, are backed by our
experimental findings and give insight into the tight connection
of the charge carrier scattering rates, charge carrier dynamics
and the linewidth. Finally, we sketch a method to extract in-
formation about the scattering rates and the dynamic amplitude
phase coupling with easily accessible measurements.

1077-260X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. (a) Sketch of the reduced QD laser model used in this work. The QD
ground state is described by its occupation probability ρ(t), the excited and
QW states are combined into a single reservoir charge carrier density N (t). The
laser field A(t) couples to the QD ground state. (b) Sketch of the optical QD
laser spectra showing linewidth rebroadening. With increasing current above the
laser threshold, the laser linewidth reaches a minimum for moderate currents
(orange), before starting to increase again (red).

II. SEMICLASSICAL SINGLE MODE RATE EQUATION MODEL

We apply a minimal QD laser model based on our previous
works from [19] and exploit the method of adjoint solutions [20]
to derive an analytic equation for the laser linewidth. Our model
derives from semi-classic theory [21], hence the equations of
motion for the carriers are microscopically motivated, whereas
the electric field is modeled classically based on Maxwell’s
equations. Over the last decades the quantum dot laser dynam-
ics was explored on several levels of complexity [22]–[24],
however for this investigation a reduced approach derived in
[19] is used, as sketched in Fig. 1(a). This approach proved to
still capture all important features of QD laser dynamics while
still allowing for analytic insights. Three dynamical variables
are introduced to describe the single mode quantum dot laser,
the reservoir carrier charge density N , the quantum dot carrier
occupation probability ρ and the complex electric field enve-
lope E = Aeiφ described by its amplitude A and phase φ. The
differential equations describing the dynamics of these quanti-
ties inside the QD are given by (1a)–(1d) with stochastic noise
sources PA (t) and Pφ(t).

Ṅ = J − N

T1
− R [ρeq − ρ] (1a)

ρ̇ = R [ρeq − ρ] − ρ

Tsp
− 2g(A)(2ρ − 1)A2 (1b)

Ȧ = g(A) (2ρ − 1)A − κA + PA (t) (1c)

φ̇ = −g(A) (2ρ − 1)α0 − δΩN + Pφ(t) (1d)

In this model, the units of S ≡ A2 = |E|2 and N are non-
dimensionalized. We normalize these values to the QD density,
such that N , A2 describe the reservoir charge carrier density and
photon density in units of twice the QD density with a factor of
2 for spin degeneracy. ρ is the QD occupation probability for an
exciton in the ground state. We include gain compression of the
form

g(A) =
g0

1 + ϵA2 =
g0

1 + ϵ|E|2 (2)

such that the gain is a function of the photon density in the cavity
[13], [25], [26]. This term is phenomenologically motivated by
our experimental findings (see Fig. 4). The device is electrically
pumped with an injection current J , while charge-carrier scat-
tering between the reservoir and the QD states with an effective

Fig. 2. Experimental setup. A self heterodyne technique was used to obtain
the power spectra of the QD laser for injection currents from 45 mA to 180 mA.
The distributed feedback laser with InAs dots grown of InP substrate operates
at the 1.5 µm telecom wavelength. The optical fibre of the delay loop measures
25 km (>100 µs).

Fig. 3. Experimentally obtained linewidth measurement at an injection current
of 60mA. The black dots show the experimental data, while the solid red line
shows the fit of a Voigt profile as shown in[44].

Fig. 4. (a) Measured (dotted) and semi-analytically calculated (solid) modu-
lation response curves of the QD laser versus the injection current modulation
frequency in GHz. Different colors indicate different pump currents as labeled
in the graph. For readability, we shifted the curves by 10dB each. (b) Measured
(solid) and simulated (dotted) LI-curves showing the output power as a function
of the injected pump current.

rate R leads to filling of the quantum dot ground state. The times
T1 and Tsp give the carrier lifetimes within the reservoir and the
spontaneous emission lifetime of the QD carriers, respectively,
while (2κ)−1 is the photon lifetime.

To derive the scattering contributions, in- and out-scattering
rates into and from the quantum dots have to be consid-
ered. The number of carriers leaving the quantum dots is
proportional to ρ, while the in-scattering only happens with
available empty levels and thus proportional to the Pauli block-
ing factor (1 − ρ). Together both processes define the effec-
tive rate R = Rin + Rout that appears in (1a), (1b) and that is
defined as R(ρeq − ρ) = Rin(1 − ρ) − Routρ. The individual
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Fig. 5. Numerically obtained steady state values as a function of the pump
current: (a) effective scattering rate R(J ) and charge carrier density N (J ),
(b) gain g(J ) , ρ(J ) and ρeq (J ). Results are obtained by solving (1) with
parameters gained from fitting the experimental data. Dashed curves represent
results without gain compression.

rates Rin/out include all possible Coulomb scattering events
between the reservoir states and the quantum-dot levels and
depend nonlinearly on the carrier density in the reservoir N
[27], [28]. Nevertheless, suggested by previous works [9],
[29], [30], the connection of the effective scattering rates R
and charge carrier density N is almost linear for large car-
rier densities N , even if multiple scattering processes and
relaxations via the QD excited states are considered. We there-
fore use the linear relation R(N) = Rth + dR

dN |th(N − Nth)
and Rin (N) = Rin

th + dR i n

dN |th(N − Nth) in our minimal model.
The occupation ρeq = R i n

R , describes the quasi-equilibrium QD
occupation. Note, due to the carrier dependence of the scatter-
ing rates, ρeq dynamically depends on the carrier density in the
reservoir.

Variations in the phase of the emitted light are most impor-
tant for the linewidth of the QD laser. Equation (1d) describes
the time derivative of the phase and has to be interpreted with
respect to the chosen rotating frame, i.e. the central laser fre-
quency ω0 . Therefore, the phase dynamics φ̇ can be seen as
an instantaneous frequency shift ωI = φ̇. Noise induced pertur-
bations, described here by the stochastic noise sources PA (t)
and Pφ(t), change the frequency ωI and lead to a jitter of the
actual laser frequency ωLaser = ω0 + ωI . Equation (1d) con-
sists of two terms, each representing one contribution to the
frequency shift ωI = ωI ,GS + ωI ,ES . The first frequency shift
is attributed to the carriers in the ground state (GS) of the QDs.
Here, the phase is effectively coupled to the real part of the gain
ωI,GS = −g(2ρ − 1)α0 with a static α-factor α0 , which is often
found in QW laser models [26], [31]–[35], and usually named
and used in the context of a linear amplitude phase coupling [36].
Note that in these models α0 emerges from frequency changes
due to an index shift caused by off-resonant interband transitions
as well as free carrier absorption [37], [38]. In our equations we
include these two effects separately, with α0 denoting the con-
tribution of free carrier absorption involving the QD GS. The
stronger contribution from off-resonant interband transitions is
modeled by the second term ωI,ES = −δΩN , which dynami-
cally depends on the reservoir carrier density N . In our minimal
model the charge carrier reservoir N combines both the QD ES
and the QW states, treating them as one effective reservoir level.

Fig. 6. Measured (symbols) and semianalytically calculated (solid line)
linewidth plotted vs the injected pump current. For high injection currents
theory and experiment show a rebroadening of the linewidth, with a minimal
FWHM of approx. 200 kHz at 75 mA.

The value of δΩ captures the effect of those levels on the index
shift [9].

III. ANALYTIC DESCRIPTION OF LINEWIDTH

AND MODULATION RESPONSE

Our analytical treatment of the QD laser linewidth is based on
the analysis of the linear response of the dynamical system to
small perturbations. These perturbations are naturally present
due to spontaneous light emission into the resonator mode.
If the statistical variations of the dynamical variables, in our
case especially the phase, are known, the optical linewidth can
be calculated. There is an elaborate theory on how to determine
the statistical variations of the variables in linear stochastic dif-
ferential equations [20]. If we restrict ourself to the dynamics
close to the steady state lasing solution at a fixed injection cur-
rent, the dynamics of small perturbations from this solution are
fully governed by the Jacobian J of the system, and a simple set
of linear ordinary differential equations (ODEs) is left. Defining
dR̃
dN ≡ d

dN [R (ρeq − ρ)] for brevity and applying some steps of
simplification as shown in the appendix A, the Jacobian of our
system reads:

J=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
T1

− dR̃

dN
R 0 0

dR̃

dN
−R − 1

Tsp
− 4gA2 −2(1 +

g(A)
g0

)κA 0

0 2gA −(1 − g(A)
g0

)κA 0

−δΩ −2gα0 −(1 − g(A)
g0

)
κ

A
α0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)
The steady state solution of our laser is indicated by X∗,

where X∗ = (N ∗, ρ∗, A∗,φ∗)T . If evaluated at steady state, (1c)
describes the dependence of threshold occupation and gain on
the optical field amplitude and we find that ρ∗ = ρth = g (A)+κ

2g(A)
is a function of the optical field amplitude A. Applying a per-
turbation P to the system near its fixed point X∗, we can write
down the linear differential equation that describes the equation
of motion for the difference vector δX = X − X∗:

δẊ = J δX + P (4)

An analytical formula for the linewidth can be extracted us-
ing the adjoint solution method [39], [40]. Since the linewidth is
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mainly given by the optical phase noise [41], [42], our derivation
is based on following argumentation. Firstly, the phase response
of the system is given by the eigenvector eφ of the adjoint Jaco-
bian −JT that is oriented in the direction of the eigensolution
of the phase. The eigenvector eφ projects the total response of
the system onto the phase solution. This solution can be iden-
tified easily, because (1a)–(1d) do not explicitly depend on φ,
therefore the phase is an invariant and the eigenvalue λφ van-
ishes. This means perturbations can accumulate, leading to a
statistical variance σφ of the phase that increases with time. In
statistical terms the phase φ performs a random walk while the
other variables are described by a damped Ornstein Uhlenbeck
process with constant variances that reciprocally depend on the
eigenvalue [20]. The linewidth of the optical spectrum is given
by the width ∆φ of the corresponding normal distribution and
is defined as ∆ν = ∆φ = limt→∞

1
t σφ(t). Due to the orthog-

onality condition of adjoint and nonadjoint solutions, we find
that the phase component of the eigenvector eφ equals unity,
specifically eφ ,φ = 1. The phase response δφ is given by the
scalar product of P and eφ .

In our setup, P is a stochastic quantity consisting of Wiener
processes dWi with noise strengths Di such that Pi = Di˜dWi .
Thus, the average response ⟨δφ⟩ = 0 vanishes, but the variance
∆φ is non-zero and equal to

∆φ =
∑

i

D2
i e2

φ ,i (5)

In the following, we neglect carrier noise in the reservoir and
quantum dots and assume spontaneous emission noise dE|sp

being the only source of perturbation. dE|sp is modeled using
additive complex Gaussian white noise ξ(t) in both the real and
imaginary part of the complex electric field plane, such that

dE
∣∣∣
sp

= D

(
ξ′

ξ′′

)
(t) (6)

ξ′(t) and ξ′′(t) are different realizations of standard Gaussian
white noise ξ(t) with mean ⟨ξ(t)⟩ = 0 and standard deviation
⟨ξ(t)ξ(t′)⟩ = δ(t − t′). Using Ito’s formula [20], dE|sp can be
expressed in amplitude and phase noise.

P =

⎛

⎜⎜⎝

0
0

D˜ξ′(t)
D/A˜ξ′′(t)

⎞

⎟⎟⎠ (7)

Applying (5), defining the photon number S as S ≡ A2 =
|E|2 , and using eφ and eA as shown explicitly in the Appendix
in (21a), (21b), we extract the phase variance ∆φ.

∆φ =
D2

S

⎛

⎝1 +

[
δΩR

2g0(T−1
1 + dR̃

dN )
+ α0 − ϵQ

]2
⎞

⎠ (8)

with Q = Q(N) > 0. More details of the derivation and the
explicit expression for Q are given in the Appendix.

In the last step, we use that the phase variance is directly
proportional to the linewidth [43], i.e. ∆φ = ∆ν. We identify
D 2

S = ∆νST as the Schawlow-Townes linewidth limit ∆νST

and write for our total linewidth ∆ν:

∆ν=
D2

S

⎛

⎝1+

[
δΩR

2g0(T−1
1 + d

dN [R (ρeq − ρ)])
+α0 − ϵQ

]2
⎞

⎠

≡∆νST(1 + α2) (9)

In (9) three contributions to the linewidth enhancement factor
α can be seen. Using the definition

αdyn =
δΩR

2g0(T−1
1 + d

dN [R (ρeq − ρ)])
(10)

we obtain:

α(N) = α0 + αdyn(N) − ϵQ(N) (11)

The first term in (11) is due to the commonly known linear am-
plitude phase coupling and adequately describes the linewidth
of a quantum well laser [25] (case δΩ = 0). The second term
describes our nonlinear dynamical correction αdyn(N) and is
directly connected to the frequency shifts ωI,ES = −δΩN that
arise dynamically from the scattering of carriers in the QD and
reservoir states. The clear dependence of αdyn(N) on the scat-
tering rates R(N), and ρeq (N) underlines the nonlinear nature
of the QD laser linewidth. The last term is an additional cor-
rection that arises due to gain compression. Note that the gain
compression also changes αdyn as it changes the carrier den-
sity itself. In contrast to the rate equation model in [10] our
formula is not limited to empty QDs or a linear dependence of
the scattering rate on the injection current. Instead, (9) holds
for every dependence R(N), as long as the scattering rate is
mainly a function of the reservoir charge carriers. The specific
case of the QD laser that is investigated in the experiments will
be discussed in the next section.

The characterization of a QD laser is often also done by
measuring modulation response curves, i.e. transfer functions.
The modulation response transfer function is calculated (similar
to [43] for a 2 variable system) in a small signal analysis calculus
and defined as H(ω) := | δS (ω )

δS (0) |
2 .

Here, δS(ω) describes the response of the electric field inten-
sity S = A2 = |E|2 to a small modulation of the injection cur-
rent J = JDC + δJ exp(−iωt). Following the same approach
used for the linewidth calculations and using the same abbrevi-
ation dR̃

dN ≡ d
dN [R (ρeq − ρ)], we find:

δS(ω)
δJ(ω)

=
4gS dR̃

dN

−iω + T−1
1 + dR̃

dN

×

1

(−ω2 + iωR d R̃
d N

−iω+T −1
1 + d R̃

d N

− iω(R + T−1
sp + 2gS) + 4gκS)

(12)

Similar to the linewidth, also the modulation response strongly
depends on the scattering rates and their derivatives with respect
to the carrier density. The additional dependency of the scatter-
ing rate on the reservoir carrier density leads to a higher value of
dR̃
dN , which in turn improves the modulation response at higher
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frequencies. In contrast, models that assume constant scatter-
ing rates [18], [19] would therefore predict a lower modulation
bandwidth.

IV. COMPARISON BETWEEN EXPERIMENT AND THEORY

The optical linewidth measurements have been performed on
a distributed feedback laser with InAs quantum dots grown on
InP substrate [45]. The InAs/InP QD DFB laser used in this
study was grown by chemical beam epitaxy (CBE) on a (100)
oriented n-type InP substrate. The undoped active region of the
laser consisted of five stacked layers of InAs QDs with 30 nm
In0.816Ga0.184As0.392P0.608 (1.15Q) barriers. The QDs were
tuned to operate in the desirable operation wavelength range by
using a QD double cap growth procedure and a GaP sublayer
[46]. Growing the dots on a thin GaP layer allows a high dot den-
sity to be obtained and improved layer uniformity when stacking
multiple layers of dots, providing maximum gain. This active
layer was embedded in a 350 nm thick 1.15Q waveguiding core,
providing both carrier and optical confinement. An average dot
density of approximately 4 × 1010 cm−2 per layer was obtained
according to atomic force microscopy (AFM) measurements
on uncapped stacked dot samples. Following the growth of the
QD active core the wafer was removed to pattern the grating
region. This was performed using a HeCd laser to holographi-
cally expose the uniform grating pattern across the whole wafer,
followed by wet chemical etching. Following the patterning of
the grating the p-type InP cladding and InGaAs contact layers
were regrown using metal-organic chemical vapour deposition
(MOCVD). Single lateral mode ridge waveguide lasers were
fabricated with a stripe width of 3 µm and cavity length of 1
mm, and the facets coated to provide 2% and 62% reflectivity.
The threshold current is 39 mA at 20 ◦C, with an external ef-
ficiency of 14%. The experimental setup is sketched in Fig. 2.
The laser is biased with a low noise current source. The output
light is coupled into the interferometer by using an AR coated
lens-ended fiber. In order to avoid any external feedback into
the DFB cavity, two cascaded isolators are applied for an iso-
lation greater than 60 dB. Once the laser emission is launched
into the fiber interferometer, half of the signal is sent to a 100
MHz frequency-shifted acousto-optic modulator (AOM) while
the other half propagates through a 25 km fiber coil. The po-
larization controller is used to match the polarizations in the
two arms. At the output of the interferometer, the optical sig-
nals from the two arms are mixed and the resulting beat note
centered at the AOM frequency is measured with an electrical
spectrum analyzer and a slow photo detector. Fig. 3 shows a
typical spectrum obtained from our setup. The linewidth data is
extracted using a Voigt fit [44].

As discussed in Section III our model is able to capture both
the carrier dynamics which is accessible via injection current
modulation as well as the dynamics of the electric field to
perturbations measured as the laser linewidth. Thus we now
compare those calculations with experimental data. To obtain a
quantitative agreement some parameters had to be fitted to the
experimental data. Losses, gain and the effective scattering rate
parameter where chosen to fit the light vs injected pump current

TABLE I.
PARAMETERS OF THE QD LASER DEVICES

Parameter (Description) Value [unit]

Rt h ( scattering rate at threshold) 1200 [ns−1 ]
d R
d N (differential eff. sc. rate) 550 [ns−1 ]
d R in
d N (differential in-sc. rate) 550 × 0.675 [ns−1 ]

T1 (reservoir carrier lifetime) 0.25 [ns]
T s p (spontaneous emission lifetime) 4 [ns]
g0 (gain coefficient at threshold) 234 [ns−1 ]
κ (electric field losses) 58.6 [ns−1 ]
ε (gain compression coefficient) 0.28
δΩ (reservoir carrier frequency shift) 18 [GHz]
α0 (linear amp.-phase coupling) 0
D 2 (spont. emission noise power) 5.85 [kHz]
Jt h (pump current at threshold) 48 [mA]

Note: All parameters are obtained from the regression of our model to the
experimental measurements.

characteristics (LI-curve) of our numerical integration at first.
Secondly, we extract the T1 time and dR̃

dN using the modulation
response in (13a). The ratio of g and κ were iteratively adjusted
to achieve agreement with the LI-curve. In a third step, the data
from our linewidth measurements, see Fig. 6, yields value for the
index shift δΩ, the linear amplitude phase coupling coefficient
α0 and the noise strength D.

The parameters given in Table I define one single parameter
set that was applied to all simulations and calculations.

In Fig. 4(a) and (b) the experimental data for the modula-
tion response and the LI characteristics of the QD laser are
shown. Superimposed are the modeling results after applying
the fitting procedure. The transfer function in Fig. 4(a) shows
a resonance peak, which is close to the relaxation oscillation
frequency. Its maximum shifts towards higher frequencies with
increasing injection current (see lines in Fig. 4(a) from bottom
to top), consequently increasing the 3dB-cutoff frequency of
the QD laser. This is due to the increasing scattering rates and
photon densities which lead to a higher resonance frequency
and improve the modulation capabilities of the QD laser [17],
[19], [47]. Small deviations between experiment and theory for
intermediate pump currents arise from the minimalistic model
approach. A more complex model, including for instance ex-
cited or inactive QD states or a sepereate treatment of electrons
and holes would improve the agreement to the experimental
data, but also increase the complexity of the calculations dras-
tically. In favor of simplicity, the minimalistic approach is the
means of choice. The power dependence in Fig. 4(b) shows a
significant saturation at elevated currents as can be seen from
the down bending of the output power S(J). This effect is cap-
tured by the gain compression in our model. Choosing a value
of ε = 0.28 leads to a very good agreement, as can be seen by
comparing the dashed and solid line for theory and experiment,
respectively, in Fig 4(b).

However, the seemingly low moderate saturation of the LI-
curve hides the strong effect of the gain compression ϵ on the
carrier distribution within the laser device. This can better be
seen by looking at the steady states of the charge carriers N and
scattering rates R which are accessible via numerically solving
the differential equation system (1). The simulated steady state
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results of R(J), N(J), ρeq (J) and g(J) are displayed in Fig. 5 as
a function of the pump current. To highlight the effect of the gain
compression also the results for the case ϵ = 0 are shown with
dashed curves. It can be seen that the compression of the gain
increases the steady state density of the carriers in the reservoir
(green line in Fig. 5(a)). The reason is the nonlinear gain which
nonlinearly decreases with the photon number (2) and thus with
the injection current (black curve in Fig. 5(b)). This decrease is
balanced by a stronger increase of the carrier densities if com-
pared to the case without gain compression. As a consequence
the carrier dependent scattering rates and the reservoir carrier
densities itself show an approximately quadratic increase with
the injection current in Fig. 5(a). As the equilibrium occupation
of the QD levels ρeq is given by a detailed balance between in-
and out scattering rates, it is also a function of the carrier den-
sities and is thus nonlinearly increasing with the pump current
(green line in Fig. 5(b)) .

To take the gain compression induced nonlinearities cor-
rectly into account, we feed the analytical formula (9) with
the numerically obtained values shown in Fig. 5, in particular
R(J) and S(J) (note that dR̃

dN = const.) and calculate the QD
laser linewidth. Due to the nonlinear dependencies, the semi-
analytically calculated curve for the linewidth does not scale in-
versely proportional to the injection currents, and instead shows
a rebroadening of the linewidth at elevated currents. This can
be seen in Fig. 6, where the linewidth is plotted as a function
of the injected pump current. The plot shows both experimental
(symbols) and semi-analytical data (solid line) which show a
very good agreement. Since we have the analytic expression for
the linewidth, our modeling is not only able to reproduce the
experimental findings, it is also able to explain the reasoning for
the rebroadening.

For low injection currents (below 1.5Jth ), the system is
dominated by spontaneous emission noise and obeys the limit
∆ν −−−−→

J→Jt h
∞. At approx. J ≈ 75mA ≈ 1.5Jth , we find a

minimal laser linewidth of less than 200 kHz. For higher in-
jection currents, the laser line rebroadens, such that its value is
doubled at J ≈ 3Jth ≈ 150 mA (Fig. 6). This behavior is quite
different from conventional laser diodes, which typically show
a saturation of the linewidth at higher pump current. Equation
(9) allows us to identify the driving mechanism for this effect to
be the carrier dependent scattering rates R(N) which increase
with the slope dR

dN and consequently broaden the linewidth after
its initial decrease.

The effect of the gain compression ϵ on the linewidth is more
intricate. We already mentioned that there are two competing
mechanisms identified in (9), i.e. the direct dependence on ϵ
that reduces the linewidth via the correction term ϵQ and the
indirect effect of ϵ on the carrier density N that leads to an
increasing linewidth. For the latter the saturation of the gain
implies a nonlinear increase of the carriers at high intensities
and thus a nonlinear increase of the scattering rates. However,
for realistic parameters the gain compression coefficient in QD
lasers leads to a net broadening of the linewidth.

To make the effect of ϵ more visible, we varied the gain com-
pression from ε = 0 to 0.5 in Fig. 7 and calculated the value of
the different contributions to the linewidth. In Fig. 7(a) we plot

Fig. 7. Contributions to the linewidth rebroadening: (a) linewidth as a func-
tion of the pump current as given in (9), different colors correspond to different
ε, (b) –(d) show the contributions R(J ), αdy n (J ), and ϵQ(J ) to the linewidth,
respectively. Dashed curves show the discussed case for our QD laser parame-
terset, with ε = 0.28.

the total linewidth as a function of the injection current (different
colors indicate different ϵ values), while the different contribu-
tions to the linewidth are shown in Fig. 7(b)–(d) (namely R,
αdyn and ϵQ). For ε = 0 (blue lines in Fig. 7) the linewidth
shows only a slight increase at higher currents, suggesting that
gain saturation is the main cause for the rebroadening of the
laser line. Nevertheless, having a closer look to the different
numerically computed contributions to the linewidth, a differ-
ent picture develops. At first it can be seen that the effective
scattering rates R increases much stronger with J as soon as
ϵ is nonzero. Also the semi-analytically calculated αdyn -factor
in Fig. 7(c) is enhanced by the gain compression ε due to its
nonlinear dependence on the charge carrier densities N (for
nonzero ϵ, N increases with pump current to compensate for
the reduced gain). Instead the correction term ϵQ from (9) that
is plotted in Fig. 7(d) has a much smaller contribution (see ticks
in the y-axis) and changes only slightly. In the given example
of maximal gain compression ϵmax = 0.5 we find a maximum
correction of ϵQ = −0.35 which is less than 5% of the corre-
sponding α (approximately 9). Therefore we can conclude that
the rebroadening of the laser linewidth can be predominantly
attributed to the dependence of the scattering rates R on N and
thereby also on J . For constant scattering rates R(J) = const
even strong gain compression could not induce a rebroadening.

V. ANALYTICS IN THE LIMIT OF NO GAIN COMPRESSION

In this last section we will derive an analytic equation that
allows to directly extract values for the current dependent
α-factor and scattering rates from the measurements discussed
so far, i.e. from LI-curve, modulation response and linewidth
measurements. Compared to pump-probe setups or other more
involved techniques that are usually used to gain information
about the internal scattering processes, these measurements can
be done easily with standard techniques.

To be able to do that we need to assume a QD laser that
exhibit comparably lower gain compression. In this case (9)
can be treated in a fully analytical manner. Assuming ε = 0,
the reservoir carrier density N increases linearly with the pump
current J and the microscopically motivated scattering rates
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eA,φ

=
α0Tsp

(
4
(
A2 + 1

)
g2( dR̃

dN T1 + 1)+ g
(
R − 4

(
A2− 1

)
g0( dR̃

dN T1 + 1)
)
− g0R

)
+ α0( dR̃

dN T1 + 1)(g − g0)− 2δΩRT1Tsp(g + g0)

4(A − 1)Ag2Tsp( dR̃
dN T1 + 1) + g(Tsp(R − 4A(A + 1)g0( dR̃

dN T1 + 1)) + dR̃
dN T1 + 1) − g0( dR̃

dN T1 + RTsp + 1)
(19a)

eφ ,φ = 1 (19b)

R(N) are in a good approximation also linearly proportional to
the pump current (in contrast to the nonlinear scattering rates
used in our model and shown in Fig. 5(a)). We can thus write:

R(J) = Rth +
dR

dJ

∣∣∣
th

(J − Jth) (13a)

Rin(J) = Rin
th +

dRin

dJ

∣∣∣
th

(J − Jth) (13b)

This restriction to linear LI-curves also covers the modeling
of R as in [19] ( dR

dN = 0, dρe q

dN =const.) and [10] ( dR
dN = dR in

dN ).
This approximation also allows an easy access to information

about the scattering rates. From (1a), the analytical equation for
the LI-curve derived from (1a)–(1c) at steady state reads:

S(J) =
1
2κ

[
Rin(J) − ρth

(
R(J) +

1
Tsp

)]
(14)

This equation can be used to derive a simplified version of (9).
We find that α in dependence of J yields (Please see Appendix
for the derivation):

α(J) = α0 +
δΩT1

2g

(
1 − d(2κS)

dJ

)
R(J) ∝ J (15)

Interestingly, we see that d(2κS )
dJ = e0

!ω
dP
dI , where dP

dI is the
slope efficiency of the laser, e.g. the ratio of the differential
output power ∂P divided by differential pump current increment
∂I . The slope efficiency can be obtained by measurements of
the LI-curve (including detector efficiencies, fiber, coupling and
other losses). As shown in Fig. 4, the factors T1 , g and R(J)
can be obtained by fitting the modulation response of the QD
laser. As dR̃

dN is already given by the LI-curve, the peak of
the maximum in (13a) is predominantly given by T1 , while its
position (or similarly the position of the 3dB-cutoff frequency
ω3dB depends on dR

dJ , allowing these two quantities to be fitted
with good accuracy.

In the last step, we take into account, that (1 + α2) is a second
order polynomial of J . The Schawlow-Townes linewidth limit
is solely given by the output power P and device constants [25],
[31], [42], [43]. Therefore we can fit

∆ν

∆νST
= (1 + α(J)2) (16)

using (15). This allows us to determine the dynamical α-factor
given by (10) (for ϵ = 0):

αdyn = δΩ
T1
2g

(1 − e0

!ω

dP

dI
)R(J) (17)

As R(J) is already quantified by the LI-curve (14) and the
modulation response from (13a), above (17) yields the remain-
ing free parameter δΩ, such that the QD laser is fully described
within the minimal rate equation model. As shown, all parame-
ters are extracted from the presented, simple measurements.

VI. CONCLUSION

Using a minimal quantum dot laser model, we derived
semi-analytic expressions that reproduce LI curves modulation
response data, as well as the laser linewidth. We intuitively ex-
plain a linewidth rebroadening process in QD lasers due to a
dynamically growing linewidth enhancement factor α that is
caused by the increasing scattering rates between the QD and
the reservoir states. Additionally, we showed that the combina-
tion of three relatively simple experiments, namely modulation
response, linewidth and LI measurements is sufficient to extract
most important parameters, including effective scattering rates
in the QD device. Our derived analytical results help character-
ize the laser devices, including the internal carrier time scales
without the need for expensive, high- or real-time-resolution
measurements.

A. APPENDIX

A. Additional Information to the Linewidth Formula

We derive the linewidth formula, based on the adjoint method
approach, given in Section II. Based on (1a)–(1d), we find the
full Jacobian at steady state:

J =
⎛

⎜⎜⎜⎝

− 1
T1

− dR̃
dN R R0 0

dR̃
dN −R − 1

Ts p
− 4gA2 −4κA − 2 ∂g

∂A (2ρ − 1)A2 0
0 2gA “0′′ + ∂g

∂A (2ρ − 1)A2 0
−δΩ −2gα0

∂g
∂A (2ρ − 1)α0 0

⎞

⎟⎟⎟⎠

(18)

In (18), all contributions of ∂g
∂A emerge from the gain compres-

sion term. Therefore, ∂g
∂A = −ϵ g0 A

(1+ϵA 2 )2 = −εA
1+εA 2 g(A)A. Us-

ing ρ at steady state ρ∗ = g+κ
2g , we find that 2 ∂g

∂A (2ρ − 1)A2 =
2(1 − g (A)

g0
)κA. Therefore, the Jacobian J can be simplified,

as written in (3).
The eigenvectors used in (5) are obtained by calculating the

eigenvectors and eigenvalues of J , (3), via Mathematica10.1,
in full precision they read as shown in (19a), (19b), as shown at
the top of the page.



1901110 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 23, NO. 6, NOVEMBER/DECEMBER 2017

Q =

−
4A4α0

dR̃
dN g0T1Tsp +4A4α0g0Tsp − 4A2α0

dR̃
dN g0T1Tsp +A2α0

dR̃
dN T1 − 4A2α0g0Tsp +A2α0RTsp + A2α0 + 6A2δΩRT1Tsp

8g0Tsp( dR̃
dN T1 + 1)

+

(
Tsp

(
4
(
A3 + A2) g0( dR̃

dN T1 + 1) + AR
)

+ A dR̃
dN T1 + A

)
(−8α0

dR̃
dN g0T1Tsp − 8α0g0Tsp + 4δΩRT1Tsp)

64g02Tsp
2( dR̃

dN T1 + 1)2
(20)

For brevity, we also show the electric field amplitude and
phase component of the eigenvectors eA,φ and eφ ,φ in a first
order Taylor approximation in ε around ε = 0, as used in (9).
To make the eigenvalues more readable we define a correction
term Q that is given by (20), shown at the top of the page. Using
this abbreviation for Q the eigenvalues read:

eA,φ =
1
A

(
δΩR

2g0(T−1
1 + dR̃

dN )
+ α0 − ϵQ

)
(21a)

eφ ,φ = 1 (21b)

Our simulations show that Q is comparatively small, see
Fig. 7(d). As defined in (21), εQ describes the reduction of
α = α0 + αdyn − εQ. Our results give a correction to α of less
than 5%.

B. Derivation of the Simplified Equation for α

For the derivation of the simplified (15) of α, we use the
assumption for R(J) in (13) to calculate the LI-curve. From ρ̇
and ρth = g+κ

2g = const., (1b) reads ρ̇ = 0 = R(ρeq − ρth) −
ρt h
T s p

− 2κS, and therefore

S =
1
2κ

(R(ρeq

︸ ︷︷ ︸
R i n

−ρth) − ρth

Tsp
) (22a)

=
1
2κ

(Rin − ρth(R + T−1
sp )) (22b)

Since ρth is constant, derivation of S after J gives

d(2κS)
dJ

=
dR(ρeq − ρth)

dJ
=

dR̃

dJ
(23)

To calculate α(J), the factor dR̃
dJ must be converted into δR.

We use the chain rule dR̃
dJ = dR̃

dN
dN
dJ . The latter term dN

dJ is given
by the carrier conservation, that reads Ṅ + ρ̇ + Ṡ = 0.

J =
N

T1
+

ρth

Tsp
+ 2κS (24a)

⇒ dN

dJ
= T1

(
1 − d(2κS)

dJ

)
(24b)

Thus,

α = α0 +
δΩ
2g

1

T−1
1 + dR̃

dN

R(J)

= α0 +
δΩ
2g

1
T−1

1 + dR
dJ / dN

dJ

R(J)

= α0 +
δΩ
2g

1

T−1
1 +

d (2 κ S )
d J

T1 (1− d ( 2 κ S )
d J )

R(J) (25)

which is identical to (15).
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and chirp in quantum-dot lasers: influence of charge carrier scattering
dynamics,” Opt. Express, vol. 22, no. 5, pp. 4867–4879, 2014.

[10] S. Melnik, G. Huyet, and A. V. Uskov, “The linewidth enhancement factor
α of quantum dot semiconductor lasers,” Opt. Express, vol. 14, no. 7,
pp. 2950–2955, 2006.

[11] M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential
gain and linewidth enhancement factor of quantum dot semiconductor
lasers,” Opt. Quantum Electron., vol. 38, pp. 381–394, 2006.

[12] M. Gioannini and I. Montrosset, “Numerical analysis of the frequency
chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron.,
vol. 43, no. 10, pp. 941–949, Oct. 2007.

[13] F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain com-
pression and above-threshold linewidth enhancement factor in 1.3 µm
InAs/GaAs quantum-dot lasers,” IEEE J. Quantum Electron., vol. 44,
no. 10, pp. 946–951, Oct. 2008.
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munications, from the École Supérieure d’Ingénieurs
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