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Predictive Deconvolution and Hybrid Feature
Selection for Computer-Aided Detection
of Prostate Cancer
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Guido Masetti

Abstract—Computer-aided detection (CAD) schemes are deci-
sion making support tools, useful to overcome limitations of prob-
lematic clinical procedures. Trans-rectal ultrasound image based
CAD would be extremely important to support prostate cancer di-
agnosis. An effective approach to realize a CAD scheme for this
purpose is described in this work, employing a multi-feature kernel
classification model based on generalized discriminant analysis.
The mutual information of feature value and tissue pathological
state is used to select features essential for tissue characterization.
System-dependent effects are reduced through predictive decon-
volution of the acquired radio-frequency signals. A clinical study,
performed on ground truth images from biopsy findings, provides
a comparison of the classification model applied before and after
deconvolution, showing in the latter case a significant gain in accu-
racy and area under the receiver operating characteristic curve.

Index Terms—Computer-aided detection (CAD), hybrid feature
selection, predictive deconvolution, prostate cancer, ultrasound
images.

I. INTRODUCTION

NE OF THE applications where computer-aided de-
() tection (CAD) tools would be extremely valuable is
in recognition of prostate cancer in trans-rectal ultrasound
(TRUS) images.

The prostate gland is the male organ most often smitten by ei-
ther benign or malignant lesions [1]. The current clinical proce-
dure to detect cancer is based on a combination of different diag-
nostic tools, because none of these tools is accurate enough to be
used alone. Digital rectal examination (DRE), prostate-specific
antigen (PSA) evaluation, TRUS image analysis, and biopsy are
all part of the medical procedure for prostate analysis.

Each of these tools presents important limitations that make
accurate prostate cancer detection still an unsolved problem.
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Historically DRE has been the principal method of prostate
analysis, but it is an accurate tool only to detect large and
superficial lesions and it is strongly operator dependent. The
first step in public screening for prostate cancer is the mea-
surement of the blood PSA level, a glycoprotein produced
almost exclusively in the epithelium of the prostate gland.
Unfortunately, PSA is specific for prostate but not for cancer,
since other factors such as benign prostatic hyperplasia (BPH),
prostate infection, urethral instrumentation and irritation can
cause increase of PSA value.

In TRUS, the normal prostate gland has a homogenous, uni-
form echo pattern. The appearance of carcinoma on ultrasound
is variable and in early stage a tumor can appear anechoic, hy-
poechoic, or isoechoic with respect to the surrounding normal
tissues. Potential hypoechoic regions could also include BPH
or even normal biological structure, thus the specificity of the
TRUS images visual inspection is low.

The histopathological analysis of biopsy samples is the stan-
dard for cancer detection confirmation. Ultrasounds are used in
biopsy guidance, to enable sampling of all relevant areas of the
prostate by means of systematic sampling protocols [2]. How-
ever, the main limitations in this procedure are due to the mul-
tifocal nature of cancer and to the sampling process. As regards
patients perception of this examination, it was documented that
55% of men report physical discomfort during the biopsy. More-
over, this procedure is not completely safe, since it carries the
risk of bleeding infection or even urosepsis [3].

However, since the processing of TRUS images and radio-fre-
quency (RF) signals can highlight important characteristics
of investigated tissues, the use of CAD techniques could im-
prove the radiologist decision making process by reducing the
number of unnecessary biopsies. First works on TRUS-based
CAD scheme for detection of prostate cancer consist on biopsy
ground truth and on analysis of rectangular regions around
needle insertion points. The main characteristic of these studies
is the use of textural features extracted from TRUS images to
discriminate different tissues. Basset et al. [4], Huynen et al.
[5], and Houston et al. [6] realized clinical studies based on the
extraction of first and second order statistics textural parameters
and used simple decision trees to perform classification.

After these works the main trend shifted to a multifeature ap-
proach, extracting features of different nature from TRUS im-
ages and combining them to obtain higher classification perfor-
mance. Schmitz et al. [7] and Scheipers et al. [8] employed tex-
tural features and spectral parameters extracted from RF data,
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while Feleppa et al. [9] introduced clinical data like PSA value
and patient’s age in the feature vector besides spectral param-
eters. The classifiers used for these works (self organizing Ko-
honen map, neuro-fuzzy systems, artificial neural network) are
more complex with respect to decision trees and define a new
direction in this research field. Furthermore in these works the
ground truth comes from prostatectomy and histological anal-
ysis of prostate slices and not from biopsy. The work of Mo-
hamed and Salama [10] represents an exception since the gold
standard is based on radiology visual inspection. The proposed
scheme utilizes a pure textural feature vector with a support
vector machine (SVM) classifier. In this case the values of sen-
sitivity, specificity and area under receiver operating character-
istic (ROC) curve are high, but they are obtained on a small
ground truth.

Similar performance is obtained in latest studies like the ex-
tension of Mohamed’s work [11] which includes spectral fea-
tures and the study performed by Han et al. [12], where mor-
phologic features and multiresolution textural features are em-
ployed and SVM is used as classifier. In the latter work notable
values of sensibility and specificity are reported but the pro-
posed method was only tested on malignant images, thus there
is no information about its behavior in completely healthy cases.

This work analyzes a cancer detection procedure which
exploits a nonlinear multifeature classifier based on general-
ized discriminant analysis (GDA) with Gaussian kernels, and
involves predictive deconvolution as preprocessing step. Since
the ultrasound transducer introduces an unwanted spectral
shaping of the backscattered echo signal, deconvolution is
used to reduce the system dependent effects. Our aim is to
investigate the ability of features extracted from deconvolved
US images in discriminating pathologic tissues. This issue is
analyzed in terms of a performances comparison of a nonlinear
classification model trained on features extracted from US
images, with and without deconvolution preprocessing.

A large number of features have been extracted from US RF
signal to characterize different aspects of biological tissues. The
combined use of features of different nature results in more ac-
curate tissue characterization, but requires a critical operation
of feature selection to identify features highly correlated to the
pathologic state of the tissue.

In our approach a hybrid feature selection algorithm based
on the mutual information of feature set and ground truth class
is used to prune unimportant features and achieve fast compu-
tation. The ground truth used in this clinical study is based on
biopsy findings and histologic analysis of some regions in the
images considered suspicious by expert radiologist visual in-
spection. The CAD scheme proposed in this article provides
high classification performances (sensitivity 90%, specificity
93%, and area under the ROC curve 95%) and was tested on
a ground truth containing both benignant and malignant cases.

The next section regards data preprocessing. The paper con-
tinues with a summary of the feature selection strategy, while
the following sections present the classification model and the
clinical study. Afterward the main experimental results are col-
lected and compared with the methods published in literature.
Conclusions and possible future perspectives are discussed in
the final section.
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II. MATERIALS AND METHODS

In this study the analyzed TRUS images are acquired by a
standard US System Esaote Megas with trans-rectal transducer
EC123 at sampling frequency of 50 MHz and central frequency
of 7.5 MHz. Through this commercial US equipment (combined
with FEMMINA [13]) it is possible to have direct access to RF
echo signal. The RF signal is essential to compute some spectral
parameters, useful to characterize prostate tissues. The first pro-
cedure performed on the acquired data is to remove acquisition
system deterministic trends from RF signal.

In order to have local information about the prostate, im-
ages of 2500 X 96 pixels are segmented in rectangular windows,
forming a series of region of interests (ROIs). Then some fea-
tures are calculated from each ROI. The choice of window size
is a tradeoff between statistical significance of samples in a ROI
used to compute features and the resolution of the output feature
image. In this study, ROIs are rectangular windows of 101 x 7
pixels and of about 9 mm? area.

One more important step in data preparation is the compen-
sation for system-dependent effects. In this work this problem
is faced through the use of deconvolution, which is able to re-
duce noise and increase contrast and quality of US images. Al-
though deconvolution is a well-known topic, its usefulness in
CAD schemes was rarely explored.

One of the limitations on image quality is due to the blurring
effect on the back-scattered echoes produced by the transducer’s
point spread function (PSF). The acquired RF-signal g(n) can
be considered to be the result of the transducer’s impulse re-
sponse t(n) convolved with the tissue reflectivity function (or
tissue response) o (n)

g(n) = o(n) xt(n). ey

Given the imaging system’s output g(n), the deconvolution al-
gorithm produces an estimate of the tissue response o (n).

Standard techniques for in vivo US signal deconvolution re-
quire the knowledge of system PSF and are based on regular-
ized inverse solution of (1), obtained imposing L1 or L, norm
constraints on the solution [14]. The system impulsive response
t(n) in vivo can not be properly estimated on phantoms be-
cause tissues cause unpredictable phase aberration, non linearity
and dispersive attenuation. A minimum phase version of system
PSF can be estimated from the observed signal through homo-
morphic deconvolution techniques [15]. The main drawbacks of
these techniques are the high sensitivity of the obtained solution
from the estimated PSF, which often results in image artifacts
[16], loss of information and high computational cost.

Predictive deconvolution techniques that are used as stan-
dards in astronomy and geophysics are less popular in medical
ultrasound. Although blind deconvolution techniques are intrin-
sically more limited, their choice for tissue characterization is
due to several aspects: they do not require PSF estimation, they
are simpler to implement and have low processing time. Fur-
thermore, blind techniques based on linear prediction perform a
local whitening of the signal, taking into account time-varying
PSF, which is a realistic situation in ultrasound due to the vari-
able focusing and pulse attenuation.
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Fig. 1. Autoregressive convolutional model and predictive deconvolution iter-
ative algorithm.
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In this work, techniques like Wiener deconvolution with min-
imum-phase PSF estimation [17] have been compared to the
linear prediction technique. We verified that Wiener technique
provides over-smoothed solution and features extracted from
deconvolved images are not significant for tissue characteriza-
tion. On the contrary predictive deconvolution [18], based on
linear prediction, is able to highlight diagnostic significance of
extracted features.

Predictive deconvolution uses a predictive filter to discard any
deterministic aspects from g(n) and consider the unpredictable
part, that is the error respect to real values of g(n), as the re-
stored tissue response. Thus it is necessary to estimate the coef-
ficients of a filter wy, to predict future values of g(n)

y(n) =Y wig(n —k) = g(n+a) ©)
k

with §(¢ + «) an approximation of g(n) after « samples. The
nonpredictable part of the input signal is represented by the error

e(n+a)=g(n+a)—gn+a)
g(n+a) =Y wig(n — k). 3)
k

The recursive least squares (RLS) algorithm [19] provides a re-
cursive way to compute the filter which minimizes the weighted
least squares error function

Clw,n) =Y A" le(i) . @
i=1

The information of new data updates the old estimate and the
forgetting factor A decreases the weight of data in the distant
past to follow the statistical variations of the observable data.
The imaging system model and corresponding deconvolution
model are visualized in Fig. 1. It can be shown that the output
of the deconvolution process, converges to the tissue response
a(n) if the following hypotheses are fulfilled: 1) feedback hy-
pothesis: t(n) has an all pole transfer function and 2) random
hypothesis: o(n) is a white Gaussian noise process, i.e., the RF
signal g(n) is modeled as an autoregressive process [20].

Other deconvolution algorithms such as inverse filters as in
[21], or wavelet-based approaches as in [22] and [23] were con-
sidered and tested but the RLS prediction resulted to be the best
compromise in terms of classification performance and compu-
tational cost.

TABLE I
FEATURE SET
Feature | Origin/Type | #
Wavelet Transform (WT) | RF/Spectral 2
Polynomial Fit of WT RF/Spectral 1
Wavelet Decomposition RF/Spectral 1
Central Frequency RF/Spectral 1
Attenuation RF/Spectral 13
B-mode B-mode/Envelope 1
Nakagami RF/Statistic 4
Statistic RF/Statistic 2
Haralick B-mode/Textural 4
Unser B-mode/Textural 9
Fractal B-mode/Textural 16

III. FEATURE SELECTION

A. Feature Set

Results of recent studies show that combining features ex-
tracted from RF analysis of ultrasound signals and image-based
texture parameters results in more effective classification proce-
dures [24]. Literature about tissue characterization in ultrasound
analysis provides a large amount of features of different nature
which can be subdivided according to their contribution in high-
lighting some properties of the tissue.

Parameters of statistical distributions, such as Nakagami
model [25], give information about scatterer density, regularity,
and amplitude.

Spectral features [26] describe fluctuations of physical prop-
erties as acoustic impedance, viscosity and elasticity resulting
in backscattering signals. Typical spectral parameters capture
the shifting of RF signal central frequency due to attenuation.
Also the wavelet coefficients of RF signal, their polynomial fit-
ting [27] and the coherent and diffuse components obtained by
signal decomposition [28] belong to spectral features group and
provide important properties to type tissues.

Features extraction from B-mode images aims mainly at de-
tection of textural properties of speckle which represents the
macroscopic appearance of scattering generated by tissue mi-
crostructures. Different kind of textural parameters are avail-
able in literature. Haralick [29] and Unser features [30] are both
based on the gray levels distribution statistics, while Fractal fea-
tures [31] rely on modeling and computation of fractal dimen-
sion. In our approach, the characteristic skills of different fea-
tures are combined to define a feature set endowed with a high
discriminating power between healthy and cancerous tissues.

A complete feature set of all parameters mentioned before
would have a huge dimensionality of about 140 attributes. For
this reason, a first selection step is performed keeping for each
group of features only those correlated to the ground truth class,
and discarding the other ones. By doing so, the dimensionality
is reduced, but synergies between different features are saved.
The defined feature set is constituted by 54 features, as shown in
Table I. Further information about the feature set can be found
in the Appendix.

B. Hybrid Feature Selection Algorithm

The importance of CAD in ultrasound images is dependent
on its ability to perform near real-time classification in order
to give a second opinion to the physician. A large feature set
dimensionality prevents the use of ultrasound images automatic
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characterization as a diagnostic decision support tool. For this
reason, a further classification-oriented feature selection (FS)
step is essential.

FS algorithms can be roughly divided in three categories:
filters, wrappers, and hybrid methods. Filters sort features
according to a score measure that summarizes the importance
of a feature with respect to the state of the tissue. Typically the
ranking criterion can measure distance, information, depen-
dency, or consistency between features extracted from ROIs
and ROIs class (healthy or unhealthy for binary classifica-
tion). Filters measures are independent on any classification
algorithm. On the contrary, Wrappers sort attributes from a
feature set based on performance of a classifier trained on that
feature set, thus they are classifier-dependent and require larger
computational cost.

Hybrid methods [32] were adopted in this work to take ad-
vantage both of Filter and Wrapper models. The Filter measure
is used to decide the best subset for a given cardinality, while the
Wrapper mining algorithm selects the final best subset among
the best subsets across different cardinalities.

In particular, in our approach a mutual information hybrid FS
(MIHFS) algorithm is used to rank and prune the whole fea-
ture set. Ranking measures based on distance and dependency
[33] were also tested and, although most of them succeed in
discarding irrelevant features, only information based measure
are able to recognize and discard redundant features. In the pro-
posed FS technique the chosen classifier-independent measure
is the min-Redundant Max-Relevance (mRMR) criterion pro-
posed by Peng et al. [34]. The mRMR measure is based on mu-
tual information between the current feature set and class cor-
rected with the averaged mutual information between features
in the feature set. Maximizing this measure allows to define a
feature set with maximum relevance, as shown by (5) and min-
imum redundancy, as shown by (6), where S is the feature set,
c is the class, x; is the 7th attribute in the feature vector and I is
the mutual information

> I(xi.c) (5)
x; €S

R(S):SL|2 > I(xix;). (6)

| X»;,X]‘GS

1
1r115axD(S7 c) D(S,c)= &l
min R(S)

MIHEFS is an algorithm in two steps. The filter step and consists
on ranking all features according to the mRMR measure, shown
in (7), following a sequential forward selection as search tech-
nique:

S =argmax®(D,R) ®(D,R)=D — R. 7
MIHFS wrapper step exploits a Fisher Linear Discriminant
(FLD) [35] as classifier and evaluates mining performance
of the ranked feature set at increasing set size. For different
cardinalities, the subset which maximizes the mRMR measure
is selected and the performances of FLD trained on this subset
are computed. The best cardinality and consequently the best
subset is chosen as that performing the minimum FLD mis-
classification error. Typically the best cardinality is smaller
than the maximum number of features because of classifier
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over-fitting on training data. Since hybrid FS algorithms require
both a time-consuming search for ranking and several training
iterations, in this case FLD was selected to speed up selection
experiments. For the selected subset the MIHFS algorithm pro-
duces a ranked list of features which highlights their predictive
skill. A previous analysis performed on ground truth samples
has shown the reliability of MIHFS technique in discarding
both irrelevant and redundant features. Obviously any kind of
preprocessing of ultrasound images (such as deconvolution)
could modify the features ranking and in general can improve
or worsen the discriminating power of a feature.

IV. CLASSIFICATION SYSTEM

Previous studies reported that features of different nature
hardly are linearly inter-correlated and that a nonlinear classifi-
cation model can be able to extract valuable information from
a mixed feature set and to reach higher level of accuracy [24].
On the other hand, complex model classifiers fail in preserving
physical significance of features and their true dependence on
pathology.

In our approach a nonlinear classification model was
designed and trained to discriminate between healthy and can-
cerous zones. The studied classifier is based on a first nonlinear
feature extraction (FE) step and a second linear classification
step. Empirical results on the analyzed dataset lead to choose
the GDA as FE algorithm. This technique [36] uses kernel
transformation to obtain a new feature space F’ that is related
to the former by a nonlinear mapping ¢, performed on feature
vector X

$:RN - F  x— ¢(x). 8)

The subsequent classifier is a FLD that finds the best hy-
perplane separating healthy and unhealthy samples of the
training set. The resulting new GDA features are projected in
the direction which maximizes the between-class distance and
minimizes the within-class distance of samples of the mapped
training set. This is a linear operation realized by simply com-
bining mapped feature vectors

f(z) = (W, 9(x)) + b ©

where b is an offset chosen to impose the same distance be-
tween centroids of the two classes of samples and hyperplane,
while the weight coefficients w are found by maximizing the
following Fisher criterion:

wlSpw

D(w) = (10

wlSyw
In the previous expression Sp is the between-class scatter ma-
trix, while Sy is the within-class scatter matrix, referred to the
remapped samples of the training set.

This maximization involves the computation of dot products
(p(xi), #(x;)) in F': such calculation can be performed effi-
ciently by exploiting the so called kernel trick, i.e., by choosing
kernel functions k(x;,x;) which act like dot products in the
remapped feature space [37]. The choice of these kernel func-
tions is crucial. In this study, different kind of kernels (namely
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Fig. 2. Comparison between linear and non linear projection on real data.
Images (a) and (b) show the histograms of healthy (in dark) and unhealthy
(in white) samples (five-feature vectors) after LDA and GDA projection,
respectively.
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Fig. 3. Classification scheme: processing steps from RF signal measurements
to the derivation of final classification label.

polynomial, Gaussian, and sigmoidal kernels) were tested. The
best results were obtained when a Gaussian kernel is applied.

The effect of GDA feature projection is compared with the
results of a simpler linear (i.e., without nonlinear mapping) dis-
criminant analysis (LDA) in Fig. 2. In particular, the histograms
in Fig. 2(a) show the distributions of healthy (in dark) and un-
healthy (in white) samples after LDA projection obtained com-
bining five features, while Fig. 2(b) shows the GDA projection
of the same samples: the improvement in separation is evident.

This classification system was compared with different
mining techniques, both linear and nonlinear (regularized least
squares, elastic net, SVM), and was selected because the com-
putational time required for its training is significantly smaller
with respect to the other tested classifiers, while providing the
same accuracy. A scheme of the whole classification procedure
of an ultrasound image is provided in Fig. 3.

V. CLINICAL STUDY

The clinical study involves 37 patients with high level of PSA
and undergoing their first biopsy. The age of patients ranges
from 53 to 75 years. For each patient, 10 US image frames were
produced with probe held in a fixed position. Since the frame
rate is about 20 frames/s, all the frames provide the same infor-
mation unless for the measurement noise and micro-movements
of radiologist driving the probe. Thus, in this analysis, only the
first frame is considered, although the other frames can be em-
ployed in the study of stability of features and possibly to extract
features averaging on several frames. The available dataset for
this investigation consists of 15 benignant cases (normal and
hyperplastic tissue) and 22 malignant cases (presence of ade-
nocarcinoma). From each image, about 3000 ROIs are gener-
ated from the prostate zone and used for feature extraction. The
ground truth comes from histopathological analysis from tissue
samples acquired through biopsy.

According to the current protocol for prostate biopsy, six nee-
dles are used to extract samples throughout the whole gland,
maximizing the sampling in the peripheral zone. This proce-

dure cannot be without mistakes since tumors are multi-focal,
and the estimated detection rate is about 89% [2]. The matching
of biopsy results on TRUS images is performed by a single ex-
pert radiologist, using the exact information of needles location
in the images. For each case the radiologist has matched biopsy
results with precise regions on TRUS images: both pixels found
to be part of cancerous zones and pixels belonging to healthy re-
gions are selected and labeled in every zone examined through
biopsy.

Cancer tissue which has not been sampled during this proce-
dure will be labeled as healthy, thus the accuracy of this process
depends on the detection rate of biopsy, gold standard in this
study. The pixels of the regions outlined by the radiologist are
known precisely and the evaluation of features is performed over
rectangular ROIs lying inside the different zones; ROIs centered
on the border of two different zones are not considered in the
analysis.

In this study the classification model is trained on 1000 ROIs,
sampled randomly from 18 TRUS images (7 benignant and 11
malignant). Training is performed through stratified 10-fold
cross validation, so the classification model is generated from
900 samples and validated on the remaining 100 samples. The
testing set consists of the other 19 images, completely unknown
to the classification model.

Classification performance is computed through ROI-based
metrics on a total of 58 602 testing ROIs, where 58 286 ROIs
are healthy and 316 are unhealthy. Examples of classified im-
ages and their corresponding ground truth are shown in Fig. 4.
These TRUS images show the axial section of a prostatic gland
without scan conversion. According to the gland anatomical
shape shown in Fig. 5, the images in Fig. 4 show a prostate in
the same orientation, where the superior hyperechoic boundary
marks the interface between the rectum (indicated with “R” in
Figs. 4 and 5) and the peripheral zone (PZ) of the prostate. The
transition zone (TZ) is visible as a darker region below the pe-
ripheral zone. The gland contours are generally well defined and
visible in the images.

The output of a classification is visualized directly on the
original TRUS image, by means of transparent colored patches
located over the ROIs. Ground truth images are visualized at the
left side of the set of images in Fig. 4, where healthy regions are
marked in blue and cancerous regions in yellow. The classifica-
tion output is shown at the right side in Fig. 4: unhealthy classi-
fied ROIs are covered in yellow, while healthy classified regions
are marked in blue. Yellow and blue colors move toward white
and cyan respectively when the discriminant function value is
near zero, pointing out zones where classification is more dif-
ficult. A color bar is added to the side of each images set to
support an easier reading of classification results. Fig. 4(a) rep-
resents a benignant case, while the others pictures show glandes
affected by carcinoma. Since some false positives are always
present, also in the best case and always outside biopsy region,
the positive predictive value is low, but this is due to the low
prevalence of unhealthy regions respect to healthy regions in a
ROI-based metrics. Criteria independent on disease prevalence
are employed to evaluate this clinical test (sensitivity, speci-
ficity, accuracy and area under the ROC curve) as discussed in
the following section.
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Fig. 4. Examples of ground truth and classified images. The letter “R” marks
the location of rectum, while the color bar shows the colors used to mark zones
classified as healthy (H) and unhealthy (U). The gradients indicate the discrim-
inating function values and, thus, the colors next to the threshold between the
two classes mark regions where classification is more difficult. Image (a) repre-
sents a benignant case, while (b), (c), and (d) show malignant cases.

VI. RESULTS

A. Feature Selection

MIHFS algorithm selects a feature subset whose cardinality
is equal to 10. Feature extraction performed after deconvolu-
tion yields to different distributions of feature values. As a con-
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Fig. 5. The picture on the left gives a schematic representation of prostate axial
section with orientation inverted respect to its real anatomy. On the right a TRUS
image shows the prostate gland in the same orientation.

TABLE II
RANKED FEATURE SETS

Rank  No Preprocessing RLS Deconvolution

1 Variance-Fractal(2) Alfal Mean-Intercept2 AR(3) Imsd
2 Variance-WDES Diff. Proj. n.8  Variance-Fractal(2) Alfa2

3 Mean-Intercept AR(2) burg Mean-Nakagami logm

4 Mean-correlation 135 Mean-correlation 45

5 Mean-Nakagami logm Variance-Fractal(2) Beta 8

6 Variance-Fractal(1) Beta 10 Mean-Haralick Sum of Squares
7 Variance-Fractal(2) Beta 10 Mean-contrast 90

8 Mean-Naka w Diff. Proj. n.8 Variance-Fractal(1) Beta 10
9 Mean-Nakagami logOmega Mean-Nakagami logOmega
10 Mean-homogeneity 90 Mean-Naka w Diff. Proj. n.8

sequence, MIHFS performed on the postdeconvolution feature
set provides a new ranked list and a different optimal subset.
FS output for the case without preprocessing and the case with
predictive deconvolution are given in Table II. Listed attributes
in the selected feature sets are referred to the groups described
in Table I. A brief description of used features is provided in
Appendix.

MIHEFS results show that RLS deconvolution improves the
predictive skills of textural features and worsens instead the
abilities of some spectral parameters. As a matter of fact, 1) de-
convolution causes good speckle reduction aimed at decreasing
textures dependence on the acquisition system and allows an
easier edge detection, rising textural pattern significance and 2)
some spectral features like the high frequency diffuse compo-
nent extracted from RF signals partly lose their diagnostic value
because deconvolution acts as a whitening filter, therefore these
features must be computed before PSF compensation. The di-
agnostic significance of Nakagami features is assured in both
cases, with and without predictive deconvolution.

B. Classifier Performances

In order to assess classifier performances, mean value and
standard deviation of sensitivity (SE), specificity (SP), accuracy
(Acc), and area under the ROC curve (Az) were estimated over
ten different experiments, where images in the training and test
set are randomly selected. In Table III performance measures re-
lated to the GDA-FLD classifier with and without RLS deconvo-
lution preprocessing step are collected (mean value + standard
deviation). Each table row refers to a classifier trained on a dif-
ferent number of features from 5 to 54.

Classification without deconvolution shows sensitivity
ranging between 0.51 and 0.72, specificity and accuracy
ranging between 0.89 and 0.97, and ROC area ranging between
0.87 and 0.92. Classification performances decrease as number
of features increase, when more than 10 parameters are em-
ployed. This indicates an over-fitting on training data when a
high number of attributes is used. The addition of predictive



MAGGIO et al.: PREDICTIVE DECONVOLUTION AND HYBRID FEATURE SELECTION 461

TABLE III
CLASSIFIER PERFORMANCE

No Preprocessing
# SE SP Acc Az

5 0.72£0.08 0.89£0.02 0.89+£0.02 0.91+0.02
10 | 0.69+0.06 0.94+0.02 0.93+0.02 0.92+0.02
20 | 0.64+0.07 0.95+0.01 0.954+0.01 0.9240.02
54 | 0.51+0.06 0.97+0.01 0.964+0.01 0.8740.03

RLS Deconvolution
# SE SP Acc Az

5 0.79+£0.05 0.8 +0.02 0.89+0.02 0.93+0.01
10 | 0.75£0.09 0.93£0.01 0.93+£0.02 0.95+0.02
20 | 0.724+£0.07 0.944+0.01 0.944+0.01 0.93+0.03
54 | 0.62+0.10 0.96+0.01 0.964+0.01 0.9140.02
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Fig. 6. ROC of classification with and without RLS predictive deconvolution.
(a) and (b) Performance for a 5 features and 10 features classification model,
respectively.

deconvolution improves performances of 3% in terms of ROC
area when 5 or 10 features are used, 1% and 4% for the case
with 20 and 54 features, respectively, where the effect of over-
fitting is evident. In the best case classification performances
after RLS preprocessing provide a value of the ROC area of
98%. These results are better visualized in Fig. 6, where ROC

Area under ROC curve distributions
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Fig. 7. Boxplots of distributions of ROC area for classification without prepro-
cessing (In figure: Az 5 and Az 10 when using 5 and 10 features, respectively)
and classification after RLS preprocessing. (In figure: Az 5 RLS and Az 10 RLS
when using 5 and 10 features, respectively.)

TABLE IV
PUBLISHED METHODS FOR ULTRASOUND-BASED
PROSTATE TISSUE CHARACTERIZATION

Work Ground Truth  Technique Results %

# ROIs Features SE SP Acc Az
Basset [4] 37 Textural 83 71 -
Huynen [5] - Textural 80 88.20 -
Houston [6] 25 Textural 73 86 80
Schmitz [7] 3405 Multi 82 88 - -
Scheipers [8] 170 484 Multi - - 75 86
Feleppa [9] 1019 Spectral - - 80 85
Mohamed [10] 96 Textural 83.3 100 93.75 -
Llobet [38] 4944 Textural 68 53 61.6 60.1
Mohamed [11] 108 Multi 83.3 100 94.4 -
Han [12] 2000 Multi 92 95.9 -

curves of the two classifiers in the best case are compared when
involving 5 and 10 features.

The improvement is visible in the shifting of Az distributions
mean value toward higher values from the case without prepro-
cessing to the case with RLS preprocessing. Az distributions
(5 and 10 features) are shown in Fig. 7 for the cases with and
without RLS preprocessing.

The overall result of the introduction of predictive deconvo-
lution is an improvement of classification performances with an
addition of complexity that can be negligible with respect to
FE complexity. These processing times are still far from being
real-time, but further work can be done to speed up the whole
classification procedure, like using C implementation of spec-
tral and textural features and defining larger “natural” regions
of interest, based on textural characteristics of the prostate. The
additional ROI definition step does not bring extra computa-
tional complexity, as the cost saved in FE due to the analysis
of a smaller number of ROIs is more important than the supple-
mentary cost of segmentation. Thus this step would provide a
reduction of both feature generation and classification compu-
tational time.

In Table IV, a summary of previously published methods for
prostate tissue characterization (discussed in the introduction)
is visualized in order to show research developments in com-
puter-aided cancer detection and as a comparison with the study
presented in this paper.
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VII. CONCLUSION

Prostate cancer is a common disease among men and early
stage detection is crucial for a successful pathology treatment.
The current clinical procedure for diagnosis and grading of the
disease, i.e., biopsy and histopathological images analysis, is
still matter of controversy because it is invasive, dangerous and
affected by errors due to the sampling process and the multi
focal nature of prostate cancer. In this context, the availability of
a CAD tool would be very useful to physicians to be supported
in their decision and detect cancer even in its early stage.

TRUS images based CAD systems can be efficient tools
to perform more objective prostate cancer diagnosis reducing
inter-operator variability. The use of ultrasound technology
for prostate cancer detection is motivated by its minimal inva-
siveness and cost and, furthermore, TRUS technique is already
integrated in the standard procedure for prostate examination.

This study reported tissue characterization based on a multi
feature approach, where spectral, statistic and textural attributes
were extracted by TRUS images in the prostate zone and used
for ROI classification. An hybrid feature selection algorithm ex-
ploits mutual information between features and pathologic state
of ground truth tissue to reduce feature set dimensionality, dis-
carding irrelevant or redundant attributes. In the proposed CAD
scheme the resized feature set is processed by a Gaussian remap-
ping, shifting the problem in a sub dimensional space, where
linear classification is more effective.

This work was also meant to explore the utility of deconvo-
lution for classification purposes and to provide a comparison
between non linear classification performance with and without
deconvolution preprocessing. At this aim, a predictive decon-
volution is applied to ultrasound data before FE, producing an
average increase in classification performance of about 3% in
terms of area under the ROC curve.

The proposed classification procedure was designed and
tested on a 37 images ground truth and provides a CAD system
performing a highly accurate detection inside the prostate zone.
The results obtained in this study are encouraging about using
deconvolution in CAD schemes, but further investigations on
larger datasets are necessary to assess the diagnostic signifi-
cance of this model.

APPENDIX
FEATURE SET

A multifeature approach is used in this work based on at-
tributes of different nature, which will be briefly described in
the following paragraphs. In general, every single group of fea-
tures produces several attributes, but a correlation analysis per-
formed on each group provides a selection, shown in Table I
in the column (#), indicating the selected number of attributes
from a certain group. Once a output feature image is obtained, a
statistical parameter, indicated in the feature name as shown in
Table II, is computed on feature values in each ROL.

Wavelet Transform: This feature groups the wavelet packet
coefficients of the RF signal, decomposed in four bands. Ac-
cording to the correlation analysis only first and third bands co-
efficients are considered meaningful.
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Polynomial Fit of Wavelet Packet Transform: The computa-
tion of this feature consists on the extraction of four bands de-
composition WT coefficients of the RF signal. The second step
is a fitting of the computed WT coefficients for each point of RF
signal with a third order polynomial [27]. The result is a pro-
jection of the WT coefficients in a lower dimensionality space.
Only the second order coefficient is considered meaningful by
correlation analysis.

Wavelet Decomposition: This feature consists on the decom-
position of RF signal in its coherent and diffuse parts [20]. The
RF signal is modeled as a sum of a diffuse component, due to the
interaction of the pulse with resolvable scatterers, and a diffuse
component due to the randomly located unresolvable scatterers.
When a coherent component is present in time the scale-aver-
aged wavelet power (SAP) is characterized by larger peaks, used
to detect the time location of coherent scatterers through thresh-
olding. The coherent component is then reconstructed according
to the model, through superposition of Gaussian modulated si-
nusoids. The diffuse component is derived from difference of
the RF signal and the coherent component. An inverse wavelet
packet transform is applied to both coherent and diffuse signals
and the coefficients in the eighth and ninth node of the packet
wavelet tree are used as attributes. The generated feature set is
then composed on four features, but just the mean of the third
parameter, WDES Diff. Proj. n.8, is meaningful for classification
purposes according to correlation analysis. The name WDES
indicates the used decomposition algorithm: wavelet-based de-
speckling [39].

Central Frequency: This feature is an estimate of the mean
central frequency of the RF signal. According to the algorithm
based on amplitude spectrum magnitude (ASM), the integrated
backscatter coefficient (IBS) is first evaluated as an average of
the PSD of the RF signal, computed by means of FFT. Next the
mean central frequency is estimated as the momentum of order
1 of RF signal PSD, i.e., it is computed as

2pw [ *PSD(f) _ > pw [+ PSD(f)
YewPSD(f) IBS

Attenuation: This group of features is based on the main idea
that slope and intercept of the linear fitting of the RF signal
central frequency are measures of signal attenuation and thus
of backscatter [8]. The first step to compute this feature con-
sists on the RF signal PSD evaluation, which can be performed
through several algorithms: zero crossing applied on a sliding
window, FFT, fitting with an auto-regressive (AR) model of a
certain order. In the last method the meaningful frequencies cor-
responding to non trivial maximums and minimums of the AR
spectrum can be computed analytically since they only depend
on the AR coefficients. A last way to compute this attenuation
features is based on modified PSD whose linear trending is re-
moved and a smoothing procedure is applied to minimize the
variance of spectral slope estimation [40]. After PSD estima-
tion the central frequency over the signal and its linear fitting
are computed. The whole feature set contains 18 attributes but
the correlation analysis select 13 of them, privileging computa-
tion based on AR model. In particular, in the ranked feature sets
in Table II only the intercept of central frequency fitting in the
case of second-order AR model estimated through Burg method
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(Intercept_AR(2) burg) and the intercept of the second frequency
extracted in the third-order AR model computed through a LMS
procedure (Intercept2_AR(3) Imsd) are selected.

B-Mode: This single attribute represents the B-mode value
of the analyzed RF signal, computed through its Hilbert Trans-
form.

Nakagami: This group of features comes from a statistical
model of the RF signal based on the generalized Nakagami dis-
tribution. Shape and scale parameters of Nakagami distributions
estimated on the RF signal are shown to be correlated to the
density and intensity of scatterers and can be computed through
estimation of some RF signal statistical moments [25]. The at-
tributes used in this work are the logarithm of the shape and scale
parameters computed on the envelope of the RF signal (Nak-
agami logm and Nakagami logOmega). The same parameters
can be extracted from the coherent and diffuse component of
the RF signal. Correlation analysis selects shape and scale pa-
rameters when they are extracted from the RF signal, while only
the scale parameter (Naka w Diff. Proj. n. node_number, Naka w
Coher. Proj. n. node_number) is selected when these attributes
are extracted from the RF signal diffuse and coherent compo-
nent, thus this feature set contains four different attributes.

Statistic: Both the mean and the variance of the pure RF
signal in each ROI are considered by the correlation analysis
as important attributes for diagnostic purposes. Thus, these fea-
ture set contains two different attributes.

Haralick: This textural feature contains statistical attributes
generated from co-occurrence matrix of the ROI in the direc-
tion of 45° [29]. Several different statistical parameters can be
computed from the co-occurrence matrix in each direction, but
the correlation analysis selects as meaningful features only four
of them: sum of squares (Haralick Sum of Squares), correlation,
entropy and average of the histogram of sum of grey levels.

Unser: This feature contains statistical attributes generated
from histogram of sum and difference of grey levels in the ROI
[30]. Nine statistical parameters can be computed from sum and
difference histogram: mean, variance, contrast, homogeneity,
cluster shade, cluster prominence, energy, correlation, and en-
tropy. These measures can be replicated for all the four an-
gular directions (0°, 45°, 90°, and 135°), giving a total of 36
attributes. Correlation analysis selects the following attributes:
mean for the horizontal direction, correlation for the direction of
45°, mean and contrast for the vertical direction and correlation,
cluster prominence, entropy and homogeneity for the direction
of 135°, providing a nine attributes feature set.

Fractal: This group of parameters is based on computation
of progressive binarized versions of B-mode images [31], [41]
obtained through ten different binary thresholding operations.
Lattice of different grid size highlights the number of squares
containing active pixels, expressed through the lattice size and
the fractal dimension. Finally the fractal features are computed
through linear regression of the number of active squares re-
spect to the lattice size. Both slope (Alpha) and intercept (Beta)
are used as features, providing 20 different fractal attributes,
named Fractal(1) Alpha/Beta num_attribute. A different kind of
fractal feature is based on a sequence of imaginary extensions
of original image toward upper and lower grey levels, consid-
ered as surfaces of a volume with a certain radius surrounding

the original image [42], [41]. The surface area contains infor-
mation about the difference of two subsequent extended im-
ages and it is expressed through the fractal dimension and the
volume radius. Choosing ten different radius values and per-
forming a piece-wise linear regression of the surface area, the
derived slopes (Alpha) and intercepts (Beta) are used as tex-
tural features. This fractal feature provides 20 more different
attributes, named Fractal(2) Alpha/Beta num_attribute. Corre-
lation analysis selected seven attributes from the first group of
fractal features and nine from the second group, providing a set
of 16 features.
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