MIMED
Etude Bibliographique
2010-2011

L'unité MIMED est évaluée par une étude bibliographique de deux articles.

Le compte rendu doit être court et synthétique (4 pages + bibliographie), écrit dans l'un des 2 objectifs suivants:
(1) Vous êtes ingénieur chez un éditeur de plateforme de traitement d'images médicales et vous  devez proposer un choix entre deux méthodes pour son intégration dans un nouveau module dans la plateforme.
(2) Vous vous apprétez à faire une thèse en traitement d'image médicale et vous devez établir le cadre méthodologique que vous souhaitez poursuivre.

Le rendu de cette étude comporte:
(1) une présentation devant le groupe durant un exposé de 10 minutes et 10 minutes de question.
(2) Le compte rendu écrit remis 2 jours avant la séance de présentation .  




Liste des sujets et articles attribués :

[1-2] Nicolas Dumont  + Philippe Granjal
Detection of Pathological structures in medical images
Papier #1: Maggio, Palladini, De Marchi, Alessandrini, Speciale, Masetti,"Predictive Deconvolution and hybrid feature selection for computer-aided detection of prostate cancer", IEEE TMI, vol29, 2010. link
Papier #2: Ou, Shen, Zeng, sun, Moul, Davatzikos, "Sampling the spatial patterns of cancer: optimized biopsy procedures for estimating prostate cancer volume and Gleason score" , Medical Image Analysis, vol 13, 2009. link

[3-4] Arnaud Le Carvennec + Nadia Othmane
Registration of brain MRI-CT data via variational approaches
Papier #1: Guimond, Roche, Ayache, Meunier, "Three-dimentional multimodal brain wrapping using the Demons algorithm and adaptive intensity correction", IEEE TMI, vol20, 2001. link
Papier #2: Chen, Varshney, "Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation" , IEEE TMI, vol 22, 2003. link


[5-6] Bertrand Saudreau
+ Claire Cury
Registration 2D-3D between CT and per-surgery X-ray images
Papier #1: Lyviatan, Yaniv, Joskowicz "Gradient-Based 2-D/3-D Rigid Registration of Fluoroscopic X-Ray to CT", IEEE TMI, vol22, 2003. link
Papier #2:
Russakoff, Rohlfing, Mori, Rueckert, Ho, Adler, Maurer, "Fast Generation of Digitally Reconstructed Radiographs Using Attenuation Fields With Application to 2D-3D Image Registration", IEEE TMI, vol 24, 2005. link

[7] Moulay Hakim FADIL
Tracking objects in fluoroscopic images
Papier #1: Wang, Chen, Zhu, Zhang, Zhou, Comaniciu, "Robust Guidewire Tracking in Fluoroscopy", IEEE CVPR,  2009. link
Papier #2:
Baert, Viergever, Niessen, "Guide-Wire Tracking During Endovascular Interventions", IEEE TMI, vol 22, 2003. link

[8] Rémi Mariani
Mutual information-based registration approaches
Papier #1: Knops, Maintz, Viergever, Pluim, "Normalized mutual information based registration using k-means clustering and shading correction", MediA, vol10,  2006. link
Papier #2:
Loeckx, Slagmolen, Maes, Vandermeulen, Suetens "Nonrigid Image Registration Using Conditional Mutual Information", IEEE TMI, vol 29, 2010. link


[9-10] Sylvio Rajaspera + Sten Essono
Comparison of quantification approaches in cardiac imaging
Papier #1: Mitchell, Bosch, Lelieveldt, van der Geest, Reiber, Sonka "3-D Active Appearance Models: Segmentation of Cardiac MR and Ultrasound Images", IEEE TMI, vol21, 2002  link
Papier #2:
Peters, Ecabert, Meyer, Kneser, Weese, "Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation", MediA, vol 14, 2010. link


[11] Basile Pinsard
Automated classification and learning of  biomarkers for degenerative brain pathologies
Papier #1: Fan,Batmanghelich, Clark, Davatzikos, "Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline", Neuroimage, vol 39, 2008  link
Papier #2:
Thompson, Hayashi, de Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell, Toga, "Mapping hippocampal and ventricular change in Alzheimer disease", Neuroimage, vol 22, 2004. link

[12] Mounir Kaddouri
3D reconstruction in interventional radiology
Papier #1: Wiesent, Barth, Navab, Durlak, Brunner, Schuetz, Seissler, "Enhanced 3-D-Reconstruction Algorithm for C-Arm Systems Suitable for Interventional Procedures", TMI, vol 19, 2000  link
Papier #2:
Markelj, Tomazevi, Pernus, Likar, "Robust Gradient-Based 3-D/2-D Registration of CT and MR to X-Ray Images", TMI, vol 12, 2008. link


[13] Yann Leprince

Intraoperative registration MRI-Echography in neurosurgery
Papier #1:  Lunn, Paulsen, Roberts, Kennedy, Hartov,  West, "Displacement Estimation With Co-Registered Ultrasound for Image Guided Neurosurgery: A Quantitative In Vivo Porcine Study", TMI, vol 22, 2003  link
Papier #2: 
Coupe, P. Hellier, Morandi, Barillot, "Probe trajectory interpolation for 3D reconstruction of freehand ultrasound",  MediA, vol11, 2007. link


[14] Ludovic Fillon
Denoising of MRI spectroscopy
Papier #1:  Meije , Roerdink, "Denoising Functional MR Images: A Comparison of Wavelet Denoising and Gaussian Smoothing", TMI, vol 23, 2004  link
Papier #2: 
Ahmed, "New Denoising Scheme for Magnetic Resonance Spectroscopy Signals", TMI, vol 24, 2005. link


===============================================
Some Tips on Reading Research Papers (from the Computer Vision Faculty at UCF

1. You have to read the paper several times to understand it. When you read the paper first time, if you do not understand something do not get stuck, keep reading assuming you will figure out that later. When you read it the second time, you will understand much more, and the third time even more ...
2. Try first to get a general idea of the paper: What problem is being solved? What are the main steps? How can I implement the method?, even though I do not understand why each step is performed the way it is performed?
3. Try to relate the method to other methods you know, and conceptually find similarities and differences.
4. In the first reading it may be a good idea to skip the related work, since you do not know all other papers, they will confuse you more.
5. Do not use dictionary to just look up the meaning of technical terms like particle filters, maximum likelihood, they are concepts, dictionaries do not define them. They will tell you literal meanings, which may not be useful.
6. Try to understand each concept in isolation, and then integrate them to understand the whole paper. For instance, the paper on "Feature Integration with adaptive weights in a sequential Monte Carlo Tracker" is quite complex paper at the first look. Because it uses Monte Carlo, particle filter, likelihood etc. But try to understand the gist of it. The paper is about tracking, you know a few tracking methods already. It uses features: color histogram, templates in correlation, shape, etc. You know these features, and you have used them. The probabilities obtained by each features are combined (fused) to achieve tracking. How will you combine the probabilities or confidences of each features: multiply, add, apply threshold and then add ...

Particle filter/condensation method is already available in Intell Open CV library, use it, get some idea how it works, what are the parameters, then go back to read the paper again ... If you keep doing it for one week, you will understand a lot about that paper! Next week you do the second paper, and so on ...