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New Denoising Scheme for Magnetic Resonance
Spectroscopy Signals

Osama A. Ahmed

Abstract—A new scheme for denoising magnetic resonance
spectroscopy (MRS) signals is presented. This scheme is based on
projecting noisy MRS signals in different domains, consecutively,
and performing noise filtering operations in these domains. The
domains are chosen such that the noise portion, which is insepa-
rable from the desired signal in one domain, is separable in the
other. A set of stable, linear, time-frequency (SLTF) transforms
with different resolutions was selected for these projections as
an example. Scheme evaluation was performed using extensive
MRS signals with various noise levels. Compared with one do-
main denoising, it was observed that the proposed scheme gives
superior results that compensate for the excess computational
requirements. The proposed scheme supersedes also the wavelet
packet denoising schemes.

Index Terms—Magnetic resonance spectroscopy, signal en-
hancement, time-frequency analysis, wavelet packet, wavelet
transforms.

I. INTRODUCTION

MAGNETIC resonance spectroscopy is a potentially
useful and effective diagnostic tool in basic research,

clinical investigation, and disease diagnosis since it provides
both chemical and physiological information about the tissue
under investigation. Many MRS signals, however, are faced
with several difficulties such as their very low signal-to-noise
ratio (SNR) and their overlapping resonances with different
transverse relaxation time values. Signal averaging is
used to increase the SNR, but this often results in a substantial
increase in MRS acquisition time, which may not be tolerable
in many situations, particularly for unstable biological com-
pounds where long replications are not feasible. Conventional
Fourier transform techniques improve the spectrum but they
require long and tedious work by the spectroscopist [1]. Several
noninteractive MRS denoising schemes have been developed
[2]–[10]. MRS denoising is also important as a preprocessing
step before parameter estimation for MRS automatic pro-
cessing. Otherwise parameter estimation is difficult because of
the model nonlinearity and the low SNR [8], [11].

Denoising in many applications is performed using a
threshold function along with a transform such as Fourier,
wavelet, or time-frequency transforms. The threshold function
and the transform are preferred to be simple and easily calcu-
lated or implemented in integrated circuits. The transform is
chosen according to its ability to represent the desired signal in

Manuscript received November 20, 2003; revised February 20, 2004. The
Associate Editor responsible for coordinating the review of this paper and rec-
ommending its publication was M. Unser.

The author is with the Hail Community College, King Fahd University of Pe-
troleum and Minerals, Dhahran, Saudi Arabia (e-mail: osamaa@kfupm.edu.sa).

Digital Object Identifier 10.1109/TMI.2004.828350

a small number of coefficients which depends on the character-
istics of both the signal and the transform. For instance, since
MRS signals have time-dependant spectra (i.e., nonstationary
signals), their Fourier transform spreads along the frequency
axis and, thus, hinders the utilization of this transform to
denoise MRS signals. On the contrary, time-frequency and
time-scale transforms are adapted to nonstationary signals and
many of them, such as Wigner distribution [12], Generalized
Gabor transform [8], Zak transform [13], SLTF transform [9],
and wavelet transforms [4]–[7], represent MRS signals in a
small number of coefficients and hence provide better denoising
capabilities.

Regardless the transform type, the following scheme is gener-
ally used: 1) transform the noisy signal into the new domain; 2)
retain only the coefficients whose magnitudes are above a cer-
tain threshold which is usually related to the known or estimated
noise standard deviation; and 3) perform the synthesis transform
on the retained coefficients to get the noise-reduced signal. This
scheme was named hard thresholding. Other thresholding tech-
niques such as soft thresholding [14], [15], related thresholding
[16]–[18], and global thresholding [19] have also been exam-
ined.

The retained signal, however, still has some noise which
cannot be separated from the desired signal in this domain. The
new scheme being proposed is to reproject the retained signal
into another domain which is chosen such that the desired
signal, in this domain, is still compact and is separable from the
remaining noise (or part of it). Thus, performing an additional
denoising process in the new domain may enhance the signal
further.

A set of SLTF transforms with different time and frequency
resolutions was selected in this paper as SLTF transform shows
good MRS denoising results with minimal MRS signal distor-
tion [9]. The proposed scheme, however, is applicable to other
sets.

SLTF transform is specified by its number of analysis sam-
ples in frequency which controls the time and frequency
resolutions. Each choice of leads to a different transform
with different characteristics (denoted as ). As will be
shown in Section II, the compactness of MRS signal compo-
nents (and hence the thresholding process) varies with . The
noisy MRS signal is project (and hence denoised) into various

transforms with different consecutively.
Denoising using the widely used wavelet packet and

matching pursuit has close relation with the proposed scheme.
Entropy-based wavelet packet [20], [21] and matching pursuit
[22] are better generalization of the famous wavelet and filter
bank. Wavelet packet and matching pursuit iteratively try to
find the “best” representation of a signal with a relatively small
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number of coefficients. The resulting representation can then
be used more effectively for denoising at once. Wavelet packet
denoising techniques have been applied to medical signals [23],
[24]. The proposed scheme is different from these algorithms in
the sense that the iterations are done on the denoised signal and
not on the noisy residuals. Performance comparisons between
the two schemes on MRS signals will be presented in the result
section.

The paper is organized as follows. In Section II, the
domain representation of MRS noise and one type of the MRS
signal, namely free induction decay (FID), is discussed. The
proposed scheme is illustrated in Section III. Some results and
discussions on MRS signals are given in Section IV followed by
concluding remarks in Section V. Details of the trans-
form are given in the Appendix.

II. MRS-FID SIGNALS IN THE DOMAIN

Any MRS-FID signal, , can be modeled as a sum of
exponentially damped complex exponents plus noise [25], i.e.,

(1)

for where is the signal length and , , ,
and are the amplitude, frequency, phase and relaxation time
of the component, respectively, and with being
the sampling period. The noise term, , is well approximated
by a complex white Gaussian noise with zero mean and standard
deviation [26].

Each MRS component, ,
is represented in the domain (see Appendix) by a spike
centered at on the frequency axis and decays exponentially
along the time direction [9]. The spike compactness in the

domain depends on many factors. One of them is the
ratio between the MRS component relaxation time, , and
the number of analysis samples in frequency . To show this
dependency, let

be a one-component noise-free MRS signal of length 1024.
Fig. 1(a) and (b) represents intensity plots of in the
and domains, respectively. The number of coefficients
whose energy is greater than 1% of the total energy is 13 and
62 for and domains, respectively. Clearly,
has more compact representation in the domain than
in the domain. Alternatively, let

be a noise-free one-component MRS signal that differ from
only in the values. In Fig. 2, is plotted in the

and domains. The number of coefficients
whose energy is greater than 1% of the total energy is 182 and
46 for and domains, respectively. is more
compact in the domain than in the domain.

Fig. 1. x (k) in two different SLTF domains.

Fig. 2. x (k) in two different SLTF domains.

The above examples show how the compactness of MRS
components in the domain varies with with respect
to . MRS signals, however, are generally composed of
different components with different values. Thus, for one

transform with a particular , some components are
more compact than others. This situation may be reversed for
different choice of .

On the other hand, the MRS noise is evenly distributed among
coefficients regardless of the choice of as seen in

Fig. 3 where a real life MRS noise, taken from VARIAN MER-
CURY-300, is plotted in the and in the do-
mains. Clearly, for both cases, the noise is fairly distributed
in the entire time-frequency domain. This is theoretically ex-
pected since MRS noise is well approximated by an additive
white Gaussian process and since transform is a linear,
near-orthogonal transform [27].

III. THE DENOISING SCHEME

The coefficients of the noisy MRS signals are of
two types: one is dominated by noise and the other is domi-
nated by the desired signal that has higher amplitude than the
former. Denoising the MRS signal is achieved by filtering out
the noise-dominated coefficients using any thresholding tech-
nique. An example would be the use of hard thresholding tech-
nique where all transform coefficients whose energies are lower
than a certain threshold are set to zero.

The success of this denoising method depends on the dif-
ference between the amplitude of the two types. This depends
on the transform’s ability to represent MRS signals in a small
number of coefficients. For example, if the number of the two
types is equal, approximately 50% of the noise will be removed
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Fig. 3. Real NMR noise in the SLTF domain.

by filtering. The retained coefficients, however, still contain ap-
proximately 50% of the noise in addition to the desired signal.

Projecting the signal again into another domain with
a different will redistribute both the signal and the residual
noise in such a way that some MRS components will be more
compact (i.e., the energy of this MRS component will be con-
tained in fewer coefficients while the neighboring coefficients
will have less energy which will be removed by filtering); the
other MRS components will be less compact (i.e., the neigh-
boring coefficients will have more energy and will not be af-
fected by filtering providing that the threshold value is chosen
to be sufficiently low to pass these coefficients). Thus, further
signal enhancement can be achieved by filtering out the noise-
dominated coefficients in the new domain.

The threshold value is usually chosen to be proportional
to the noise standard deviation , i.e., where is a con-
stant. Choosing the proportionality constant has been treated
in many papers such as [15], [28]–[30]. For example, in [29]

was chosen based on the fact that most of the noise
values will fall within 3–4 times of its standard deviation. In
[15], was chosen as .

In this paper, a fixed threshold value is taken for all transforms
providing that SLTF transforms possess the energy preservation
property. The threshold value is chosen to be sufficiently less
than the optimal value to ensure that in the worst
case where one MRS component looses its compactness during
any transformation, minimal part of this component is filtered
out. Assuming that the recording time is sufficiently large,
can be estimated in advance by calculating the power of the last
data points which are entirely noise.

The steps of the proposed scheme are as follows.

1) Estimate the noise variance using the last data points.
2) Take where .
3) Select a set containing suitable values of :

.
4) For , :

• compute transform of the noisy MRS
signal;

• retain only the coefficients whose magnitudes are
greater than ;

• compute the inverse transform on the re-
tained coefficients to obtain a noise-reduced signal.

To test the denoising performance of the proposed scheme,
the visual spectrum in addition to the SNR will be used in the

TABLE I
PARAMETERS OF SIMULATED PHOSPHORUS FID

Fig. 4. Spectrum of the phosphorus FID without noise.

next section. Since MRS signals are time varying, the SNR is
defined as the signal energy over the energy of the noise in the
observation period in decibels. MRS spectroscopist, however,
may be interested in measuring the noise in the areas under each
peak. Therefore, the following measure will be also used to test
the denoising performance: calculate the SNR only in a 100 Hz
window around each peak of the spectrum (denoted as ).

IV. RESULTS

Several simulations were performed on synthesized repre-
sentative MRS signals with different SNR values. The results
showed superior denoising performance for the proposed
scheme that compensates the extra required calculations. As
an example, the simulated phosphorus FID signal (distorted to
explore a wider range of the parameter values) was chosen to
closely match the real data [12], [13]. This signal is 1024
points with a sampling period s. The signal
is composed of six peaks. The frequencies, damping factors,
amplitudes, and phases are given in Table I and the spectrum
is shown in Fig. 4.

A zero-mean complex Gaussian noise, , is added to
the signal where . Hence, The SNR is equal to

dB. The corresponding spectrum,
Fig. 5, shows that the noise hides the , , , and compo-
nents completely.

To denoise these signal using the proposed scheme, the values
and are selected. The spectrum

of the resulting denoised signal is shown in Fig. 6. The
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Fig. 5. Spectrum of the noisy phosphorus FID.

Fig. 6. Enhanced spectrum using the new scheme.

six peaks are identifiable in the spectrum of . The SNR after
processing is

dB

i.e., the SNR gain is 10.35 dB. For comparison, denoising the
same signal using hard thresholding in the , ,

domains (each one alone as in [9]) gave
, 8.78, 10.53 dB, respectively. The spectrum of the en-

hanced signal using (the best among the three) is shown
in Fig. 7.

Denoising using wavelet packet analysis is a related widely
used scheme which iteratively tries to find the “best” represen-
tation of a signal through its adequate display with a relatively
small number of coefficients before denoising. To compare
the proposed scheme with wavelet packet denoising scheme, a
wavelet packet library composed of symlet wavelets of order 5
was used [31]. The wavelet packet decomposition is performed
up to the 5th level and the optimal decomposition is determined

Fig. 7. Enhanced spectrum using SLTF .

Fig. 8. Enhanced spectrum using wavelet-packet.

according to the entropy-based threshold . The
denoised signal has dB and its spectrum is shown
in Fig. 8.

Increasing the decomposition levels to 8 did not enhance the
spectrum or the SNR value. Using another wavelet packet li-
brary of Daubechies wavelets [31] of order 3 with the same
condition, gives dB. For measure: be-
fore processing was 13.8 dB. After processing, increased
to 14.7 dB, 15.1 dB, 20.7 dB for Daubechies wavelet packet,
symlet wavelet packet, and the proposed scheme, respectively.

Secondly, various MRS noises with different noise power
were added to the same 1024-point phosphorus FID signal. The
noisy signals were cleaned up using the following.

1) Single transform.
2) Wavelet packet with a library of:

a) Coiflet Wavelets of order 1 ;
b) Daubechies wavelets of order 3 ;
c) symlet wavelet of order 5 .

3) The proposed scheme with and
.
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TABLE II
SNR ENHANCEMENT

TABLE III
SNR ENHANCEMENT

TABLE IV
THE NUMBER OF CONSECUTIVE PROJECTIONS (r) EFFECT

TABLE V
SNR AND SNR ENHANCEMENTS FOR DIFFERENT (N)

The average of the results of 10 runs for each value is shown
in Table II for SNR and Table III for . The proposed scheme
has remarkable better results for all SNR values than the others.

To study the effect of the value (the number of projections)
on the denoising performance, the phosphorus FID signal with

dB was denoised using the proposed scheme
with and different values of , 2, 3, 4, 5. The av-
erage of the results of 10 runs of SNR and after processing
are shown in Table IV along with the gain of introducing another
projection (i.e., ). Apparently, the
gain decreases with increasing . Choosing may not com-
pensate for the required extra calculations.

Also, to study the effect of the choice of the elements of
on the denoising performance, the above signal was denoised
using four consecutive transforms with different as
shown in Table V. First and second rows show less significance
for the order of the values of . The elements of , however,
should be chosen carefully. It was found from this experiment,
and others, that choosing to be as close as possible to (or

) always gives the best results. For example,
for , choosing around 32 (i.e., for ,

gives the best result).
In another experiment, a signal is derived from an in vivo

spectrum measured in the human brain and consists of 11 peaks
[32]. The brain tissue peaks contain phosphomonoesters,
inorganic phosphate, phosphodiesters, phosphocreatine, adeno-

Fig. 9. In vivo P spectrum measured in the human brain.

Fig. 10. Denoised human brain in vivo P spectrum with the proposed
scheme.

sine triphosphate: -ATP, -ATP, and -ATP. The time sam-
pling interval is 0.333 ms. After adding MRS noise, the SNR
is approximately 12.1 dB; Fig. 9. This signal was cleaned up
using the proposed scheme with and .
After processing, Fig. 10, the SNR increased to 23 dB. For com-
parison, denoising the same signal using the same thresholding
technique but in one domain only gave , 14.8, 15.1,
15.1 dB for , , , , respectively.
Denoising the same signal using wavelet packet gave

, 17.3, 14.9 dB for Coiflet Wavelet of order 1, Daubechies
wavelets of order 2, symlet wavelet of order 5 library, respec-
tively. The denoised spectrum of Daubechies wavelet packet is
shown in Fig. 11.

Finally, the same human brain in vivo signal, with high
noise, was denoised using the proposed scheme with
and . The SNR was approximately 4.9 dB be-
fore processing, Fig. 12, which increased to 17.7 dB after pro-
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Fig. 11. Denoised human brain in vivo P spectrum with wavelet packet.

Fig. 12. Low SNR human brain in vivo P spectrum.

cessing, Fig. 13. Denoising the same signal using Daubechies
wavelet packet gave dB.

V. CONCLUSION

A new scheme has been introduced for denoising MRS sig-
nals. This scheme is based on projecting the noisy MRS signal
on several SLTF domains, consecutively, and performing hard
thresholding on all of them according to the noise power. A set
of SLTF transforms with different resolutions was selected. The
proposed scheme surpasses the usual one domain denoising at
the expense of increasing the computation time. Thus, the pro-
posed scheme may be useful in situations where SNR is low. A
comparison with the wavelet packet was performed based on vi-
sual spectrum, SNR, and a new measure. The proposed scheme
produced superior results.

Fig. 13. Denoised low SNR human brain P spectrum.

Fig. 14. Tiling of the time-frequency plane for different choices of N .

APPENDIX

TRANSFORM

The is a stable, linear, critically sampled, time-fre-
quency transform [27]. The discrete SLTF is defined for a for a
finite extent discrete signal as

(2)

for and where are the
transform coefficients, stands for for even and

for odd , is the discrete Gaussian window function

where is the biorthogonal function to [27]. and
are the number of analysis samples in time and frequency,

respectively. This transform is critically sampled which means
that the number of coefficients . controls the fre-
quency and time resolution in the time-frequency domain as
shown in Fig. 14 where every cell represents a single time-fre-
quency atom. Short-time atoms (the left tiling) are suitable for
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Fig. 15. Modulated exponent in SLTF domain.

signals that have fast varying characteristics but have low fre-
quency resolution. On the other hand, long-time atoms (the right
tiling) are good for signals that have slowly varying characteris-
tics. Frequency spreading may occur when long-time atoms are
used for fast varying signals and vice versa. Thus, each choice
of produces one SLTF transform that is more suit-
able for certain signal type.

Compared with other time-frequency transforms, SLTF has
several advantages, such as, it is a linear transform that makes
the synthesis transform quite easy to compute. This is in contrast
to bilinear (quadratic) distributions (such as the Wigner distri-
bution [12]) where difficulties are encountered in retrieving the
signal from the time-frequency domain. In addition, there is no
cross-term interference that is produced in the bilinear distribu-
tions.

Moreover, SLTF is a critically sampled transform, which
means that the transform coefficients are independent. Conse-
quently, performing the synthesis transform after filtering is
only a matter of matrix multiplication. This is in contrast to the
over-sampled transforms where iterative methods are needed
for the synthesis transform [33].

Compared with other critically sampled time-frequency
transforms, such as the Generalized Gabor Transform used in
[8] to enhance MRS signals, SLTF has two major advantages:
excellent localization of the biorthogonal function and good
numerical stability [9].

In addition, a fast algorithm to calculate the SLTF syn-
thesis and analysis transforms, for where is
integer, is presented in [34]. Using the fast algorithm, it re-
quires only multiplications and

additions for both the analysis and
the synthesis transform computations and
multiplications and additions for the
biorthogonal function calculations.

For MRS signals, the SLTF coefficients of the MRS compo-
nent are

(3)

The magnitude of are plotted in Fig. 15 for , , ,
, being 166.2 s, 32, 22 ms, 1880 Hz, 55 , respectively.

From Fig. 15, is represented in the SLTF domain by a
spike centered at in the frequency direction and decays along
the time direction.
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