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Abstract

A guidewire is a medical device inserted into vessels dur-
ing image guided interventions for balloon inflation. Dur-
ing interventions, the guidewire undergoes non-rigid de-
formation due to patients’ breathing and cardiac motions,
and such 3D motions are complicated when being projected
onto the 2D fluoroscopy. Furthermore, in fluoroscopy there
exist severe image artifacts and other wire-like structures.
All these make robust guidewire tracking challenging. To
address these challenges, this paper presents a probabilis-
tic framework for robust guidewire tracking. We first intro-
duce a semantic guidewire model that contains three parts,
including a catheter tip, a guidewire tip and a guidewire
body. Measurements of different parts are integrated into a
Bayesian framework as measurements of a whole guidewire
for robust guidewire tracking. Moreover, for each part, two
types of measurements, one from learning-based detectors
and the other from online appearance models, are applied
and combined. A hierarchical and multi-resolution track-
ing scheme is then developed based on kernel-based mea-
surement smoothing to track guidewires effectively and ef-
ficiently in a coarse-to-fine manner. The presented frame-
work has been validated on a test set of 47 sequences, and
achieves a mean tracking error of less than 2 pixels. This
demonstrates the great potential of our method for clinical
applications.

1. Introduction
In image guided interventions, a guidewire is a medical

device inserted into vessels through a guiding catheter for
balloon inflation. Robust guidewire tracking is essential for
many applications in image guided interventions, such as
real-time assessment of guidewire position and shape, the
visibility enhancement of guidewires, and guidance of co-
registration between 2D and 3D imaging modalities. In this
paper, we present a framework for robustly tracking a de-
formable guidewire in a single-view fluoroscopic sequence.
Since in a clinical practice a 3D guidewire model and asso-

Figure 1. Some examples of guidewires in fluoroscopic sequences.

The guidewires exhibit low visibility, with a variety of shapes and

appearances. For better visualization, two ends of guidewires are

marked with red and green arrows respectively.

ciated 3D projection matrices are not always available, our
method does not rely on 3D information. Instead, the pre-
sented method is a general framework that tracks guidewire
motions in 2D fluoroscopy.

Some exemplar guidewires in fluoroscopy are shown in
Fig. 1. A guidewire usually starts from a tip of a guid-
ing catheter (thicker tubes in the images), and ends at a
guidewire tip. The figure demonstrates the challenges of
guidewire tracking. First, guidewires are thin and with low
visibility in fluoroscopic images, which usually have poor
image quality due to a low dose of radiations in interven-
tional imaging. Sometimes some segments of guidewires
are barely visible in noisy images. Such weak and thin wire
structures in noisy images make the robust tracking diffi-
cult. Second, guidewires exhibit large variations in their
appearances, shapes and motions. The shape deformation
of a guidewire is mainly due to a patient’s breathing and
cardiac motions in 3D, but such 3D motions become more
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complicated when being projected onto a 2D image space.
Third, there exist many other wire-like structures, such as
guiding catheters and ribs, as shown in Fig. 1. Some of
the structures are close to the guidewire, which could dis-
tract guidewire tracking and finally lead to tracking fail-
ures. All the aforementioned factors, along with robustness
and speed requirements for interventions, make guidewire
tracking challenging.

Due to the unique characteristics of the guidewire in flu-
oroscopy, conventional tracking methods would encounter
difficulties and cannot deliver desired speed, accuracy and
robustness for interventions. Since a guidewire is thin, the
tracking methods that use regional features such as holistic
intensity, textures, and color histogram [16], cannot track it
well. Active contour [8, 11, 17] and level set based meth-
ods, heavily rely on intensity gradients, and are easily at-
tracted to image noise and other wire-like structures in fluo-
roscopy. There is some work on guidewire detection [3] and
tracking [10, 2]. Barbu et. al. [3] present a learning-based
method to automatically detect guidewires in fluoroscopic
sequences. The method aims at detecting a guidewire in in-
dividual frames, not continuously tracking the guidewire in
a sequence. Beyar et. al. [10] use a filter based method
to identify a guidewire in an X-ray image, and then use
the Hough transform to fit a polynomial curve to track a
guidewire. There are no quantitative reports on tracking
performance in their paper. The method of Baert et. al.
[2] tracks a guidewire enhanced by image subtraction and
coherence diffusion. However, their experiments show that
only a part of guidewire, not the whole guidewire, has been
tracked.

This paper presents a probabilistic framework for robust
guidewire tracking. This framework makes three contribu-
tions to address the aforementioned challenges:

1. This method introduces a semantic guidewire model,
based on which a probabilistic method is presented to
integrate measurements of three guidewire parts, i.e., a
catheter tip, a guidewire body and a guidewire tip, in a
Bayesian framework to track a whole guidewire. This
tracking framework is robust to measurement noises at
individual guidewire parts.

2. Robust measurement models are applied in our method
to track the guidewire. Learning-based measurement
models are specifically trained, from a database of
guidewires, to detect guidewire parts in low-quality
images. Our method further incorporates online mea-
surement models based on guidewire appearance to
improve the tracking robustness.

3. We develop a hierarchical and multi-resolution scheme
to track a deforming guidewire. By decomposing the
guidewire motion into two major components, the hi-
erarchical tracking starts from a rigid alignment, fol-
lowed by a refined non-rigid tracking. At each stage,

we apply a multi-resolution searching strategy by us-
ing variable bandwidths in a kernel-based measure-
ment smoothing method, to effectively and efficiently
track the deforming guidewire.

We validate the presented framework on a test set con-
taining 47 sequences captured under real interventional sce-
narios. Quantitative evaluation results show that the mean
tracking error on guidewires is less than 2 pixels, i.e.,
0.4mm. This demonstrates the great potential of our method
for clinical applications. The rest of the paper is struc-
tured as follows. We first introduce a guidewire model, and
present the probabilistic formalization of guidewire track-
ing in Section 2.1. Details on measurement models used
for guidewire tracking are provided in Section 2.2, and the
hierarchical tracking scheme in Section 2.3. The quantita-
tive evaluations of our method are presented in Section 3.
Section 4 concludes the paper.

2. Guidewire Tracking Method
Before presenting algorithm details, we explain nota-

tions used in this paper. The regular font represents a scalar
variable or function, and the bold font represents a vector,
e.g., x as 2D location and u as guidewire motion parameter.
Z is used to denote image observation, and Γ represents a
guidewire curve.

2.1. Method Overview

2.1.1 A guidewire model

A semantic model of a guidewire contains three parts: the
catheter tip, the guidewire body, and the guidewire tip, as in
Fig. 2. Each part has slightly different appearances in fluo-
roscopic images. For example, as shown in Fig. 1, a guiding
catheter is a tube containing the guidewire, and has better
visibility than the guidewire body in images. But some-
times the catheter tips can be occluded by contrast material
injected during interventions. Some guidewire tips could be
thicker than the guidewire body, and also show more flex-
ible deformations. The guidewire body has the least visi-
bility in images, but its shapes and motions are more con-
strained than tips.

Figure 2. A semantic model of guidewire. It contains a catheter

tip, guidewire body and a guidewire tip.

A spline model is used to mathematically model the
guidewire. Assuming that there are M control points,
xc

i , i = 1, ...,M , on a guidewire, the guidewire can be rep-
resented as a set of points interpolated from control points,
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as Eqn. (1):

Γ(x) = {x = (γx(λ), γy(λ))|1 ≤ λ ≤ M}, (1)

where γx(λ) and γy(λ) are cubic spline functions, and
λ ∈ [i − 1, i] means that x is interpolated between con-
trol points xc

i−1 and xc
i . A general form of a cubic spline

interpolation can be found in [4]. Using the spline represen-
tation, the complexity of guidewire tracking is significantly
reduced. In the spline model, two controls point, xc

1 and xc
M ,

represent the catheter tip and the guidewire tip, respectively.

2.1.2 A probabilistic guidewire tracking framework

Many existing tracking methods are unified in a Bayesian
framework in which unknown states are inferred from se-
quential data [7, 16]. We also formalize the guidewire track-
ing in this probabilistic inference framework, to maximize
the posterior probability of a tracked guidewire given fluo-
roscopic images. In the framework, a guidewire hypothesis
at the t-th frame is a guidewire deformed from a previous
frame, denoted as Γt(x; u):

Γt(x; u) = T (Γt−1(x), ux), (2)

where T is a guidewire shape transformation function, and
ux is the motion parameter. Γt−1(x) is a tracked guidewire
at a previous frame and is used as a template for the track-
ing at the t-th frame. For the simplicity of notations, a
guidewire candidate is denoted as Γt(x). Therefore, the
posterior probability P (Γt(x)|Zt) is given in Eqn. (3).

P (Γt(x)|Zt) ∝ P (Γt(x))P (Zt|Γt(x)). (3)

The tracked guidewire Γ̂t(x) is estimated as the guidewire
candidate that maximizes the posterior probability, i.e.,
Γ̂t(x) = arg

Γt(x)
maxP (Γt(x)|Zt).

In Eqn. (3), P (Γt(x)) is a prior probability, which can
be propagated from previous tracking results. We model the
guidewire prior probability as:

P (Γt(x)) =
1√

2πσΓ

exp(
−|D(Γt(x),Γt−1(x))|2

2σ2
Γ

), (4)

where D(Γt(x),Γt−1(x)) is the average of the shortest
distances from points on a guidewire candidate Γt(x) to
the guidewire shape template Γt−1(x). A large kernel
size σΓ is chosen to allow a large guidewire deformation.
Another component, the likelihood measurement model
P (Zt|Γt(x)), plays a crucial role in achieving robust track-
ing results. Given a guidewire represented by N points
Γt(x) = {x1, x2, ..., xN} that are interpolated from con-
trol points, the guidewire Γt(x) is in an N -dimensional
space, which make the measurement model P (Zt|Γt(x))
difficult to represent. To simplify the model, we assume

the measurement independency among different parts along
a guidewire, i.e., P (Zt|xi,Γt(x)) = P (Zt|xi). By this
assumption, we can decompose the measurement model
P (Zt|Γt(x)) into measurements at individual guidewire
points, as Eqn. (5):

P (Zt|Γt(x)) =
∑

xi

P (Zt|xi)P (xi|Γt(x)), (5)

where P (Zt|xi) is the measurements at individual points
on a guidewire, and P (xi|Γt(x)) is the weights of in-
dividual points on a guidewire. Since the two ending
points at the guidewire model represent the catheter tip
and the guidewire tip, respectively, the measurement model
P (Zt|Γt(x)) is re-written as a combination of three parts of
measurements in Eqn. (6):

P (Zt|Γt(x)) = ω1P (Zt|x1) + ωNP (Zt|xN )

+
1 − ω1 − ωN

N − 2

N−1∑
i=2

P (Zt|xi), (6)

where ω1 and ωN are the weights of the catheter tip and the
guidewire tip, respectively. Usually the tips have more dis-
tinguishing characteristics than the guidewire body, so they
are assigned higher weights (the tip weights are empirically
set between 0.05 and 0.2 in our algorithm.) All other points
on a guidewire are assigned equal weights 1−ω1−ωN

N−2 .
The decomposition of the measurement model

P (Zt|Γt(x)) as the form of Eqn.(6) allows for inde-
pendent measurements of different guidewire parts, while
their integration on the guidewire Γt(x) provides a uni-
fied measurement model for the whole guidewire. The
probabilistic framework provides the flexibility to track
deformable guidewires, and also ensures robustness to the
measurement noise at individual parts. Another advantage
of this framework is its capability of introducing differ-
ent types of measurement P (Zt|xi), at individual parts,
making this framework general enough to fuse multiple
measurement modalities.

2.2. Guidewire Measurement Models

Robust measurement models P (Zt|xi) are crucial to ad-
dressing the difficulties encountered in guidewire track-
ing. In our method, learning-based methods are applied
for robust measurements of guidewire parts. Guidewire
part detectors are learned, from off-line collected training
data, to model a large variety of guidewires, especially for
guidewire body and guidewire tips. Another measurement
modality, online measurement model based on guidewire
appearance, is combined with the learning-based measure-
ments. Such an integration can correct failures caused by
one measurement modality, such as false or missing de-
tections of learning-based measurements, and drifting of
appearance-based models, therefore is able to robustly track
guidewires under various environments.
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(a) (b) (c) (d)

Figure 3. Guidewire measurements for robust tracking. (a): detected catheter tip candidates (red blocks) and guidewire tip candidates (green

lines) in a frame; (b): the detected line segment candidates (in a region around the guidewire body) are shown in green; (c): a distribution

of measurements of the catheter tip after combining learning-based and appearance-based measurements; (d): the tracked guidewire. The

figures are best viewed in color.

2.2.1 Learning-based guidewire measurements

Learning-based detectors recently have been widely used in
object detection and tracking [1, 5]. The reason behind their
increasing popularity is their robustness to noises and their
capability of handling objects with large variations. Differ-
ent from traditional measurements based on low-level fea-
tures such as edges and ridges, learning-based measurement
models can be trained from a set of off-line collected data,
thus being able to modeling objects with large variations.
Since the training data also includes non-objects, the trained
measurement models are robust to background noise. For
guidewire tracking, we use the probabilistic boosting tree
(PBT)[12] to construct the guidewire part detectors. PBT is
a tree based general form of AdaBoost classifiers, and has a
nice property of modeling a complex distribution of a class
of objects. For more details on and PBT, please refer to
[6, 12].

During tracking, the trained detectors can identify if an
image patch at given location xi belongs to a class of ob-
jects, i.e., one of three guidewire parts in this paper. The
output of an AdaBoost classifier, denoted as f(z, xi), is a
combination of outputs from a collection of learned weak
classifiers Hk(z, xi) with associated weights αk. The nu-
meric outputs can be further interpreted into probabilistic
measurements, seeing Eqn. (7):

f(z, xi) =
∑

k

αkHk(z, xi)

P d(Zt|xi) ∝ ef(Zt,xi)

e−f(Zt,xi) + ef(Zt,xi)
. (7)

In this method, we train one detector for each part of
the guidewire. The guidewire body detector mainly identi-
fies line segments of the guidewire. To train the guidewire
body detector, we collect line segments from annotated
guidewires as positive samples, and randomly sample the
image outside guidewire as negative samples. Similarly, the
guidewire tip and catheter tip detectors are trained. All the

learning-based models are built on Haar features [13], as
their computational efficiency is favorable in interventional
applications. Therefore, three learning-based measurement
models, P d

cath(Zt|x1), P d
gw(Zt|xi), and P d

tip(Zt|xN ), are
obtained for the catheter tip, guidewire body, and guidewire
tip respectively. Fig. 3.(a) and (b) show the detected tip
candidates and the line segment candidates of the guidewire
body in a frame.

2.2.2 Appearance-based measurements

As shown in Fig.3, learning-based measurements may suf-
fer from missing or false detections. This motivates us
to integrate another type of measurements, appearance-
based measurement, to improve the robustness of tracking.
Different from the learning-based measurement model, an
appearance-based measurement model aims at modeling the
online appearance of a specific guidewire being tracked. In
our method, the appearance-based model takes the form in
Eqn. (8):

P a(Zt|xi) ∝ exp{−

∑
x′∈S(xi)

|ρ(Zt(x′) − I0(x′);σa)|2

2σ2
a

}, (8)

where Zt(x′) is the image intensity at the t-th frame, and
I0(x′) is the corresponding image intensity at a guidewire
template, which is updated from the tracked guidewire at
a previous frame. S(xi) represents the geometric shape of
the template, centered at the point xi. For example, S(xi)
is an ellipse for the catheter tip, and a segment of guidewire
for the guidewire body and tip. As defined in Eqn. (9),
ρ is a robust function that is used to measure the intensity
differences between current observations and the guidewire
template, with removal of outliers.

ρ(y; σa) = { y, if |y| <= 3σa

3σa, if |y| > 3σa
. (9)

Similar to learning-based measurement models, we
build an appearance-based model for each part of the
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guidewire. So, three appearance-based measurements mod-
els, P a

cath(Zt|x1), P a
gw(Zt|xi), and P a

tip(Zt|xN ), are ob-
tained for the catheter tip, guidewire body, and guidewire
tip, respectively.

2.2.3 Integration of multiple measurements

The fusion of multiple measurements has been demon-
strated to provide more robust tracking results than using
a single measurement[15, 14]. In our method, two types of
measurement models are integrated into one measurement
model:

P (Zt|xi) = P d(Zt|xi)Pd + P a(Zt|xi)Pa, (10)

where Pd and Pa are corresponding priors for two types
of measurement models. Similar to the widely used mixture
of Gaussians as a distribution model, Eqn. (10) explains that
the P (Zt|xi) is an additive mixture model with one type
of measurement model as one component. An example of
integrated measurements at the catheter tip is shown in Fig.
3 (c), where the measurements have a peak at the catheter
tip with false detections being suppressed.

2.3. Hierarchical and Multi-resolution Guidewire
Tracking

The guidewire exhibits large variations in shape and mo-
tion, especially due to projections from 3D to 2D. Since
a 3D guidewire model and a 3D projection matrix are not
always available in a clinical practice, our method does
not impose any assumptions that depends on 3D informa-
tion. Instead, this method tries to handle guidewire mo-
tions that could be captured from arbitrary directions. For
this purpose, our method decomposes the guidewire motion
into two major steps: rigid and non-rigid motions, as the
guidewire motion caused by the breathing motion can be ap-
proximated as a rigid motion in 2D, and the cardiac motion
is non-rigid. The decomposed motions can be effectively
and efficiently recovered in a hierarchical and coarse-to-fine
manner, based on a kernel-based measurement smoothing
method.

2.3.1 Kernel-based measurement smoothing

We here present a kernel-based measurement smoothing
method for multi-resolution guidewire tracking. To obtain
measurements at each point x is computationally expensive,
and is prone to measurement noise at individual points. For
example, the measurements at points that are classified by
detectors as non-guidewire parts are not reliable and ignor-
able in P d(Zt|xi). Guidewire measurements can be more
robust and more efficient to compute by using kernel-based
estimation (or smoothing).

(a) (b)

Figure 4. Hierarchical tracking. (a): tracking starts from a tracked

guidewire from the previous frame (yellow line); (b): the tracked

guidewire after rigid tracking (red line) and after non-rigid track-

ing (yellow line).

In the kernel-based estimation, measurements are made
at a set of sampled locations xs

j , instead of a whole image.
For learning-based measurements, xs

j are those points clas-
sified as guidewire parts, and for appearance-based mea-
surements, xs

j are uniformly sampled points. We can conve-
niently assume the Markov conditional independence that
the observations at sampling points xs

j are independent with
the un-sampled points xi, i.e., P (Zt|xi, xs

j) = P (Zt|xs
j).

Therefore, the kernel-based measurement estimation is rep-
resented as Eqn.(11):

P (Zt|xi) =
∑

j

P (Zt|xs
j)Gσ(xs

j , xi), (11)

where P (xs
j |xi) = Gσ(xs

j , xi) is a Gaussian kernel with
a bandwidth σ. The kernel-based measurement estimation
can obtain smooth measurements in a neighborhood, reduce
computations of measurements, and also allow for multi-
resolution searching during rigid and non-rigid tracking by
varying bandwidths in kernels.

2.3.2 Rigid tracking

Rigid tracking aims at recovering the rigid motion of a
guidewire between two successive frames. In rigid tracking,
the motion parameter ux in Eqn. (2) contains only global
translation and rotation, i.e., ux = u = (c, r, θ), where c, r
and θ are the translation and rotation parameters. Therefor,
the rigid tracking is formulated as maximizing the poste-
rior probability under a rigid motion of the guidewire, i.e.,
maximizing E(u) as below:

E(u) = P (Γt(x))
∑

xi

P (xi|Γt(x; u))P (Zt|xi). (12)

Tracking the rigid motion can be efficiently implemented
using variable bandwidths in kernel-based measurement
smoothing. As illustrated in Fig. 5, the rigid tracking is
performed at multiple resolutions, with decreased search in-
tervals {d1 > d2 > ... > dT }. During the multi-resolution
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Figure 5. Multi-resolution rigid tracking with incrementally de-

creased search intervals and kernel bandwidths. The rigid track-

ing started from a template, and ends at position close to the true

guidewire, up to an error caused by deformable motions. The dot-

ted curves represent intermediate tracking results.

tracking, the corresponding bandwidth in Eqn. (11) varies
accordingly, denoted as σi. At lower resolutions, we use
larger kernel bandwidths to avoid missing tracking caused
by larger sampling intervals; and at higher resolutions, we
use smaller kernel bandwidths to obtain finer tracking re-
sults.

Furthermore, the rigid tracking is performed at both
global and local scales. At a global scale, the whole
guidewire is tracked, while at a local scale, a whole
guidewire is divided into several local segments for rigid
tracking, which follows the same formalization as Eqn.(12).
By the two-stage tracking, a guidewire is roughly aligned at
the current frame. A rigid tracking result is shown as the
red curve in Fig. 4 (b).

2.3.3 Nonrigid tracking

After the rigid tracking, a guidewire is further refined by
the non-rigid tracking, where the guidewire motion param-
eter ux is point dependent. Different from rigid deforma-
tion, the non-rigid tracking imposes a prior from guidewire
smoothness constraints, as Eqn. (13):

E(ux) = P (Γt(x; ux)|Zt) + α

∫
|dΓt(x; ux)

ds
|2dx

+ β

∫
|d

2Γt(x; u)
ds2

|2dx. (13)

The two additional terms,
∫ |dΓt

ds |2dx and
∫ |d2Γt

ds2 |2dx,
are integrals of the first-order and second-order derivatives
of guidewire curves, and act as guidewire smoothness priors
to prevent over-deformations of guidewires. The weights, α
and β, are then used to balance the smoothness constraints
and probabilities scores. Such α and β are empirically set
(a typical value is between 0.05 and 0.2), but the tracking
performance is not sensitive to the parameter settings as ob-
served from our experiments. Although Eqn. (13) looks
similar to the formalization in active contour based meth-
ods such as Snakes[8], they have fundamental differences.

Figure 6. Non-rigid guidewire tracking. The control points (the red

dots) on the guidewire body deform along normal directions, and

the catheter tip and guidewire tip deform along both the normal

and tangent directions.

In our method, the tracking is based on robust probabilis-
tic measurements, while Snakes is mainly based on inten-
sity gradients, and is prone to image noise in fluoroscopy.
Our method maximizes a posterior probability, based on
the novel fusion of learning-based measurements and on-
line appearance measurements. Also, our method tracks an
open curve of a guidewire, while Snakes and level set based
methods [8, 11, 17] mainly handle closed object boundary.
At last, our method integrates multiple measurements from
different guidewire parts, making it more suitable to track a
wire structure.

The search space of the non-rigid guidewire motion in
Eqn. (13) is high dimensional. To reduce the dimensional-
ity of the searching space, we deform control points on the
guidewire body along normal directions, and two tips along
both the tangent and normal directions, as illustrated in Fig.
6. But still, to exhaustively explore such a deformation
space is formidable considering computational complexity.
For example, if there are 20 control points, and each control
point has 10 deformation candidates, the searching space
contains 1020 candidates. Instead of parallelly searching or
sampling the search space, our method searches guidewire
deformation sequentially. At each step, only one control
point deforms to achieve a maximum E(ux). The sequential
deformation will iterate until the maximum number of iter-
ations is reached or it converges. The same as rigid track-
ing, the multi-resolution searching strategy is applied dur-
ing the non-rigid tracking. The sequential searching strat-
egy in most cases leads to an optimal solution, because the
rigid tracking has roughly aligned the guidewire near the
true shape. An example of non-rigid tracking is shown as
the yellow curve in Fig. 4 (b).

3. Experiments

3.1. Data and evaluation protocol

The tracking algorithm is evaluated on a set of 47 flu-
oroscopic sequences. The frame size of each sequence is
512*512 or 600*600, with the pixel size between 0.184 mm
and 0.278 mm. There are totally more than 1000 frames
in the test set. The test sequences cover a variety of in-
terventional conditions, including low image contrast, thin
guidewire, and contrast injection. Some exemplar frames
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Figure 7. Some guidewire tracking results. In each graph, the left image is the first frame of a sequence, and right images show tracking

results (yellow curves) at some frames. The figures are best viewed in color.

Table 1. Quantitative evaluation of guidewire (GW) tracking

Measurements models With combined models With only offline learned models

mean std median mean std median

Overall GW Tracking Prec. (in pixels) 1.80 3.41 0.95 7.53 27.37 1.05

GW Body Tracking Prec. (in pixels) 1.70 2.96 0.95 1.79 4.02 0.97

GW Tip Tracking Prec. (in pixels) 5.45 8.21 3.69 9.06 15.43 3.79

Cath. Tip Tracking Prec. (in pixels) 11.62 12.76 7.18 68.33 76.85 35.85

GW Missing Tracking Rate 9.88% 8.43% 8.27% 11.06% 13.97% 8.55%

GW False Tracking Rate 9.62% 6.92% 7.80% 11.87% 9.74% 9.33%

in the test set are displayed in Fig. 7. The guidewire part
detectors are trained on a set of 500 guidewire images that
are previously collected[3].

To establish ground truth for evaluation, we manually
annotate the guidewires in the test set as the ground truth.
An annotated guidewire starts from a guiding catheter tip,
and ends at a guidewire tip. For the purpose of evaluating
tracking performance, the annotation at the first frame of
each sequence is used to initialize the guidewire tracker, and
the rest of annotation is used for validations. In clinical
applications, the guidewire can be automatically initialized
at the first frame [3], or semi-automatically detected using
the interactive detection method [9].

To comprehensively and quantitatively evaluate the per-
formance of guidewire tracking, we define a set of perfor-
mance metrics, including overall guidewire tracking pre-
cision, guidewire body tracking precision, tip tracking
precision and missing and false tracking rate, as follows.

1. The overall guidewire tracking precision is defined
as the average of shortest distances from points on
a tracked guidewire to the corresponding annotated
guidewire. Such a precision describes how close a
tracked guidewire is to the ground truth.

2. The guidewire body tracking precision is the track-
ing precision specifically at the guidewire body. The
tracking errors at tips are excluded in evaluating the
guidewire body tracking precision.

3. The tip tracking precision is the tracking precision
specifically at the catheter and guidewire tips.

4. The missing and false tracking rates describe the
percentages of guidewire points that have not been suc-
cessfully tracked. A miss-tracked guidewire point is
the point on an annotated guidewire whose shortest
distance to the tracked guidewire is greater than a pre-
set threshold (e.g., a threshold of 3 pixels is used in
this evaluation.) A false-tracked guidewire point is the
point on a tracked guidewire whose tracking error is
greater than the threshold. Missing and false track-
ing rates are the percentages of such failed guidewire
points.

3.2. Quantitative evaluations

Some guidewire tracking results in fluoroscopic se-
quences are shown in Fig. 7. Our method can successfully
track the guidewire, even for those sequences with low vis-
ibility, background distraction, and contrast injection. For
quantitative evaluations, the performance metrics defined in
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Section 3.1, are computed on the test set. Table 1 summa-
rizes quantitative evaluations of our tracking methods, and
also compares the performance of using combined measure-
ments with tracking only using learning-based measure-
ments. For each performance metric, we compute its mean,
standard deviation, and median. As shown in the table, the
overall guidewire tracking precision is around 1.8 pixels,
i.e., less than 0.4mm. The tracking errors on the guidewire
and catheter tips are greater than on the guidewire body, be-
cause the motions are larger on the tips, and the background
distractions affect more on tips than on the guidewire body.
Our method successfully tracks more than 90% points on
the guidewire, with a false tracking rate lower than 10%.

Table 1 also shows the tracking accuracy when only
using learning-based measurements. It demonstrates that
using both measurements improves the tracking robust-
ness, as the mean and standard deviation of tracking er-
rors have been reduced, especially at the catheter tip where
the appearance-based measurement plays a dominant role.
The large tracking errors of learning-based measurements
at catheter tips are mainly caused by image noises and oc-
clusions by contrast injection during interventions. Another
important observation is that the learning-based measure-
ments provide fairly robust measurements on the guidewire
body and guidewire tips, as the improvement of tracking
precision on guidewire body and tip is smaller than on the
catheter tip. This confirms the advantage of our framework
that unifies multiple measurements from different guidewire
parts in a principled way.

The presented method is not sensitive to parameter
changes. Due to limited space, we present only one experi-
ment in Fig. 8, which shows the tracking accuracy does not
change much with a wide range of a parameter α, i.e., the
weight of the smoothness constraint based on the first-order
derivative of guidewire curves. Validations on other param-
eters show similar results. We conclude from the quantita-
tive evaluations that our probabilistic tracking method pro-
vides robust and accurate guidewire tracking results. This
method currently runs at 2 frames per second at a Core 2
Duo 2.0GHz computer, and can achieve a near real-time
speed with an implementation optimization, such as multi-

Figure 8. The tracking accuracy and an algorithm parameter (the

weight of the first-order derivative of guidewire curves).

threading and GPU accelerations.

4. Conclusion
This paper presents a probabilistic framework of robust

guidewire tracking in fluoroscopy for image guided inter-
ventions. Our framework can track non-rigid guidewire mo-
tions under arbitrary projections. The validation on a test set
of 47 real interventional sequences demonstrates that this
method provides robust and accurate tracking results. The
future work will be integrating guidewire tracking into clin-
ical applications, such as breathing motion compensation.
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