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Abstract

In this paper the influence of intensity clustering and shading correction on mutual information based image registration is stud-
ied. Instead of the generally used equidistant re-binning, we use k-means clustering in order to achieve a more natural binning of the
intensity distribution. Secondly, image inhomogeneities occurring notably in MR images can have adverse effects on the registration.
We use a shading correction method in order to reduce these effects. The method is validated on clinical MR, CT and PET images,
as well as synthetic MR images. It is shown that by employing clustering with inhomogeneity correction the number of misregistra-
tions is reduced without loss of accuracy thus increasing robustness as compared to the standard non-inhomogeneity corrected and
equidistant binning based registration.
� 2005 Published by Elsevier B.V.
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1. Introduction

In clinical practice, detailed knowledge of anatomical
structures aids the physician with patient diagnosis or
treatment. Three-dimensional (3D) imagers, for example
MRI or CT scanners, provide the physician with de-
tailed knowledge in image form of the patient. Since dif-
ferent scanners make information available about
different tissue properties, it is possible that for proper
assessment of all information the physician needs the
use of several scanner types. The combination of the
images from the different scanners provides the physi-
cian with all the information requested. For many repre-
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sentations of the fused data, spatial alignment, usually
denoted by image registration, of the images has to be
carried out.

In order to find the correct spatial alignment of
images, a measure of the quality of the registration is
necessary. In this paper we use normalized mutual infor-
mation (NMI) (Collignon, 1998; Collignon et al., 1995;
Studholme et al., 1999; Viola, 1995; Viola and Wells
III, 1995; Wells et al., 1995) as a measure for rigid 3D
registration of clinical and artificial images. For a num-
ber of modalities NMI has proven to be a robust and
accurate similarity measure in both mono- and multi-
modality image registration. With the given quality mea-
sure we use rigid transformations and Powell�s method
to find the optimal spatial alignment.

The spatial transformation yielding the highest NMI
value is assumed to be the optimal registration of two
images. An estimate of the intensity distribution of the
images is necessary to compute the NMI value. It is
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customary to use the histogram of intensities for this
purpose. To reduce noise effects neighboring intensities
are usually grouped together in a so-called bin. The
number of bins is chosen a priori and each intensity is
mapped in a rounded linear fashion to the bins of the
histogram. The fact that histogram binning does not
take the intensity distribution of the image into account
implies that natural image segments may be distributed
over different bins. This splitting of segments is likely to
have adverse effects on the registration procedure in
terms of convergence and probability of misregistration.
In this paper the binning method k-means clustering
(MacQueen, 1967) is compared to the standard equidis-
tant binning. k-Means clustering uses a variable bin size
for each bin in order to achieve a more natural
clustering.

An additional complication for registration can be
intensity inhomogeneities that occur in MR images.
The images may exhibit slow intensity variations within
an anatomical structure. These variations can have ad-
verse effects on the registration process owing to in-
creased dispersion of this structure in the intensity
distribution. Many solutions to counter the effects of
inhomogeneities have been proposed. We use the meth-
od as proposed by Likar et al. (2000, 2001), which is
based on entropy minimization. Likar et al. describe
the image degradation by a linear model consisting of
a multiplicative and an additive component modeled
by a linear image formation model. Optimization of
these components is done by reducing the image entropy
while the global intensity statistics are preserved. Likar�s
method is well suited for NMI registration: both are en-
tropy based. Furthermore, it is likely that k-means clus-
tering will be enhanced by the inhomogeneity correction
because of the reduction of histogram dispersion (Knops
et al., 2003a,b).

In the experiments discussed in this paper it was
found that the optimal NMI value in general corre-
sponds to an accurate registration. The process of locat-
ing this optimum is, however, not fully robust, resulting
in misregistrations. In order to compensate for misregis-
trations and improve robustness several methods have
been proposed (Pluim, 2001). In this paper we combine
a new binning approach with an inhomogeneity correc-
tion in order to reduce the number of misregistrations
without loss of accuracy or a large increase in computa-
tion time.

In Section 2 we will discuss the registration process
with NMI and describe the binning method and the
inhomogeneity correction. In Section 3 the image data
sets that will be used in this study are introduced. In Sec-
tion 4 we will present the experimental results of regis-
tration with our binning approach combined with
inhomogeneity correction with respect to robustness,
accuracy and speed of convergence. Our conclusions
are summarized and discussed in Section 5.
2. Methods

2.1. Normalized mutual information

For a discrete random variable A, where pA(a) is the
probability that A has value a, the Shannon entropy H is
defined as

HðAÞ ¼ �
X

a

pAðaÞ log pAðaÞ.

If the entropy of an image intensity distribution is
computed, the entropy measures how well we are able
to predict the intensity at an arbitrary point in the im-
age. If there is no uncertainty about the intensity, the en-
tropy is zero, and the image is completely homogeneous.
On the other hand, if the image consists of a large num-
ber of intensities which all have the same probability, the
entropy will be high. Note that the above definition of
entropy, if applied to images, does not take any spatial
information into account.

For two discrete random variables A and B the Shan-
non entropy of their joint distribution is defined as

HðA;BÞ ¼ �
X

a;b

pABða; bÞ log pABða; bÞ.

A joint histogram, which represents the distribution
of the intensity couples of corresponding voxels in
images A and B, can be used to compute the Shannon
entropy.

The mutual information, MI, of two images expresses
how much the uncertainty on one of the image decreases
when the other one is known. It is assumed to be max-
imum when the images are registered. Studholme et al.
(1999) have shown that the registration quality might
decrease despite an increasing MI value. For example,
if the images are misaligned such that only one voxel
overlaps the MI is at a maximum but it is clear the qual-
ity of the registration is not optimal. To counter the ef-
fect of increasing MI with decreasing registration quality
we use normalized mutual information, NMI, in this
study. NMI is a well-established registration quality
measure which can be defined in terms of image entro-
pies (Collignon et al., 1995; Studholme et al., 1999):

NMIðA;BÞ ¼ HðAÞ þ HðBÞ
HðA;BÞ .
2.2. Intensity inhomogeneity correction in MR images

In MR images inhomogeneities can occur, which are
partially due to the overall patient anatomy and posi-
tion, and partially to technical aspects such as poor
radio frequency (RF) coil uniformity, static field inho-
mogeneity, RF penetration and gradient-driven eddy
currents. The resulting inhomogeneities occur as slow
intensity variations of the same tissue class throughout
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the image. Moreover, there are spurious intensity varia-
tions which may reach up to 30% of the image amplitude
(Likar et al., 2000, 2001).

Likar et al. (2000, 2001) assume that an image with
inhomogeneities, P, has higher entropy than the same
image, A, without inhomogeneities:

HðPÞ ¼ Hðf ðAÞÞ > HðAÞ;
where f models intensity inhomogeneity. Under the con-
straint of constant mean intensity a correction f�1 that
minimizes the entropy of the corrected image f�1(P) is
pursued. The function f is modeled by a combination
of a multiplicative and an additive component

P ¼ f ðAÞ ¼ fMulAþ fAdd.

Note that in the above equations we have left out spatial
coordinates for legibility, i.e. the equation is to be carried
out on a voxel-wise basis. Both fMul and fAdd are five-
parameter quadratic functions which have been shown
to model the observed intensity variations well. The
optimal parameters are found using Powell�s method
(Press et al., 1992).
2.3. Non-equidistant binning by clustering

In order to compute the NMI measure, a joint histo-
gram of image intensities has to be estimated. In con-
trast to equidistant binning, k-means clustering takes
the entries of the histogram itself into account in order
to get a better estimation of the intensity distribution.
The length of each interval, the bin width, is adjusted
according to minimal variance of intensities in that
interval of the image histogram. During registration
the images remain unaltered thus the intensity distribu-
tion has to be estimated only once at the beginning of
the registration process.

The main drawback of equidistant binning is the pos-
sibility that the intensities of a single structure end up in
different bins. For example, an anatomical structure
whose representation in the image histogram is a clear
Fig. 1. (a) shows a slice of a 3D MRI dataset. Effects of equidistant binning w
(a) have been split over several bins. Image (c) is the result of the k-means clu
significantly altered. Contrast has been adjusted in all images to emphasize
and distinct peak could be divided over two bins. If
we vary the bin size in order to minimize the sum of vari-
ances of intensities for all bins, a more natural clustering
is achieved and as a result the joint histogram is less
dispersed.

A k-means clustering problem is generally solved
using an iterative procedure (Jain and Dubes, 1988).
The clustering thus obtained by this procedure is depen-
dent on the initialization, and it is possible a suboptimal
solution is found. We use dynamic programming (Bell-
man, 1962) to find the optimal clustering for an image.
Computation time is kept reasonable, �1 min on a con-
ventional PC, by intelligent subdivision of the clustering
problem (Knops et al., 2004).

In Fig. 1 the results of k-means clustering and equi-
distant binning on an MR image are shown. The num-
ber of bins was eight and contrast has been adjusted in
all three images to emphasize the differences. Dissimilar-
ities between the equidistantly binned image and the ori-
ginal MR image are noticeable, for example the segment
denoted by the white arrow, which clearly is larger in the
original image. There is a clear correspondence between
segments in the k-means clustered image and the origi-
nal image. For each modality used in this study the
background is composed of only a few bins with a large
bin width, regardless of the clustering structure in the
remainder of the intensity distribution differs per
modality.

k-Means clustering is sensitive to peaks in the histo-
gram; the bin width near peaks is decreased compared
to more dispersed areas of the histogram in order to
minimize the bin variance. Inhomogeneities disperse
the histogram and broaden peaks, which results in less
accurate bin widths for anatomical structures that are
represented as peaks in the histogram. By using an
inhomogeneity correction method based on lowering
image entropy, such as Likar�s method, the histogram
dispersion is reduced. The reduction in dispersion is
likely to enhance the k-means clustering of the image
histogram and capture the anatomical structures more
ith eight bins are visible in image (b). Segments that are clearly visible in
stering binning method. Segments that are clearly visible in (a) are not

the differences.



Z.F. Knops et al. / Medical Image Analysis 10 (2006) 432–439 435
accurately. This in turn may enhance the registration
process with respect to the number of misregistrations
and computational speed.
3. Image datasets

Three sets of multimodality volumetric data consisting
of 15 CT-MRI and seven PET-MRI and two artificial
MRI brain volumes have been used in this study. The
patient studies were taken from the RREP data (http://
www.vuse.vanderbilt.edu/�image/registration; West
et al., 1997), and the artificial brain volumes were cre-
ated using the Brainweb simulator (http://www.bic.mni.
mcgill.ca/brainweb).

All patient data come with a gold standard for regis-
tration based on screw markers with a 0.4 mm accuracy
for the CT-MR studies and a 1.7 mm accuracy for the
PET-MR studies (West et al., 1997). Furthermore, the
RREP dataset is an internationally accepted standard
dataset for comparing rigid registration methods. The
data characteristics are shown in Table 1.
4. Results and experiments

Registration results using equidistant binning and
k-means clustering were compared with and without
inhomogeneity correction. NMI was optimized as a func-
tion of rigid 3D geometric transformations using Powell�s
method (Press et al., 1992). The number of optimization
steps taken to reach registration can be used as a measure
of computational speed. Using the known gold standard
the quality of the solution found was assessed. The regis-
trations were performed for a variety of numbers of bins
and starting positions. Multiple starting positions were
used to investigate registration robustness.

To compare our solution with the gold standard, a
sphere was fitted approximately around the head (i.e.
centered on the midpoint of the image) with 10,000
points on the boundary. For each point the Euclidean
Table 1
The RREP data characteristics

CT The CT slices are 512 pixels square with a slice thickness
respectively, 40 and 49. The pixel size is 0.65 mm2, respe

MRI The MR T2 weighted slices have a resolution of 256 pixe
varies between 20 and 26 or was 52. The pixel size is 0.8

PET For PET scanning each patient was injected with 10 mC
injection and continued for 25 min. The slice thickness is
128 pixels square; the number of slices was 15.

Artificial MRI The artificial brain volumes consist of 1.0 mm thick slice
by 217 pixels and the number of slices was 181. Two vol
and noise and a T2 weighted volume with 40% intensity
distance between the gold standard position and the po-
sition after transformation with our solution was com-
puted. The median value of these distances was taken
as the error measure.

A result was considered a misregistration if the med-
ian error exceeded the largest voxel dimension of the
two registered images. For PET-MRI a registration
was considered a misregistration if the median error
was above 8 mm. A CT-MRI registration was consid-
ered a misregistration if the median error was above 4
or 3 mm depending on patient data. Registrations done
with the artificial MRI volume were considered a mis-
registration if the median error was above 1 mm.

4.1. PET-MRI

For all experiments the gold standard transformation
was used as initial transformation. An offset transforma-
tion was added by using a rotation offset of �5� or +5�
or �10 or +10 mm translation for each coordinate axis.
All offset combinations were used resulting in 64 differ-
ent starting positions for each patient registration total-
ing 448 experiments for each bin size. Initially we
intended to use 4, 8, 16, 32, 64, 128 and 256 bins for
our experiments. However, since PET has a relatively
small intensity range, using 256 bins results in a large
number of misregistrations due to increased noise ef-
fects. Hence, no experiments were done using 256 bins.

The number of optimization steps needed to reach
registration, the average of the median errors and the
number of misregistrations for PET-MRI with and
without inhomogeneity correction for all starting posi-
tions are compared for equidistant binning and k-means
clustering in Fig. 2.

Note that the average number of optimization steps,
and the average median error are for correct registra-
tions only. Also note that a specific offset transforma-
tion that yields a misregistration for one method could
yield a good registration for another method. Although
including all registrations in the computation of these
measures gives an unbiased picture of the overall perfor-
mance of the methods, the inclusion of successful and
of 4.0 or 3.0 mm. The number of slices varies between 27 and 34,
ctively, varies between 0.40 and 0.45 mm.

ls square, the slice thickness is 4.0 or 3.0 mm. The number of slices
2, 0.86 or 0.78 mm2, respectively, 1.25 mm2

i of 18F-fluorodeoxyglucose. Scanning was started 40–50 min after
8.0 mm and the pixels are 2.59 mm2. All slices have a resolution of

s with a pixel size of 1.0 mm2. All the slices have a resolution of 181
umes were constructed: a T1 weighted volume without inhomogeneity
non-uniformity and 30% noise.
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Fig. 2. PET-MRI registration results. Comparison of the number of optimization steps, median error and the number of misregistrations of binning
without inhomogeneity correction (B), k-means clustering without inhomogeneity correction (C), binning with inhomogeneity correction (IB) and
k-means clustering with inhomogeneity correction (IC). The errors are given in mm and both the errors and the average number of optimizations
steps are computed for the non-misregistrations only.
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unsuccessful registrations makes it hard to draw conclu-
sions on accuracy related to robustness of the methods;
including misregistrations would make the measures
highly variant because of the less-than-robust perfor-
mance of some methods (Fig. 2, the number of misregi-
strations). The present presentation allows conclusions
on the robustness of the methods used, and whether
the change in robustness has any impact on the accuracy
and speed of computation of successful registrations.

For all methods and bin sizes the number of bins does
not greatly influence the average median error, but for
the average number of optimization steps there is a clear
difference. There is a local minimum when using 16 bins
and from 32 to 128 bins there is an increase in the aver-
age number of optimization steps. Using 16 bins and
clustering without inhomogeneity correction yields the
best results with respect to the average number of opti-
mization steps.

For all bin sizes except 128 the use of clustering yields
a reduction in the number of misregistrations regardless
of the inhomogeneity correction and with comparable
accuracy or increase in computational time. The use of
inhomogeneity correction decreases the number of mis-
registrations regardless of the binning method for all bin
sizes. The combined use of inhomogeneity correction
with clustering yields the lowest number of misregistra-
tions for any bin size. Using 32 or 64 bins with inhomo-
geneity correction and k-means clustering yields the
smallest number of misregistrations.

4.2. CT-MRI

For all experiments the gold standard transformation
was used as initial transformation. An offset transforma-
tion was added by using a rotation offset of �5� or +5�
or �10 or +10 mm translation for each coordinate axis.
All offset combinations were used resulting in 64 differ-
ent starting positions for each patient registration total-
ing 960 experiments for each bin size.

The number of optimization steps needed to reach
registration, the average of the median errors and the
number of misregistrations for CT-MRI with and with-
out inhomogeneity correction for all starting positions
are compared for equidistant binning and k-means clus-
tering in Fig. 3.

There is no discernable pattern in the average number
of optimization steps with respect to the bin size. How-
ever, note that the number of misregistrations influences
the average number of optimization steps. The use of
clustering regardless of the inhomogeneity correction
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Fig. 3. CT-MRI registration results. Comparison of the number of optimization steps, median error and the number of misregistrations of using
binning without inhomogeneity correction (B), using k-means clustering without inhomogeneity correction (C), using binning with inhomogeneity
correction (IB) and k-means clustering with inhomogeneity correction (IC). The errors are given in mm and both the errors and the average number
of optimizations steps are computed for the non-misregistrations only.
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yields a decrease in the number of optimization steps
when using 8, 16, 32 or 64 bins.

The errors were comparable if a correct CT-MRI reg-
istration was found. The use of clustering instead of
equidistant binning without inhomogeneity correction
yields a decrease in the number of misregistrations for
all bin sizes. When using inhomogeneity correction clus-
tering decreases the number of misregistrations for all
bin sizes except 16. When using both inhomogeneity cor-
rection and clustering the number of misregistrations is
minimum for all bin sizes except 16. The number of mis-
registrations is lowest when combining clustering and
inhomogeneity correction at 32 bins.

Moreover there is a clear relation between the number
of bins and the number of misregistrations which are min-
imal at 32 or 64 bins for all methods. For all methods the
number of misregistrations decreases when increasing the
number of bins from 4 to 32 bins and increases when
increasing the number of bins for 64 to 256 bins.

4.3. Artificial T1 MRI–T2 MRI

To further investigate the effects of inhomogeneity
correction, bin size and binning method with respect
to misregistrations and optimization steps, experiments
were performed on a T1 and a T2 artificial MRI volume.
By using artificial images (Brainweb, (http://www.bic.
mni.mcgill.ca/brainweb/)) we are able to control the
amount of image noise and inhomogeneity. When using
low amounts, all methods perform well in terms of accu-
racy and robustness. We therefore use relatively high
levels to show the differences between the methods.

For all experiments the gold standard transformation
was used as initial transformation. An offset transforma-
tion was added by using a rotation offset of �10�, 0� or
+10� or �20, 0 or +20 mm translation for each coordi-
nate axis. All offset combinations were used resulting in
729 different starting positions. An artificial T1 image
was registered to an artificial T2 image with 40% inten-
sity non-uniformity and also to the same image after
inhomogeneity correction. In both cases the T2 image
had 30% noise.

The number of optimization steps needed to reach
registration with and without inhomogeneity correction
for all starting positions is compared for equidistant bin-
ning and k-means clustering in Fig. 4. If a correct regis-
tration was found the error was below 0.1 mm for all
cases.
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Clustering and inhomogeneity correction have no ef-
fect on the registration with respect to the registration
quality since, if a solution was found the error was be-
low 0.1 mm. However, this does not hold for the number
of misregistrations and optimization steps.

The effects of clustering and inhomogeneity correction
on the number of optimization steps depend on the num-
ber of bins used. When using 16, 128 or 256 bins there are
no clear differences between the four methods. When
using 32 or 64 bins clustering yields the best results.

The use of clustering instead of binning yields a
reduction of the number of misregistrations with or
without inhomogeneity correction for all bin sizes except
4 and 8 bins. Using 32 bins with clustering and inhomo-
geneity corrections yields the best results with respect to
the number of misregistrations.
5. Conclusions and discussion

In summary, the combined use of k-means clustering
and inhomogeneity correction improves the robustness
of PET-MRI and CT-MRI brain image NMI-based reg-
istration for all histogram bin sizes tested.

For most bin sizes, the use of either enhancement,
k-means clustering or inhomogeneity correction, also
results in robustness improvement. The effect is most
pronounced, i.e. the least number of misregistrations
occur, when using both methods using 32 or 64 bins.

The same results hold for artificial MRI–MRI image
registration: the combined use of inhomogeneity correc-
tion and k-means clustering when using 32 or 64 bins
yields a reduction in the number of misregistrations
without loss of accuracy.

Mutual information based registration assumes that
similar tissues correspond to similar within-image inten-
sities and these intensities correspond to regions of sim-
ilar within-image intensities (but probably with another
between-images intensity value) in another image
modality. Inhomogeneity disrupts this relation; due to
a gradient similar tissue can correspond to a wide range
of different intensities. We have shown that by correct-
ing for inhomogeneities the registration process can be
enhanced. Furthermore, the generally used equidistant
binning method can also undermine the assumption by
dividing similar tissue over different intensities.

Using the same number of bins regardless of the
modalities seems illogical: a good intensity estimation
of a CT image should typically contain fewer bins than
a good intensity estimation of an MR image. We suspect
a low dynamic range to be a factor and so is specific
anatomy. Based on the current findings we were unable
to establish an a priori rule for the number of bins with
respect to anatomy and modality. However, experiments
indicate choosing a specific number of bins for each pa-
tient does not improve the registration any further.

The method presented in this paper is an example of
combining segmentation with registration, an approach
previously investigated by several other authors (Stud-
holme, 1997; Seghers et al., 2004). Experiments have
shown improvements, however a theoretical approach
of the combination of both registration and segmenta-
tion as shown in (Studholme, 1997) could help further
research along this line.
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