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Enhanced 3-D-Reconstruction Algorithm for C-Arm
Systems Suitable for Interventional Procedures

Karl Wiesent*, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and W. Seissler

Abstract—increasingly, three-dimensional (3-D) imaging tech- \- —

nologies are used in medical diagnosis, for therapy planning, and
during interventional procedures. We describe the possibilities of
fast 3-D-reconstruction of high-contrast objects with high spatial
resolution from only a small series of two-dimensional (2-D) planar
radiographs. The special problems arising from the intended use
of an open, mechanically unstable C-arm system are discussed.
For the description of the irregular sampling geometry, homoge-
neous coordinates are used thoroughly. The well-known Feldkamp
algorithm is modified to incorporate corresponding projection ma-
trices without any decomposition into intrinsic and extrinsic pa-
rameters. Some approximations to speed up the whole reconstruc-
tion procedure and the tradeoff between image quality and com-
putation time are also considered. Using standard hardware the
reconstruction of a 256 cube is now possible within a few min-
utes, a time that is acceptable during interventions. Examples for
cranial vessel imaging from some clinical test installations will be
shown as well as promising results for bone imaging with a labora-
tory C-arm system.

e "3 cellmg mounted c-arm m paﬂrposmon =SS :

Index Terms—C-arm-based tomography, geometric calibration,
homogeneous coordinates, three-dimensional (3-D) image recon-
struction.

Fig. 1. Siemens NEUROSTAR Plus.

|. INTRODUCTION embolizing material; and 3) it must allow unobstructed access

EURORADIOLOGY has always been at the forefront irio the patient during intervention.

the introduction of new imaging technologies like CT, As a technical solution, we utilized a standard open C-arm
MR, and PET. For interventional procedures like endovascukyrstem (Fig. 1), performing a rotation around the object of about
techniques, true three-dimensional (3-D)-images of the cranZ0 degrees, acquiring about 50 radiographic 2-D-projections,
vessel tree are of great interest for diagnosis and therayd reconstructing a true 3-D-image of the vessel tree within
planning. The greatest challenge is the availability of such 3@®few minutes. Results from first clinical installations will be
information during the interventional procedure. A typical exshown in Section Ill. The method may be extended in the fu-
ample is the endovascular occlusion of aneurysms using eithgne to other medical applications like bone imaging during or-
detachable balloons, liquid occlusion material, or platinutinopedic interventions (see Section IlI for first experimental re-
microcoils. We believe that the success of such procedumssts).
could benefit from a combination with additional 3-D-imaging Research on image intensifier-based tomographic systems,
capabilities during the intervention. Such an X-ray systegfficient cone-beam reconstruction, and algorithms for true 3-D
must keep the following characteristics: 1) it must haveessel imaging have a long history, see, e.g., [1]-[4] for ear-
near real-time fluoroscopic capabilities and roadmapping fber work, [S]-[9] for more recent results, and [10]-[12] for
catheter placement; 2) it must provide accurate anatomidisst clinical applications. A good description of medical mo-

information about the vessel lumen and the location of tHation as well as technical challenges can be found in [13]
and the references therein. The greatest problems arise from

, _ the low number of projections and the irregular sampling pat-
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zZ . B at the origin of its 2-D-coordinate systemv, and is orthog-

QD m onal to the detector plane, i.e., it is the so-called optical axis
B2 VB/ .-

f . of the X-ray camera. This geometry is the basis of the original
y Feldkamp algorithm [2]. It can be described by a weighted 1-D
‘ convolution

) A I'p
S O Po, ) = o ) S )

X-ray source Qs(u, v) :ég(u, v) * h(u) ()

r
Iy followed by a weighted cone-beam backprojection:

detector pl S
etector plane f(x, Y, Z) — C'/
(a) 0 (F - 8)2

___________

Qs(up, vg)dB  (3)

with
Y g‘f;ig“” up =Tpt/(C—s) and vg =Cpz/(T —s). (4)
The input values’s represent line integrals through the object
(logarithms of measured intensities after all pre-corrections).
The sequential steps are: cosine weighting (1), 1-D convolution
t [(2), kernelh like in standard 2-D-CT], and distance weighted
B backprojection (3). In practical implementations the constant
in (3) is part of the final scaling of the result. For the central
x—y plane this algorithm is identical to the well-known exact
2-D-fan-beam algorithm. For other planes it is only an approxi-
mate algorithm that however works well for small cone angles.
An exact algorithm does not exist, because this sampling geom-
etry violates Tuy’s-condition [21]-[23]. For mechanically un-
position stable C-arm systems the deviations from the ideal Feldkamp-

geometry cannot be neglected. This will be discussed in the fol-
(b) lowing sections.

Fig. 2. Original Feldkamp geometry. (a) Perspective view. (b) Midplane.

tircular trajectory
source

B. Classification of Feldkamp Geometries

of the Feldkamp algorithm, see Section II. The algorithms pre- FOr further discussion we distinguish the following three
sented there are also useful for similar applications like SPEC/PES Of sampling geometry:
[17], microtomography [18], or nondestructive testing [19]. The FG1: Ideal Feldkamp geometry

discussed variants, especially the proposed new backprojection * Source path= complete ideal circle.

method, may be useful for all of them. Corrections of detector « Constant X-ray camera, optical axis perpendicu-
data, like intensity correction and distortion correction of an larly hits the origin of the detector.

X-ray image intensifier (XRII), are discussed elsewhere [20], * Detector rows/columns are orthogonal/parallel to
[13]. Also visualization techniques for the 3-D-data sets are not axis of rotation.

part of this paper. « Regular (equidistant) sampling pattern.

FG2: Irregular stable Feldkamp geometry

II. MATHEMATICAL METHODS * Close to ideal geometry, but deviations are not

_ _ _ _ _ negligible.
In this section, we will describe some problems and possible « In addition (most cases): Only partial rotation

mathematical solutions concerning 3-D reconstruction for the (190-200 degrees).

considered open systems. Basis will be the well-known algo- « But: Constant for repeated experiments (offline

rithm of Feldkamp [2], that was derived for a circular orbit. calibration possible).

Therefore, we will refer to this situation as “Feldkamp geom- FG3: Unstable Feldkamp geometry

etry.” « Irregular and time varying (online PDS neces-
_ _ sary)

A. Basic Mathematical Model: Ideal Feldkamp Geometry We use the term PDS=pose determination system) for any

We start with the following ideal geometry (Fig. 2): The X-raysystem, that determines the real geometry, either offline as a
sourceS moves on an ideal circle (radiu® within the z—y calibration procedure, or online during data acquisition. In the
plane around, the axis of rotation. Thés, t)-system of Fig. 2 following, we provide some examples for this classification:
denotes the rotatgd;, y)-system/3 is the angle of rotatior 1) Use of a mechanically stable CT-gantry.
is the constant source-to-detector distance. The line from the Such specialized systems like the Morphometer (as-
source positiory’ through the originO always hits the detector sumed perfect XRII-correction), see e.g., [24], are good
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Fig. 3. From simulation study: Artifact level versus angular increment.

for diagnosis, but do not allow unobstructed access to thee so-called intrinsic parameters. This model and, therefore, the
patient as needed for our intended application during ifellowing algorithms can also be used for other systems, like
tervention. Class: FG1. SPECT with focusing collimators or a pinhole aperture. Note,
2) Setup with a turn-around table. that systems from example 2 have a constant camera, whereas
Such systems with fixed X-ray source and detector asgstems of example 3 and 4 in general have a varying camera,
widely used in laboratories for basic experiments, sekecause, e.g., the focal length may change due to mechanical
e.g., [25]. Other examples are microtomography systerimstabilities.
for medical applications, e.g., [18], [26], or systems for
nondestructive testing [19]. They are class FG1, if tie: Low Number of Projections
table mount is mechanically perfect, and class FG2 if not, From sampling theory requirements have been obtained for
e.g., there is some tilt of the table, which is not negligiblehe ratio M /N (with M = number of projections and =
3) Stable medical C-arm systems. number of elements within a detector row) to lie between
It could be shown by experiments, e.g., [27], [13], that /2 and« (but in every case- 1), see, e.g., [28]-[32]. From
some standard C-arm systems work reproducible susimulation studies, see Fig. 3, we got the novel result that
that offline calibration is possible. Results from such for A7, the number of projections, far below the theoretical
system, the Siemens Neurostar Plus, are presented in Segommendations the following linear relationship holds:
tion Ill. These class FG2 machines are the desired devicgsifact levelb(M) ~ 1/M, with b(M) standard deviation of
for high-resolution true 3-D imaging during neurologicathe artifacts measured in HU.
interventions. Therefore, accepting an artifact level of, e.g., 100-200 HU,
4) Unstable systems. a reconstruction of fine high-contrast objects is possible with
In that case, an online PDS must be used. Experimewisly 40-150 projections. With proper windowing for the ob-
with such systems of class FG3 are siill basic resear@tts of interest (like bone or vessels filled with contrast agent)
that can benefit from investigations in robotics and virthese artifacts will not be visible. This is the important differ-
tual reality. First results from such a laboratory setup aehce between normal (low-contrast) CT and high-contrast CT
presented in Section Ill. (HCT). The low number of projections generates a natural limit
The basic imaging system (focal spet2-D-detector), the of the low-contrast capabilities of C-arm based tomography. In-
so-called X-ray camera, is usually modeled as an ideal pinhaieeasingl/, the number of projections, will not increase spatial
camera (mathematically: a central perspective mapping, seettggolution and morphological information of high-contrast ob-
Appendix) and can, therefore, be described by a few parametgests, e.g., an opacified vessel tree, but only decrease the ground
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artifact level following the above stated linear relationship at the

cost of additional patient dose. Low-dose and fast imaging are
important features for our intended use during intervention. For
diagnosis, when time is not so critical, additional postprocessing
methods may be applied, to reduce the basic artifacts. This is
still work in progress, for first results see [33].

D. Partial Rotation

From 2-D-fan-beam CT, it is known that a partial rotation
over 180 plus fan angle (instead of a full 36@otation) is suf-
ficient. In that case some data are measured twice. Parker [34] g
recommended the application of a smooth weighting function &
for compensation of this effect. Skew rays, typical for Feldkamp
geometry, do not really have such redundancies. This problgr&_ 4. Projection geometry with marker ring.
is discussed, e.g., in [35]. We recommend to compute the Parker
weights for the central row of the detector and to supply them

without any further modification to all other rows (generalizefB8], [39]. The matrix> can be algebraically decomposed [38],
sinogram weighting). [40] into its intrinsic and extrinsic part (like QR-factorization)

and so, if we assume known constant pixel size, all physical
parameters of position and of X-ray camera can be determined
: . from P. Another method is proposed by Rougeteal. [39].
For the reconstruction task, the actual sampling geometry Rgay 4150 use a mechanical calibration phantom to estifate
to be known precisely. Within the filtering step, the deviatioRger that, P is expressed as a nonlinear function of 9 unknown
from the ideal case can be neglected—we make a 1-D-CONypysical parameters and the resulting equation is solved by a
lution row by row as in the ideal Feldkamp algorithm, Ignoringoniugate gradient technique.
a possible small slope of the rows against thg-plane—but  \ye se a marker phantom (Fig. 4) and estinfafeom about
for backprojectiop we need the precise geometrical informatigyg_150 points in very high precision. This phantom was orig-
and have to use it very accurately. inally constructed for online measurements [38], but for stable
For that we have two general possibilities: systems like the Neurostar Plus (Fig. 1) it can also be used for an
1) Interpolation of the measured data onto ideal megffline calibration. To summarize: The 3-D-to-2-D mapping of
surement geometry. The result can then be interpretgd X-ray projection can be described by a single 3 matrix.
as values from perfect Feldkamp geometry (circulalnowing the physical parameters, the matrix can easily be com-
trajectory). Note: For diverging beams this is only apputed. If the matrix is given, physical parameters can be calcu-
proximately true. lated from it, if they are needed for sophisticated reconstruction
2) Modification of the Feldkamp algorithm. Informationprocedures like such of ART type. Our new approach is to use
about the irregular sampling geometry is used within the matrix” without any decomposition and so to avoid errors
backprojection step. coming from these additional calculations.
In this paper, we concentrate on the second method, because

it produces slightly better spatial resolution [36]. The maig gjim Algorithms versus Image Quality

problem of such mechanically unstable systems is that of i L i
accurate pose determination [27], [37], [13]. An imaging Accepting the dominating artifact level caused by the low

system like that of Fig. 2 is normally described by 11 physicRUMmPer of projections, in HCT some parts of the Feldkamp al-
parameters, six for the rigid motion of the X-ray camergor'thm may be removed [41]. To dlscgss this, we first recall all
(extrinsic parameters) and five for the camera itself (intrinsi3€ Steéps of the proposed reconstruction procedure:
parameters). Note however, that mathematically these param1) Precalculations—like XRII-correction, building loga-
eters correspond to 10 degrees of freedom, because pixel size fithms, etc. (not part of this paper). Output of that part
of the detector and focal length act as a product and can not be are the desired CT-measurement data (line integrals).
separated. Using homogeneous coordinates (see the Appendixd) Preweighting of CT-data-43; weighting [azimuthal in-
the 3-D-to-2-D mapping can be described by a single 3@ tegration, (3)]; cosine weighting [Feldkamp, (1)]; sino-
matrix P = [AR, At], where[R, #] describes the rigid motion gram weighting (Parker).

and the upper triangular 8 3 matrix A the camera model in ~ 3) Convolution—+) optional data extrapolation (if projec-
normal position. In our case the intrinsic parameters, e.g., the tions are truncated).

source detector distance, are not constant. This is an importanf?) Backprojection—+) distance weighting [Feldkamp,
difference to robotics or virtual reality. One can measure the  (3)]-

physical parameters by special procedures [37], [27], [13[he highest image quality is naturally achieved by performing
[17], or use methods to measure the mal?tidirectly. One pos- all of the above steps and may be further improved by post-
sibility for that is to use a mechanical phantom and to estimgteocessing methods like [33]. During intervention, a short re-
(in a least square sens®) from at least six measured pointsconstruction time is essential and morphological information is

E. Varying Camera and Sampling Geometry
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much more important than any information about the true deas a sufficiently fast incremental algorithm based on direct use
sity. of the projection matrice#’.

Therefore, once having accepted the relatively high groundLet r=(z, v, 2, 1) be an arbitrary object point in a given
artifact level caused by the low number of projections, one caorld coordinate system in homogeneous coordinates (for
remove parts of the above procedure, if the effect of that will kfinition, see the Appendix). Then thex34 matrix P maps
lower than the accepted ground artifacts. Potential candidaghis point to the detector in homogeneous detector coordinates
for that are all parts except convolution and backprojectio(rig. 4). After renormalization the units can be interpreted as
which will be discussed in the next two sections. Spatial resolgglumn-and row-numbet andv: This can be written as:
tion of the reconstruction of high contrast objects is only deter- .
mined by the innermost components of the convolution kernel r=PX (5)

and exact backprojection. For quantitative imaging without aWherea? = (u, v, 1) and X — (2, y, 2, 1) are the homoge-

bias this is not true. X N :
The effect of cancelling out parts of the above procedure_r??Ous coordinates of the 2-D image pixel and the 3-D voxel

machine and application dependent. For our geometries the iht1€ canonical homogeneous coordinate system, respectively.
sine weighting can be dropped most easily, because the valti8§ SYMPOE is used for equality up to scale.

are all very close to unity. Azimuthal weighting should be un- TNiS is identical to what we need in a voxel driven backpro-
necessary, if data acquisition is angle driven and not time drivd@ction algorithm. So, the numerically unstable process of de-
Omitting distance weighting during backprojection produces@mMPoOsIng the projection matrix into intrinsic and extrinsic pa-
slight cupping effect, that can be neglected for small reconstrd@meters is not necessary. The direct use of the above equation,
tion volumes. Dropping sinogram weighting is much more cri@ multiplication of a 3x 4 matrix with a 4-vecto(z;, y;, 2, 1)

ical. As already known from 2-D reconstruction, it will pro-for every voxel would be very inefficient. Because only the final
duce a butterfly-shaped artifact. For performing this weightinggsult has to be renormalized (last component to 1) in analytical
knowledge of at least one physical parameter, the angle of ojective geometry and because of the linearity of the system
tation, is necessary. Clearly, as long as even cancelling somagiufficiently fast algorithm could be developed.

the weighting steps is considered to be acceptable, small errorket

in the physical parameters necessary to perform them should not > . .
have great significance. Nevertheless, we developed a new at- = (@i yj» 21y 1) = Ko+ (1 Az, j- Ay, k- Az, 0) (6)
curate method to compute the motion bgtween two proje.cf[io%scribe the position of a voxel. Then we have

and from that the desired parameters, without decomposition of R .

the projection matrices, see Section Il-l and [42]. T=PX=PXo+i-dr+j-ady+k-d.. @)

The vectorsi,, d,, d. are the first three columns of the projec-
tion matrix 2 multiplied by the corresponding voxel sizes. The
In most cases, the 2-D detector (XRII or flat panel detectofgsult are the homogeneous pixel coordingtes, ¢) and after

does not cover the whole object. From such truncated projggnormalization: = r/t, v = s/t we directly have column
tions severe artifacts may be produced by the usual convoliy row number of the pixel to be backprojected. Thus matrix
tion. To reduce this effect, an extrapolation of the data is g|iplication has to be performed only once per projection. We

well-known method. We got good results with mirroring the datg, ,marize the proposed new algorithm by the following pseu-
at both sides. This pseudo-extrapolation does not really enla%ode:

the data set. It can be realized by a simple modification of the

convolution procedure similar to [43]. The use of short-range

convolution kernels further reduces the propagation of trundaer every projection:

tion artifacts. e Compute reference point b=(r0, s0, t0)
As standard kernel, we used that of Shepp—Logan with full Compute auxiliary 3-vectors ax,ay,az

length. It is well known that spatial resolution mainly depends Loop over voxels: o

on the central components of the convolution kernel, whereasdo i= 1, nx

the outer ones are only necessary for the exact HU-level. Inour yx =b + ixax

intended application the physician is interested in anatomical do j= 1, ny

structures and not in quantitative measures. The use of shortker- vy —yx 4 jxay

nels not only reduces the truncation effect but also saves compu- qo k=1, nz

tation time if filtering is implemented in the spatial domain. The vz=vy+ksaz=(r, s, t)

shortest kernels are the unit kernel and the Laplace kernel. They |, _ r/t T

produce the (unfiltered) layergram and the so-called pure- v=s/t

construction. !.mear combinations of them are k_nO\_/vn as general Backproject imagepoint (u, v)

A-reconstruction [44]. For work toward quantitative imaging end do

full-length kernels have to be used. end do

end do

e units of u, v are column and row number,
As first shown at the 3-D97-meeting [45], and reported in the final imagepoint (u, v) then is calcu-

detail at the 3-D99 meeting [41], backprojection can be written lated e.g. by bilinear interpolation.

G. Convolution

H. Backprojection in Homogeneous Coordinates
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Fig. 5. Multiple aneurysms at the internal carotid artery (courtesy Dr. Mawad/Houston). Normal DSA image of the same patient as Fig. 6 (not part of the
3-D-acquisition run of Fig. 6).

Except for the renormalization step in the innermost loop On the contrary, recently proposed fast backprojection
this is a purely incremental algorithm. The combination of denethods [47], [48], based on direct sinogram integration,
scribing the geometry, i.e., 3-D-to-2-D mapping, by a single proequire special regularity of the considered sampling grids.
jection matrixP without the use of physical parameters with th&ourier methods [23] and methods derived from indirect
above proposed backprojection algorithm is very fast and pralgorithms [22], needing some interpolation (rebinning) for
duces high-quality images. The method is not only used in omtermediate functions, also suffer from the low number of
C-arm based systems but also in a microtomography systenpadjections. The proposed backprojection algorithm needs
the University of Erlangen [18]. five FLOPS within the innermost loop for arbitrary geometry,
whereas an implementations of the Feldkamp algorithm [23]
requires four FLOPS for ideal geometry.

» The backprojection is of the voxel driven type (not ray
driven).

« The orientation and position of the C-arm motion as well Additional Application Specific Calculations in
as imaging parameters such as image center and scalé§ogeneous Coordinates
along rows and columns are not required.

« The detector may be in arbitrary position, especially not The 3 x 4 projection matrices can easily be modified. Any
necessarily parallel to the-axis. change in the world coordinate system can be performed by a

o Even voxel coordinates are never exp||c|t|y calculated. matrix muItipIication fromthe right side, Changes ofthe detector
coordinate system by a multiplication from the left, but in any
Thus, this algorithm is sufficiently fast and very robust. It igase the transformation matrices have to be formulated in homo-
very flexible and not limited to ideal Feldkamp geometry. Ongeneous coordinates. An example for the second one is, that for
example for potential other applications is tomosynthesis [4&construction only a part of the original 2-D images is used to
with arbitrary sampling pattern. further enhance reconstruction speed, e.g., a central rectangle.

We summarize the main properties of the new procedure:
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Fig. 6. Multiple aneurysms at the internal carotid artery (courtesy Dr. Mawad/Houston). Volume rendered artificial views from differentsli@antierpatient
as in Fig. 5. Voxel size 0.14 mm, 132 projections.

If dec anddr denote the number of dropped columns and rowin matrices are all transformed to this new system. After this
from the beginning of the original image, the following matriXinal step during the calibration procedure, for every projection

will correct the changes in row and column indexing: we provide the following data set:

1 0 —dec Ap angular increment

A=|0 1 —dr|. (8)
00 1 a1 a2 ai3 by
a21 a22 a3 ba projection matrix

Much more important is the problem to establish a natural co- az1 agz agz 1
ordinate frame for the physician. In our standard application ) o
the projection matrices are estimated in high precision from the Uy Uz Uz Ug for distance weighting.

marker ring, see Fig. 4, independent from each other. So the

world coordinate system in whiclt acts, is defined by the lo- The angular informationAg may be used for sinogram
cation of the PDS during calibration and is not known duringyeighting. Scalar multiplication of the vectarwith the vector
later applications, where only the position of the patient relati@ Voxel coordinates (in normalized homogeneous coordinates)
to the C-arm (iso-center) can be seen. For that we compute 8¢S s, with 1/s* being the distance weighting factor (3) of

inter-frame rotation between different C-arm positions: the Feldkamp algorithm. The value sfcan also be computed
incrementally by simply increasing the dimension of the

Rt . vectors used in the backprojection algorithm of the last section
= Pj[ 0 le} : (9) from 3 to 4. A direct geometric interpretation of the vector

in Fig. 2 would bex{uq, u2, u3) = e = unit vector in direction
SO, anduy =T = |SO. Note that source positiof can be

From e_ach of these rotation; ; we can determlne.an XIS calculated from the projection matric#s=[AR, At] without
of rotationr and an angle of rotatiol\83. As described in .
decfomposmon.

[42], we developed for these calculations a new accurate metho
again avoiding matrix decomposition. Now from this informa-

tion about C-arm motion a new coordinate frame is estimated, S=-R't=—[p13] 'pa (10)
which is the best approximation to ideal Feldkamp geometry

and to the machine geometry (iso-center). The original projewith 3 x 3 matrix[p;3] = AR from the first three columns d?.
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Fig. 7. Aneurysm at the posterior inferior cerebellar artery (courtesy Dr. Bohm-Jurkovic/Linz). Volume rendering: different views and vacyjing GOpper
row) Solid. (Lower row) Translucent. Voxel size 0.24 mm, 50 projections.

Ill. RESULTS for a journal publication. The main difficulty for the physi-
cian is the complex topology of the vessel structures. From
A. Imaging of Cranial Vessel Trees a 3-D reconstruction, he or she can interactively generate ar-

tificial projections of the VOI from arbitrary directions, even

The focus of our research, as described in the introductiaraniocaudal. Figs. 5 and 6 show the same patient with mul-
is the imaging of cranial vessels. The intended medical appiiple aneurysms at the internal carotid artery. Fig. 5 shows
cation is neuroangiography for diagnosis and interventions (em-normal DSA image, Fig. 6 shows a selection of artificial
dovascular: dilation, stenting, embolization). Basis is a standar&-views (VR = volume rendering). In addition, the opacity
modality, the NEUROSTAR Plus, see Fig. 1. Images from a rfer the VR can be varied during visualization as shown in
tational angiography around the patient’s head are transferfgd. 7, where an aneurysm is shown in “solid” and “translu-
to an additional 3-D workstation for preprocessing, 3-D-CT re&ent” representation. In [11], the authors report about a 3-mo
construction, and visualization. Rotation is performed ovef208tudy (40 patients, 49 aneurysms together) comparing normal
in 5 s. Selective injection of contrast agent is typically 2.5 mI®SA and rotational angiography with 3-D software. Results
over 5.5 s, in total about 15 ml. An image intensifier with zoorfcitation from [11]): “In two patients, vessel-loops previously
format 22 or 33 cm is used as detector. 2-D-image size is 10@dscribed as aneurysms by DSA could be identified by 3-D
x 1024 pixels. The VOI to be reconstructed can be freely sangiography. In one patient, an aneurysm was diagnosed that
lected. Typically, a 25&ube is reconstructed with an isotropiccould not be detected by DSA..” Klucznik/Mawad [12] re-
voxel size of 0.1-0.3 mm. port: “In all patients, the 3-D imaging added detail and infor-

With a couple of international clinical test installations, thenation not possible with routine arteriography.” and they con-
benefit of this new modality has already been proven. Meadkude: “Three-dimensional rotational angiography will be an
while, such systems have received a Premarket Notificationdispensable tool for those treating vascular lesions through
of the U.S. Food and Drug Administration [510(k)] and aran endovascular approach.” Fig. 8 again demonstrates the
commercially available. Whereas the test systems all workadility to clarify a complex topology (multiple aneurysm plus
with 50 projections, the product version also allows to seleatmetal clip from a previous intervention). Surprisingly, there
a higher number. First results from these installations hasee no severe artifacts from the clip that could destroy the
recently been presented, see, e.g., [49]-[51], [12], or [léjorphological information. Fig. 9 shows an AVM, partially



WIESENT et al. ENHANCED 3-D-RECONSTRUCTION ALGORITHM

L

399

Fig. 8. Multiple aneurysms and metal clip (carotid artery) (courtesy Dr. Berenstein/New York). Volume rendering: different views, voxel size,(625 m
projections.

glued, without injection. The catheter visible in the left pamf an aSi-panel was mounted. This system is mechanically un-
of the images has a diameter of 0.25 mm, demonstrating #table. For the necessary online PDS we used our mechanical

high spatial resolution available with such systems. marker ring, but tested also other possibilities, like a new op-
tical method, described in detail in [52], and a method based on
B. Bone Imaging a commercially stereoscopic optical camera (Polaris, Northern

Digital, Canada). For reconstruction, we used normally 100 2-D
For investigations on possible further applications like borimages, each with 51% 512 pixels. Measurement time was
imaging, we installed an experimental setup in our laboratomore than 1 min, far beyond the requirements of vessel imaging.
For that, a movable commercial C-arm system (Siemens SIRHg. 10 shows a comparison from a reconstruction of a CT bone
MOBIL Compact) has been modified with an additional motgphantom using the three different systems for pose determina-
for automatic movement of the C-arm. As detector a prototypen. Fig. 11 shows very promising results from the joint of a
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SERIES 3289650 SERIES 3289650

512x512

Fig. 9. AVM, partially glued (courtesy Dr. Mawad/Houston). Two volume rendered nearly orthogonal views. No injection, only glue and catheten)0.25 m
visible. Voxel size 0.21 mm, 132 projections.

(b)

Fig. 10. Comparison of different pose determination systems. Unstable laboratory setup with 512 aSi-detector, 3-D reconstruction using different
geometrical information. (a) Maximum Intensity Projections of the different results from left to right: mechanical marker ring, Polaris, CGL) frameop
to bottom:z-MIP, y-MIP, z-MIP. (b) Photo of measurement phantom (CT bone calibration phantom).

cow’s leg. It seems that for bone imaging, 2-D slices in arb&. Computation Time

trary position (MPR technique, known from CT) are much more

important than for vessel imaging. These images are first experin our laboratory, we used a Siemens PC Celsius 630 with two
imental results, from which we believe, that with enhanced oRentium 11l Xeon 550 MHz processors. Reconstructing a®256
line PDS mobile systems with 3-D capability will be realistic ircube from 100 projections with 522512 pixels was performed
the future. in about 40 s.



WIESENT et al. ENHANCED 3-D-RECONSTRUCTION ALGORITHM 401

@ (b)

(© (d)

Fig. 11. Bone imaging with a joint of a cow’s leg. (a) One selected original projection of the object together with the marker ring for pose deterfb)natio
y-MIP of the reconstructed 3-D VOI. (c) Selecteeklice through the reconstructed volume. (d) Selegtetice through the reconstructed volume. Voxel size:
0.38 mm, 100 projections.

This time includes a fast convolution in the spatial domain These two examples show that fast 3-D reconstruction as nec-
with the proposed data mirroring. essary for use of such systems during intervention is possible

Schaller reported in [18] for the experimental microtomogwith standard hardware.
raphy system of the University of Erlangen a total time of 610 s
for reconstructing a 256cube from 180 projections each with
512x 512 pixels using a slower single processor Pentium I 233
MHz. He used Intel's DSP library for performing the filtering High-contrast CT (HCT) is possible using X-ray C-arm sys-
in the frequency domain. tems with only 50-100 projections, achieving high accuracy

IV. CONCLUSION
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in only a few minutes. The spatial resolution for such objects the projection matrix, and
(bone or vessels filled with contrast agent) has been shown to

be 0.1-0.3 mm. Essential for this is to determine the real ge- " da dz )z
ometry of such systems very accurately and to incorporate this d d

. TS : . vy _|du| | v/~
information into the reconstruction algorithm. The use of homo- Py 1= a | = d

geneous coordinates provides a new elegant and fast method, al-

lowing convolution and backprojection to be performed without

any explicit use of physical parameters. )
Results from laboratory measurements and from several clf{l0Ws how that mapping works.

[

2 1

ical test installations are very promising. Car_lcelling the third ro_w aPy, weget the desired _3-D-to-2-D
mapping P = [Ax, 0] with Ay =diag(d, d,1). This 3 x 4
APPENDIX matrix P describes the action of our camera in its normal po-

SHORT REVIEW ON HOMOGENEOUSCOORDINATES sition in world coordinates.

For a pointz in n-D space, we use the following coordinate

notations: @ 0 a
‘ B=\|0 g b
z=(x1, ..., Tp)" normal (Euclidean) coordinates 0 01
z=(x1, ..., x5, 1)! normalized homogeneous ) ) ) :
: describes the transformation to the detector coordinates (scaling
coordinates ; . . -
to pixel units and shift to the detector origin), and the upper
z=(w-z1, ..., triangular matrixA= BAp fully describes the camera, and
w-x,, w)', w#0 general homogeneous P =[A, 0] the mapping in normal position. In general position,

coordinates we only have to apply a rigid motioM, that moves the camera
) ) L to its normal position, to get the final form of the projection
For the homogeneous identity, we write= yiff £ = xy  atrices = [A, 0]M = [AR, Af]. The entities ofd are called

with an arbitrary scalak. # 0. _ intrinsic parameters, that @ and¢ extrinsic parameters of the
In matrix block notation, we now describe some transform%—_D_to_z_D mapping of the camera.

tions in homogeneous coordinates:
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