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Enhanced 3-D-Reconstruction Algorithm for C-Arm
Systems Suitable for Interventional Procedures

Karl Wiesent*, K. Barth, N. Navab, P. Durlak, T. Brunner, O. Schuetz, and W. Seissler

Abstract—Increasingly, three-dimensional (3-D) imaging tech-
nologies are used in medical diagnosis, for therapy planning, and
during interventional procedures. We describe the possibilities of
fast 3-D-reconstruction of high-contrast objects with high spatial
resolution from only a small series of two-dimensional (2-D) planar
radiographs. The special problems arising from the intended use
of an open, mechanically unstable C-arm system are discussed.
For the description of the irregular sampling geometry, homoge-
neous coordinates are used thoroughly. The well-known Feldkamp
algorithm is modified to incorporate corresponding projection ma-
trices without any decomposition into intrinsic and extrinsic pa-
rameters. Some approximations to speed up the whole reconstruc-
tion procedure and the tradeoff between image quality and com-
putation time are also considered. Using standard hardware the
reconstruction of a 2563 cube is now possible within a few min-
utes, a time that is acceptable during interventions. Examples for
cranial vessel imaging from some clinical test installations will be
shown as well as promising results for bone imaging with a labora-
tory C-arm system.

Index Terms—C-arm-based tomography, geometric calibration,
homogeneous coordinates, three-dimensional (3-D) image recon-
struction.

I. INTRODUCTION

NEURORADIOLOGY has always been at the forefront in
the introduction of new imaging technologies like CT,

MR, and PET. For interventional procedures like endovascular
techniques, true three-dimensional (3-D)-images of the cranial
vessel tree are of great interest for diagnosis and therapy
planning. The greatest challenge is the availability of such 3-D
information during the interventional procedure. A typical ex-
ample is the endovascular occlusion of aneurysms using either
detachable balloons, liquid occlusion material, or platinum
microcoils. We believe that the success of such procedures
could benefit from a combination with additional 3-D-imaging
capabilities during the intervention. Such an X-ray system
must keep the following characteristics: 1) it must have
near real-time fluoroscopic capabilities and roadmapping for
catheter placement; 2) it must provide accurate anatomical
information about the vessel lumen and the location of the
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Fig. 1. Siemens NEUROSTAR Plus.

embolizing material; and 3) it must allow unobstructed access
to the patient during intervention.

As a technical solution, we utilized a standard open C-arm
system (Fig. 1), performing a rotation around the object of about
200 degrees, acquiring about 50 radiographic 2-D-projections,
and reconstructing a true 3-D-image of the vessel tree within
a few minutes. Results from first clinical installations will be
shown in Section III. The method may be extended in the fu-
ture to other medical applications like bone imaging during or-
thopedic interventions (see Section III for first experimental re-
sults).

Research on image intensifier-based tomographic systems,
efficient cone-beam reconstruction, and algorithms for true 3-D
vessel imaging have a long history, see, e.g., [1]–[4] for ear-
lier work, [5]–[9] for more recent results, and [10]–[12] for
first clinical applications. A good description of medical mo-
tivation as well as technical challenges can be found in [13]
and the references therein. The greatest problems arise from
the low number of projections and the irregular sampling pat-
terns caused by the mechanical instability of such systems. The
most flexible algorithms to handle irregular geometry and nearly
all kinds of pre-information are algebraic methods, see [14],
[15] for an overview. A very sophisticated example even ca-
pable to handle inconsistent data is described in [16]. For our
intended use during intervention, we focus within this paper on
sufficiently fast flexible analytical methods for cone-beam ge-
ometries with an approximate circular orbit, i.e., modifications
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Fig. 2. Original Feldkamp geometry. (a) Perspective view. (b) Midplane.

of the Feldkamp algorithm, see Section II. The algorithms pre-
sented there are also useful for similar applications like SPECT
[17], microtomography [18], or nondestructive testing [19]. The
discussed variants, especially the proposed new backprojection
method, may be useful for all of them. Corrections of detector
data, like intensity correction and distortion correction of an
X-ray image intensifier (XRII), are discussed elsewhere [20],
[13]. Also visualization techniques for the 3-D-data sets are not
part of this paper.

II. M ATHEMATICAL METHODS

In this section, we will describe some problems and possible
mathematical solutions concerning 3-D reconstruction for the
considered open systems. Basis will be the well-known algo-
rithm of Feldkamp [2], that was derived for a circular orbit.
Therefore, we will refer to this situation as “Feldkamp geom-
etry.”

A. Basic Mathematical Model: Ideal Feldkamp Geometry

We start with the following ideal geometry (Fig. 2): The X-ray
source moves on an ideal circle (radius) within the –
plane around , the axis of rotation. The -system of Fig. 2
denotes the rotated -system, is the angle of rotation.
is the constant source-to-detector distance. The line from the
source position through the origin always hits the detector

at the origin of its 2-D-coordinate system– , and is orthog-
onal to the detector plane, i.e., it is the so-called optical axis
of the X-ray camera. This geometry is the basis of the original
Feldkamp algorithm [2]. It can be described by a weighted 1-D
convolution

(1)

(2)

followed by a weighted cone-beam backprojection:

(3)

with

and (4)

The input values represent line integrals through the object
(logarithms of measured intensities after all pre-corrections).
The sequential steps are: cosine weighting (1), 1-D convolution
[(2), kernel like in standard 2-D-CT], and distance weighted
backprojection (3). In practical implementations the constant
in (3) is part of the final scaling of the result. For the central

– plane this algorithm is identical to the well-known exact
2-D-fan-beam algorithm. For other planes it is only an approxi-
mate algorithm that however works well for small cone angles.
An exact algorithm does not exist, because this sampling geom-
etry violates Tuy’s-condition [21]–[23]. For mechanically un-
stable C-arm systems the deviations from the ideal Feldkamp-
geometry cannot be neglected. This will be discussed in the fol-
lowing sections.

B. Classification of Feldkamp Geometries

For further discussion we distinguish the following three
types of sampling geometry:

FG1: Ideal Feldkamp geometry
• Source path complete ideal circle.
• Constant X-ray camera, optical axis perpendicu-

larly hits the origin of the detector.
• Detector rows/columns are orthogonal/parallel to

axis of rotation.
• Regular (equidistant) sampling pattern.

FG2: Irregular stable Feldkamp geometry
• Close to ideal geometry, but deviations are not

negligible.
• In addition (most cases): Only partial rotation

(190–200 degrees).
• But: Constant for repeated experiments (offline

calibration possible).
FG3: Unstable Feldkamp geometry

• Irregular and time varying (online PDS neces-
sary)

We use the term PDS (pose determination system) for any
system, that determines the real geometry, either offline as a
calibration procedure, or online during data acquisition. In the
following, we provide some examples for this classification:

1) Use of a mechanically stable CT-gantry.
Such specialized systems like the Morphometer (as-

sumed perfect XRII-correction), see e.g., [24], are good
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Fig. 3. From simulation study: Artifact level versus angular increment.

for diagnosis, but do not allow unobstructed access to the
patient as needed for our intended application during in-
tervention. Class: FG1.

2) Setup with a turn-around table.
Such systems with fixed X-ray source and detector are

widely used in laboratories for basic experiments, see,
e.g., [25]. Other examples are microtomography systems
for medical applications, e.g., [18], [26], or systems for
nondestructive testing [19]. They are class FG1, if the
table mount is mechanically perfect, and class FG2 if not,
e.g., there is some tilt of the table, which is not negligible.

3) Stable medical C-arm systems.
It could be shown by experiments, e.g., [27], [13], that

some standard C-arm systems work reproducible such
that offline calibration is possible. Results from such a
system, the Siemens Neurostar Plus, are presented in Sec-
tion III. These class FG2 machines are the desired devices
for high-resolution true 3-D imaging during neurological
interventions.

4) Unstable systems.
In that case, an online PDS must be used. Experiments

with such systems of class FG3 are still basic research
that can benefit from investigations in robotics and vir-
tual reality. First results from such a laboratory setup are
presented in Section III.

The basic imaging system (focal spot2-D-detector), the
so-called X-ray camera, is usually modeled as an ideal pinhole
camera (mathematically: a central perspective mapping, see the
Appendix) and can, therefore, be described by a few parameters,

the so-called intrinsic parameters. This model and, therefore, the
following algorithms can also be used for other systems, like
SPECT with focusing collimators or a pinhole aperture. Note,
that systems from example 2 have a constant camera, whereas
systems of example 3 and 4 in general have a varying camera,
because, e.g., the focal length may change due to mechanical
instabilities.

C. Low Number of Projections

From sampling theory requirements have been obtained for
the ratio (with number of projections and
number of elements within a detector row) to lie between

and (but in every case 1), see, e.g., [28]–[32]. From
simulation studies, see Fig. 3, we got the novel result that
for , the number of projections, far below the theoretical
recommendations the following linear relationship holds:
artifact level , with standard deviation of
the artifacts measured in HU.

Therefore, accepting an artifact level of, e.g., 100–200 HU,
a reconstruction of fine high-contrast objects is possible with
only 40–150 projections. With proper windowing for the ob-
jects of interest (like bone or vessels filled with contrast agent)
these artifacts will not be visible. This is the important differ-
ence between normal (low-contrast) CT and high-contrast CT
(HCT). The low number of projections generates a natural limit
of the low-contrast capabilities of C-arm based tomography. In-
creasing , the number of projections, will not increase spatial
resolution and morphological information of high-contrast ob-
jects, e.g., an opacified vessel tree, but only decrease the ground
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artifact level following the above stated linear relationship at the
cost of additional patient dose. Low-dose and fast imaging are
important features for our intended use during intervention. For
diagnosis, when time is not so critical, additional postprocessing
methods may be applied, to reduce the basic artifacts. This is
still work in progress, for first results see [33].

D. Partial Rotation

From 2-D-fan-beam CT, it is known that a partial rotation
over 180 plus fan angle (instead of a full 360rotation) is suf-
ficient. In that case some data are measured twice. Parker [34]
recommended the application of a smooth weighting function
for compensation of this effect. Skew rays, typical for Feldkamp
geometry, do not really have such redundancies. This problem
is discussed, e.g., in [35]. We recommend to compute the Parker
weights for the central row of the detector and to supply them
without any further modification to all other rows (generalized
sinogram weighting).

E. Varying Camera and Sampling Geometry

For the reconstruction task, the actual sampling geometry has
to be known precisely. Within the filtering step, the deviation
from the ideal case can be neglected—we make a 1-D-convo-
lution row by row as in the ideal Feldkamp algorithm, ignoring
a possible small slope of the rows against the– -plane—but
for backprojection we need the precise geometrical information
and have to use it very accurately.

For that we have two general possibilities:

1) Interpolation of the measured data onto ideal mea-
surement geometry. The result can then be interpreted
as values from perfect Feldkamp geometry (circular
trajectory). Note: For diverging beams this is only ap-
proximately true.

2) Modification of the Feldkamp algorithm. Information
about the irregular sampling geometry is used within the
backprojection step.

In this paper, we concentrate on the second method, because
it produces slightly better spatial resolution [36]. The main
problem of such mechanically unstable systems is that of
accurate pose determination [27], [37], [13]. An imaging
system like that of Fig. 2 is normally described by 11 physical
parameters, six for the rigid motion of the X-ray camera
(extrinsic parameters) and five for the camera itself (intrinsic
parameters). Note however, that mathematically these param-
eters correspond to 10 degrees of freedom, because pixel size
of the detector and focal length act as a product and can not be
separated. Using homogeneous coordinates (see the Appendix)
the 3-D-to-2-D mapping can be described by a single 34
matrix , where describes the rigid motion
and the upper triangular 3 3 matrix the camera model in
normal position. In our case the intrinsic parameters, e.g., the
source detector distance, are not constant. This is an important
difference to robotics or virtual reality. One can measure the
physical parameters by special procedures [37], [27], [13],
[17], or use methods to measure the matrixdirectly. One pos-
sibility for that is to use a mechanical phantom and to estimate
(in a least square sense) from at least six measured points

Fig. 4. Projection geometry with marker ring.

[38], [39]. The matrix can be algebraically decomposed [38],
[40] into its intrinsic and extrinsic part (like QR-factorization)
and so, if we assume known constant pixel size, all physical
parameters of position and of X-ray camera can be determined
from . Another method is proposed by Rougeeet al. [39].
They also use a mechanical calibration phantom to estimate.
After that, is expressed as a nonlinear function of 9 unknown
physical parameters and the resulting equation is solved by a
conjugate gradient technique.

We use a marker phantom (Fig. 4) and estimatefrom about
100–150 points in very high precision. This phantom was orig-
inally constructed for online measurements [38], but for stable
systems like the Neurostar Plus (Fig. 1) it can also be used for an
offline calibration. To summarize: The 3-D-to-2-D mapping of
an X-ray projection can be described by a single 34 matrix.
Knowing the physical parameters, the matrix can easily be com-
puted. If the matrix is given, physical parameters can be calcu-
lated from it, if they are needed for sophisticated reconstruction
procedures like such of ART type. Our new approach is to use
the matrix without any decomposition and so to avoid errors
coming from these additional calculations.

F. Slim Algorithms versus Image Quality

Accepting the dominating artifact level caused by the low
number of projections, in HCT some parts of the Feldkamp al-
gorithm may be removed [41]. To discuss this, we first recall all
the steps of the proposed reconstruction procedure:

1) Precalculations—like XRII-correction, building loga-
rithms, etc. (not part of this paper). Output of that part
are the desired CT-measurement data (line integrals).

2) Preweighting of CT-data— weighting [azimuthal in-
tegration, (3)]; cosine weighting [Feldkamp, (1)]; sino-
gram weighting (Parker).

3) Convolution— optional data extrapolation (if projec-
tions are truncated).

4) Backprojection— distance weighting [Feldkamp,
(3)].

The highest image quality is naturally achieved by performing
all of the above steps and may be further improved by post-
processing methods like [33]. During intervention, a short re-
construction time is essential and morphological information is
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much more important than any information about the true den-
sity.

Therefore, once having accepted the relatively high ground
artifact level caused by the low number of projections, one can
remove parts of the above procedure, if the effect of that will be
lower than the accepted ground artifacts. Potential candidates
for that are all parts except convolution and backprojection,
which will be discussed in the next two sections. Spatial resolu-
tion of the reconstruction of high contrast objects is only deter-
mined by the innermost components of the convolution kernel
and exact backprojection. For quantitative imaging without any
bias this is not true.

The effect of cancelling out parts of the above procedure is
machine and application dependent. For our geometries the co-
sine weighting can be dropped most easily, because the values
are all very close to unity. Azimuthal weighting should be un-
necessary, if data acquisition is angle driven and not time driven.
Omitting distance weighting during backprojection produces a
slight cupping effect, that can be neglected for small reconstruc-
tion volumes. Dropping sinogram weighting is much more crit-
ical. As already known from 2-D reconstruction, it will pro-
duce a butterfly-shaped artifact. For performing this weighting,
knowledge of at least one physical parameter, the angle of ro-
tation, is necessary. Clearly, as long as even cancelling some of
the weighting steps is considered to be acceptable, small errors
in the physical parameters necessary to perform them should not
have great significance. Nevertheless, we developed a new ac-
curate method to compute the motion between two projections,
and from that the desired parameters, without decomposition of
the projection matrices, see Section II-I and [42].

G. Convolution

In most cases, the 2-D detector (XRII or flat panel detector)
does not cover the whole object. From such truncated projec-
tions severe artifacts may be produced by the usual convolu-
tion. To reduce this effect, an extrapolation of the data is a
well-known method. We got good results with mirroring the data
at both sides. This pseudo-extrapolation does not really enlarge
the data set. It can be realized by a simple modification of the
convolution procedure similar to [43]. The use of short-range
convolution kernels further reduces the propagation of trunca-
tion artifacts.

As standard kernel, we used that of Shepp–Logan with full
length. It is well known that spatial resolution mainly depends
on the central components of the convolution kernel, whereas
the outer ones are only necessary for the exact HU-level. In our
intended application the physician is interested in anatomical
structures and not in quantitative measures. The use of short ker-
nels not only reduces the truncation effect but also saves compu-
tation time if filtering is implemented in the spatial domain. The
shortest kernels are the unit kernel and the Laplace kernel. They
produce the (unfiltered) layergram and the so-called pure-re-
construction. Linear combinations of them are known as general

-reconstruction [44]. For work toward quantitative imaging
full-length kernels have to be used.

H. Backprojection in Homogeneous Coordinates

As first shown at the 3-D97-meeting [45], and reported in
detail at the 3-D99 meeting [41], backprojection can be written

as a sufficiently fast incremental algorithm based on direct use
of the projection matrices .

Let be an arbitrary object point in a given
world coordinate system in homogeneous coordinates (for
definition, see the Appendix). Then the 34 matrix maps
this point to the detector in homogeneous detector coordinates
(Fig. 4). After renormalization the units can be interpreted as
column-and row-number and : This can be written as:

(5)

where and are the homoge-
neous coordinates of the 2-D image pixel and the 3-D voxel
in the canonical homogeneous coordinate system, respectively.
The symbol is used for equality up to scale.

This is identical to what we need in a voxel driven backpro-
jection algorithm. So, the numerically unstable process of de-
composing the projection matrix into intrinsic and extrinsic pa-
rameters is not necessary. The direct use of the above equation,
a multiplication of a 3 4 matrix with a 4-vector
for every voxel would be very inefficient. Because only the final
result has to be renormalized (last component to 1) in analytical
projective geometry and because of the linearity of the system
a sufficiently fast algorithm could be developed.

Let

(6)

describe the position of a voxel. Then we have

(7)

The vectors are the first three columns of the projec-
tion matrix multiplied by the corresponding voxel sizes. The
result are the homogeneous pixel coordinates and after
renormalization we directly have column
and row number of the pixel to be backprojected. Thus matrix
multiplication has to be performed only once per projection. We
summarize the proposed new algorithm by the following pseu-
docode:

For every projection:
Compute reference point
Compute auxiliary 3-vectors
Loop over voxels:

Backproject imagepoint
end do

end do
end do

units of are column and row number,
the final imagepoint then is calcu-
lated e.g. by bilinear interpolation.
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Fig. 5. Multiple aneurysms at the internal carotid artery (courtesy Dr. Mawad/Houston). Normal DSA image of the same patient as Fig. 6 (not part of the
3-D-acquisition run of Fig. 6).

Except for the renormalization step in the innermost loop
this is a purely incremental algorithm. The combination of de-
scribing the geometry, i.e., 3-D-to-2-D mapping, by a single pro-
jection matrix without the use of physical parameters with the
above proposed backprojection algorithm is very fast and pro-
duces high-quality images. The method is not only used in our
C-arm based systems but also in a microtomography system at
the University of Erlangen [18].

We summarize the main properties of the new procedure:

• The backprojection is of the voxel driven type (not ray
driven).

• The orientation and position of the C-arm motion as well
as imaging parameters such as image center and scales
along rows and columns are not required.

• The detector may be in arbitrary position, especially not
necessarily parallel to the-axis.

• Even voxel coordinates are never explicitly calculated.

Thus, this algorithm is sufficiently fast and very robust. It is
very flexible and not limited to ideal Feldkamp geometry. One
example for potential other applications is tomosynthesis [46]
with arbitrary sampling pattern.

On the contrary, recently proposed fast backprojection
methods [47], [48], based on direct sinogram integration,
require special regularity of the considered sampling grids.
Fourier methods [23] and methods derived from indirect
algorithms [22], needing some interpolation (rebinning) for
intermediate functions, also suffer from the low number of
projections. The proposed backprojection algorithm needs
five FLOPS within the innermost loop for arbitrary geometry,
whereas an implementations of the Feldkamp algorithm [23]
requires four FLOPS for ideal geometry.

I. Additional Application Specific Calculations in
Homogeneous Coordinates

The 3 4 projection matrices can easily be modified. Any
change in the world coordinate system can be performed by a
matrix multiplication from the right side, changes of the detector
coordinate system by a multiplication from the left, but in any
case the transformation matrices have to be formulated in homo-
geneous coordinates. An example for the second one is, that for
reconstruction only a part of the original 2-D images is used to
further enhance reconstruction speed, e.g., a central rectangle.
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Fig. 6. Multiple aneurysms at the internal carotid artery (courtesy Dr. Mawad/Houston). Volume rendered artificial views from different directions. Same patient
as in Fig. 5. Voxel size 0.14 mm, 132 projections.

If and denote the number of dropped columns and rows
from the beginning of the original image, the following matrix
will correct the changes in row and column indexing:

(8)

Much more important is the problem to establish a natural co-
ordinate frame for the physician. In our standard application
the projection matrices are estimated in high precision from the
marker ring, see Fig. 4, independent from each other. So the
world coordinate system in which acts, is defined by the lo-
cation of the PDS during calibration and is not known during
later applications, where only the position of the patient relative
to the C-arm (iso-center) can be seen. For that we compute the
inter-frame rotation between different C-arm positions:

(9)

From each of these rotations we can determine an axis
of rotation and an angle of rotation . As described in
[42], we developed for these calculations a new accurate method
again avoiding matrix decomposition. Now from this informa-
tion about C-arm motion a new coordinate frame is estimated,
which is the best approximation to ideal Feldkamp geometry
and to the machine geometry (iso-center). The original projec-

tion matrices are all transformed to this new system. After this
final step during the calibration procedure, for every projection
we provide the following data set:

angular increment

projection matrix

for distance weighting.

The angular information may be used for sinogram
weighting. Scalar multiplication of the vectorwith the vector
of voxel coordinates (in normalized homogeneous coordinates)
gives , with being the distance weighting factor (3) of
the Feldkamp algorithm. The value ofcan also be computed
incrementally by simply increasing the dimension of the
vectors used in the backprojection algorithm of the last section
from 3 to 4. A direct geometric interpretation of the vector
in Fig. 2 would be: unit vector in direction
SO, and SO. Note that source position can be
calculated from the projection matrices without
decomposition:

(10)

with 3 3 matrix from the first three columns of .
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Fig. 7. Aneurysm at the posterior inferior cerebellar artery (courtesy Dr. Böhm-Jurkovic/Linz). Volume rendering: different views and varying opacity. (Upper
row) Solid. (Lower row) Translucent. Voxel size 0.24 mm, 50 projections.

III. RESULTS

A. Imaging of Cranial Vessel Trees

The focus of our research, as described in the introduction,
is the imaging of cranial vessels. The intended medical appli-
cation is neuroangiography for diagnosis and interventions (en-
dovascular: dilation, stenting, embolization). Basis is a standard
modality, the NEUROSTAR Plus, see Fig. 1. Images from a ro-
tational angiography around the patient’s head are transferred
to an additional 3-D workstation for preprocessing, 3-D-CT re-
construction, and visualization. Rotation is performed over 200
in 5 s. Selective injection of contrast agent is typically 2.5 ml/s
over 5.5 s, in total about 15 ml. An image intensifier with zoom
format 22 or 33 cm is used as detector. 2-D-image size is 1024

1024 pixels. The VOI to be reconstructed can be freely se-
lected. Typically, a 256cube is reconstructed with an isotropic
voxel size of 0.1–0.3 mm.

With a couple of international clinical test installations, the
benefit of this new modality has already been proven. Mean-
while, such systems have received a Premarket Notification
of the U.S. Food and Drug Administration [510(k)] and are
commercially available. Whereas the test systems all worked
with 50 projections, the product version also allows to select
a higher number. First results from these installations have
recently been presented, see, e.g., [49]–[51], [12], or [11]

for a journal publication. The main difficulty for the physi-
cian is the complex topology of the vessel structures. From
a 3-D reconstruction, he or she can interactively generate ar-
tificial projections of the VOI from arbitrary directions, even
craniocaudal. Figs. 5 and 6 show the same patient with mul-
tiple aneurysms at the internal carotid artery. Fig. 5 shows
a normal DSA image, Fig. 6 shows a selection of artificial
VR-views (VR volume rendering). In addition, the opacity
for the VR can be varied during visualization as shown in
Fig. 7, where an aneurysm is shown in “solid” and “translu-
cent” representation. In [11], the authors report about a 3-mo
study (40 patients, 49 aneurysms together) comparing normal
DSA and rotational angiography with 3-D software. Results
(citation from [11]): “In two patients, vessel-loops previously
described as aneurysms by DSA could be identified by 3-D
angiography. In one patient, an aneurysm was diagnosed that
could not be detected by DSA .” Klucznik/Mawad [12] re-
port: “In all patients, the 3-D imaging added detail and infor-
mation not possible with routine arteriography.” and they con-
clude: “Three-dimensional rotational angiography will be an
indispensable tool for those treating vascular lesions through
an endovascular approach.” Fig. 8 again demonstrates the
ability to clarify a complex topology (multiple aneurysm plus
a metal clip from a previous intervention). Surprisingly, there
are no severe artifacts from the clip that could destroy the
morphological information. Fig. 9 shows an AVM, partially
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Fig. 8. Multiple aneurysms and metal clip (carotid artery) (courtesy Dr. Berenstein/New York). Volume rendering: different views, voxel size 0.25 mm, 50
projections.

glued, without injection. The catheter visible in the left part
of the images has a diameter of 0.25 mm, demonstrating the
high spatial resolution available with such systems.

B. Bone Imaging

For investigations on possible further applications like bone
imaging, we installed an experimental setup in our laboratory.
For that, a movable commercial C-arm system (Siemens SIRE-
MOBIL Compact) has been modified with an additional motor
for automatic movement of the C-arm. As detector a prototype

of an aSi-panel was mounted. This system is mechanically un-
stable. For the necessary online PDS we used our mechanical
marker ring, but tested also other possibilities, like a new op-
tical method, described in detail in [52], and a method based on
a commercially stereoscopic optical camera (Polaris, Northern
Digital, Canada). For reconstruction, we used normally 100 2-D
images, each with 512 512 pixels. Measurement time was
more than 1 min, far beyond the requirements of vessel imaging.
Fig. 10 shows a comparison from a reconstruction of a CT bone
phantom using the three different systems for pose determina-
tion. Fig. 11 shows very promising results from the joint of a
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Fig. 9. AVM, partially glued (courtesy Dr. Mawad/Houston). Two volume rendered nearly orthogonal views. No injection, only glue and catheter (0.25 mm)
visible. Voxel size 0.21 mm, 132 projections.

(a) (b)

Fig. 10. Comparison of different pose determination systems. Unstable laboratory setup with 512� 512 aSi-detector, 3-D reconstruction using different
geometrical information. (a) Maximum Intensity Projections of the different results from left to right: mechanical marker ring, Polaris, CCD camera; from top
to bottom:x-MIP, y-MIP, z-MIP. (b) Photo of measurement phantom (CT bone calibration phantom).

cow’s leg. It seems that for bone imaging, 2-D slices in arbi-
trary position (MPR technique, known from CT) are much more
important than for vessel imaging. These images are first exper-
imental results, from which we believe, that with enhanced on-
line PDS mobile systems with 3-D capability will be realistic in
the future.

C. Computation Time

In our laboratory, we used a Siemens PC Celsius 630 with two
Pentium III Xeon 550 MHz processors. Reconstructing a 256
cube from 100 projections with 512512 pixels was performed
in about 40 s.
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(a) (b)

(c) (d)

Fig. 11. Bone imaging with a joint of a cow’s leg. (a) One selected original projection of the object together with the marker ring for pose determination. (b)
y-MIP of the reconstructed 3-D VOI. (c) Selectedx-slice through the reconstructed volume. (d) Selectedy-slice through the reconstructed volume. Voxel size:
0.38 mm, 100 projections.

This time includes a fast convolution in the spatial domain
with the proposed data mirroring.

Schaller reported in [18] for the experimental microtomog-
raphy system of the University of Erlangen a total time of 610 s
for reconstructing a 256cube from 180 projections each with
512 512 pixels using a slower single processor Pentium II 233
MHz. He used Intel’s DSP library for performing the filtering
in the frequency domain.

These two examples show that fast 3-D reconstruction as nec-
essary for use of such systems during intervention is possible
with standard hardware.

IV. CONCLUSION

High-contrast CT (HCT) is possible using X-ray C-arm sys-
tems with only 50–100 projections, achieving high accuracy
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in only a few minutes. The spatial resolution for such objects
(bone or vessels filled with contrast agent) has been shown to
be 0.1–0.3 mm. Essential for this is to determine the real ge-
ometry of such systems very accurately and to incorporate this
information into the reconstruction algorithm. The use of homo-
geneous coordinates provides a new elegant and fast method, al-
lowing convolution and backprojection to be performed without
any explicit use of physical parameters.

Results from laboratory measurements and from several clin-
ical test installations are very promising.

APPENDIX

SHORT REVIEW ON HOMOGENEOUSCOORDINATES

For a point in -D space, we use the following coordinate
notations:

normal (Euclidean) coordinates

normalized homogeneous
coordinates

general homogeneous
coordinates

For the homogeneous identity, we write iff
with an arbitrary scalar .

In matrix block notation, we now describe some transforma-
tions in homogeneous coordinates:

affine transformation with an arbitrary affine trans-
formation matrix. Important examples are: a rotation
matrix, and a scaling matrix. Let

denote the unit matrix. Then we have

translation matrix, and

general rigid motion with rotation matrix and translation
vector . Note, that if a pure translation is followed by a pure
rotation the translation part of the resulting rigid motion will
be .

Any modification of the th row of the above matrices
describes a projective part of a general linear mapping in homo-
geneous coordinates. We restrict now to and describe an
ideal pinhole camera in its normal position with source at the
origin and assumed detector plane perpendicular to the-axis
at . We get:

as the projection matrix, and

shows how that mapping works.
Cancelling the third row of , we get the desired 3-D-to-2-D

mapping with . This 3 4
matrix describes the action of our camera in its normal po-
sition in world coordinates.

describes the transformation to the detector coordinates (scaling
to pixel units and shift to the detector origin), and the upper
triangular matrix fully describes the camera, and

the mapping in normal position. In general position,
we only have to apply a rigid motion , that moves the camera
to its normal position, to get the final form of the projection
matrices: . The entities of are called
intrinsic parameters, that of and extrinsic parameters of the
3-D-to-2-D mapping of the camera.
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