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Robust Gradient-Based 3-D/2-D Registration
of CT and MR to X-Ray Images
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Abstract—One of the most important technical challenges in
image-guided intervention is to obtain a precise transformation
between the intrainterventional patient’s anatomy and corre-
sponding preinterventional 3-D image on which the intervention
was planned. This goal can be achieved by acquiring intrainterven-
tional 2-D images and matching them to the preinterventional 3-D
image via 3-D/2-D image registration. A novel 3-D/2-D registration
method is proposed in this paper. The method is based on robustly
matching 3-D preinterventional image gradients and coarsely
reconstructed 3-D gradients from the intrainterventional 2-D
images. To improve the robustness of finding the correspondences
between the two sets of gradients, hypothetical correspondences
are searched for along normals to anatomical structures in 3-D
images, while the final correspondences are established in an
iterative process, combining the robust random sample consensus
algorithm (RANSAC) and a special gradient matching criterion
function. The proposed method was evaluated using the publicly
available standardized evaluation methodology for 3-D/2-D regis-
tration, consisting of 3-D rotational X-ray, computed tomography,
magnetic resonance (MR), and 2-D X-ray images of two spine
segments, and standardized evaluation criteria. In this way, the
proposed method could be objectively compared to the intensity,
gradient, and reconstruction-based registration methods. The
obtained results indicate that the proposed method performs
favorably both in terms of registration accuracy and robustness.
The method is especially superior when just a few X-ray images
and when MR preinterventional images are used for registration,
which are important advantages for many clinical applications.

Index Terms—Image-guided, intensity gradients, interven-
tion, surgery, three-dimensional/two-dimensional (3-D/2-D)
registration.

I. INTRODUCTION

EDICAL imaging has long been crucial in providing the
M clinician with information about the internal anatomy
of the human body, facilitating medical diagnosis, monitoring
of disease or treatment progress, and planning of medical inter-
ventions. A successful intervention commonly requires that the
clinician, using knowledge accumulated over years of training,
in his mind establishes the correspondence between the patient
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and the information in his preoperative images. The desire to
facilitate the establishment of correspondence and the constant
need to make the interventions even more accurate and less in-
vasive gave rise to the discipline of image-guided intervention
(IGI). The essence of IGI is to help to diagnose, plan, simu-
late, guide, or otherwise assist an interventionalist or possibly a
robot in performing an interventional procedure (surgery, radi-
ation therapy, chemotherapy, biopsy, etc.) by using high-quality
preinterventional medical data, usually computed tomography
(CT) or magnetic resonance (MR) images in the intervention
room. One of the most important technical challenges of an
IGI system is to obtain a precise transformation between the
patient’s anatomy in the interventional coordinate system and
any 3-D point in the preinterventional image coordinate system.
This can be achieved by registering the preinterventional data
either directly to the patient or indirectly to one or more 3-D
or 2-D images of the patient acquired during intervention. The
correct transformation allows precise 3-D positioning of the in-
terventional instruments in preinterventional images relative to
the final target and nearby vulnerable structures that are to be
avoided during the intervention. IGI is therefore most beneficial
for surgical applications (neurosurgery [1], [2], spinal surgery
[3], orthopedics [4]-[6]) and radiotherapy [7]-[10], where the
target must be effectively treated (radiated) while minimizing
damage to the healthy tissue.

With the widespread use of numerous 3-D and 2-D imaging
modalities, registration of images of different modalities and
dimensions has become an important issue of IGI. Commonly,
X-ray or ultrasound imaging is used to acquire images during
intervention, while CT and/or MR images are typically the
preinterventional modalities of choice, yielding detailed 3-D
anatomical information that can be efficiently exploited if
registered to the intrainterventional images. A vast number
of 3-D/2-D registration methods proposed in the past can be
classified according to many criteria, such as the nature of
registration basis, the nature and domain of transformation,
optimization procedure, modalities involved, etc., [11]. Most
traditionally the 3-D/2-D methods can be coarsely classified
into feature-based and intensity-based methods. However, to
further discriminate and survey the major characteristics of the
existing methods, we classify the methods into four categories,
namely into the feature-based, intensity-based, gradient-based,
and reconstruction-based methods.

Feature-based 3-D/2-D registration methods [4], [12]-[17]
are concerned with finding the transformation that minimizes
the distances between corresponding features extracted from
the preinterventional image or anatomical model and the in-
trainterventional image. The features can be either extrinsic,
requiring attachment of fiducial markers, or intrinsic, obtained
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by extracting features of anatomical structures. The fidu-
cial markers are either implanted into bone of the patient or
skin-affixed. Because implanted fiducials yield very accurate
registrations, they are commonly used to define the reference
or “gold” standard registration [18], [19]. However, such im-
plantation is invasive and may be inconvenient to the patient.
On the other hand, due to skin elasticity, fiducials attached to
skin produce less accurate registration results. The less invasive
but more sophisticated intrinsic approach uses points, contours,
or surfaces extracted from image data sets [4], [13]-[15] or
from statistical models of anatomy [16], [17]. Some form of
outlier removal is commonly used to refine the features used for
registration. Extraction of geometrical features greatly reduces
the amount of data, which in turn makes the registration fast.
However, the accuracy of the procedure is directly dependent
upon the accuracy of the segmentation, which by itself is a
nontrivial procedure to perform automatically, while manual
segmentation is time consuming and subjective.

Intensity-based registration methods use all the image
data available by matching image intensities [2], [3], [7]-[9],
[20]-[23]. To compare intensities of 3-D CT and 2-D X-ray
images in the 2-D domain, projection images called digitally
reconstructed radiographs (DRRs) are created from the CT
image. The matching process is carried out by optimizing
the measure of similarity between the DRR(s) and the X-ray
image(s). A variety of similarity measures was proposed in the
past [2], [3], [21], [22], among which the optimal similarity
measure seems to be application specific, although gradient
and correlation based similarity measures yield the most ac-
curate results [8], [21], [23], [24]. By using all the available
information, the intensity-based methods generally outperform
the intrinsic feature-based methods in terms of accuracy but
the large amount of data makes intensity-based methods rather
slow. This drawback can be reduced by using faster methods
for DRR generation [25]-[27] or by reducing the matching to
aregion of interest [2], [3], [7], [8], [21]-[23], all of which can
be further accelerated using hardware-acceleration methods
[8]. However, by projecting a high-quality 3-D image into 2-D,
valuable 3-D information may be lost. Furthermore, since there
is practically no correspondence between MR-based DRRs and
X-ray images, the intensity-based methods are generally not
suitable for registration of MR to X-ray images.

In gradient-based registration methods a subset of 3-D inten-
sity gradients is compared to X-ray gradients [28] or a subset
of 2-D X-ray gradients is compared to 3-D intensity gradients
[6]. Gradient-based methods are accurate and the reduced set
of significant gradients makes the gradient-based methods fast.
Furthermore, as 3-D gradients can also be extracted from MR
images, MR to X-ray 3-D/2-D registration is also possible [28].
However, registration of intensity gradients typically results in
poor registration convergence, if the initial misregistration is
large [6], [28].

Most recently, reconstruction-based methods have been pro-
posed, that first reconstruct a 3-D image from a few fluoroscopic
or X-ray images [29], [30], and then perform 3-D/3-D registra-
tion. To overcome the problem of poor quality of a 3-D image
reconstructed from only a few fluoroscopic X-ray images, a ro-
bust mutual information based similarity measure, called asym-
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metric multifeature mutual information, has recently been pro-
posed [29], [31]. The measure uses additional spatial features
in the form of intensity gradients. An extensive evaluation has
shown that the 3-D/2-D reconstruction-based method [29] out-
performs the gradient-based method [28] in terms of capture
range and success rate. However, reconstruction-based methods
are slower and typically require more intrainterventional im-
ages, especially for MR to X-ray registration, which may be a
limitation for clinical use.

The aim of this work is to combine the advantages of gra-
dient-based and reconstruction-based methods so as to obtain a
robust 3-D/2-D registration method for both 3-D CT and MR
preinterventional images that will require only a small number
of 2-D intrainterventional images. The proposed method is
based on matching 3-D gradients of 3-D images to 3-D gradi-
ents coarsely reconstructed from 2-D images. To improve the
process of finding the correspondences between the two sets of
gradients and thereby the robustness of the registration method,
hypothetical correspondences are searched for along normals to
anatomical structures in 3-D images, while the final correspon-
dences are established in an iterative process, combining the
robust random sample consensus algorithm (RANSAC) [32]
and special gradient matching criterion function. The novel
method has been evaluated using the standardized evaluation
methodology for 3-D/2-D registration [33], which enables
objective comparison to some of the well-known registration
methods [21], [28], [29].

II. METHOD

The goal of rigid 3-D/2-D registration is to find a transforma-
tion T that relates the coordinate system Sy, of the 3-D prein-
terventional image to the world or patient coordinate system S,,
(Fig. 1). To estimate this transformation by using 2-D intrainter-
ventional images, the X-ray acquisition system needs to be cal-
ibrated so that the transformation T'. between the intrainterven-
tional image coordinate system Sj,,» and the world coordinate
system S, is established [34]. We focus on the calculation of the
six parameters q = (tg,ty,t.,ws, wy,w;) that define the rigid
transformation T and relate the coordinate system Sp;. of the
preinterventional image to the world coordinate system S,,. The
description of the proposed method is divided into three sub-
sections. The first describes the calculation of gradient fields,
the second addresses the gradient correspondence maximiza-
tion, while the third outlines the gradient-reconstruction based
registration.

A. Calculation of Gradient Fields

The proposed method is based on the assumption that strong
intensity gradients in 2-D X-ray images correspond to dis-
tinctive boundaries of anatomical structures in 3-D CT or MR
images [28]. Using this idea, the 3-D preinterventional image
is preprocessed to extract a set of strong intensity gradients
u(p;); ¢« = 1,2,...,1, that generally represent the surfaces
and boundaries of anatomical structures and estimate the cor-
responding surface normals at 3-D points p; defined in the
coordinate system Sy, of the preinterventional image.
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Fig. 1. 3-D/2-D registration procedure and corresponding geometrical setup
for the registration of gradients u(p; ) representing the boundaries of anatomical
structures in a 3-D image and the coarsely reconstructed gradient field v(p)
from the 2-D gradient images v2?.

To coarsely reconstruct the gradients from 2-D intrain-
terventional images, each 2-D intrainterventional image
77 = 1,2,...,J, is preprocessed to obtain its 2-D gradient
field v*”(p3P). The extracted gradients v>P (p3”) from all .J
X-ray images are then back-projected into 3-D [28] and their
information integrated in 3-D by simple summation so as to
obtain a coarsely reconstructed 3-D gradient field v(p):

J n; x v2P 2D e 2D _ g.
V(p):Z( j X n(pj ))X J(p)lp] Jl

-e;(p) Ip — s

J=1

6]

where p is a 3-D position, s; the position of the X-ray source of
the jth 2-D image and p?D the corresponding projection of p
to the jth 2-D image, n; the unit normal to the jth 2-D image,
e;(p) a unit vector defining the projection of point p to the jth
2-D image, and v2P the extracted gradient in the jth 2-D image,
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all defined in the world coordinate system S,, (Fig. 1). The first
term in (1) represents the component of the gradient v2” (p?D )
that is perpendicular to the projection beam e;(p), while the
second term represents the back-projection and corresponding
scaling, which depends on the 3-D position of p [28].

In this way, the 3-D/2-D registration problem is translated to
the problem of 3-D/3-D registration of a set of gradients u(p;)
obtained from the 3-D preinterventional image and the coarsely
reconstructed gradient field v(p) from the 2-D intrainterven-
tional images.

B. Gradient Correspondence Maximization

Registration of the gradient sets u(p;) to v(p) is achieved by
applying a transformation T to gradients u(p; ) and maximizing
the correspondences with the gradient field v(p), using a robust
gradient-matching criterion function (CF), like the one proposed
in [28]

CF(TJ.I(pJ,V(p))
X T um)l (T )l flas)
I T ’
Yzt T -u(pi)| - X 5=y [V(T - pi)

where T - u(p;) denotes rigid transformation T of the gradi-
ents u(p;), i.e., rigid transformation T - p; of the points p; and
corresponding rotations of gradients u(p;), and where v(T -
pi) denotes the reconstructed gradients that correspond to the
transformed gradients T - u(p;) at positions T - p;. The angle
weighting function f(c;) penalizes the angle difference a; be-
tween the corresponding gradients T - u(p;) and v(T - p;)

flai)
_f cos™(a; —m-180°), |a; — m - 180°| < 90°
10, otherwise )

3)

The parameter n determines the sensitivity to angle difference
«; and the parameter m; m = 0 or 1, depends on the gradient di-
rectional correspondence between the imaging modalities. For
example, m = 0 for CT or 3DRX to X-ray registration in which
the corresponding registered intensity gradients are supposed to
have the same directions, while m = 1 for MR to X-ray regis-
tration in which the corresponding registered intensity gradients
have the opposite directions.

C. Gradient Reconstruction-Based Registration

Optimizing the CF in (2) yields a gradient reconstruc-
tion-based (GRB) registration method, which is similar to the
gradient-based (GB) method [28], but with the criterion func-
tion with the coarsely reconstructed 3-D gradients from all the
2-D images and not by summing the criterion functions of indi-
vidual 2-D images as in [28]. Similarly to GB, the GRB method
should be fast, robust to outliers, and potentially accurate. How-
ever, because directly relating image gradients usually results
in poor registration convergence, the GRB method should be
useful for fine registration of coarsely preregistered images. To
increase the convergence, the method is further sophisticated
into the so-called robust gradient reconstruction-based (RGRB)
method. The RGRB method combines the similarity measure
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Fig. 2. Flowchart of the RGRB 3-D/2-D registration method.

(2) of the GRB method and a robust iterative registration
scheme, interleaving the generation and selection of hypothet-
ical gradient correspondences. In the hypothesis generation
step, hypothetical point-to-point geometrical correspondences
between each gradient u(p;) and the corresponding gradient
field v(p) is established along a line defined by gradient
u(p; ). In the hypothesis selection step, the three point-to-point
correspondences, defining the 3-D rigid transformation T, that
maximize the similarity (2) between all gradients T - u(p;)
and the coarsely reconstructed gradient field v(p) are robustly
selected among all pregenerated hypothetical point-to-point
correspondences. The flowchart of the RGRB method is shown
in Fig. 2.

First, in the hypothesis generation step of the kth iteration;
k = 1,2,..., K, for the current registration transformation
kT, hypothetical point-to-point geometrical correspondences
(pi,pi(d)) between each gradient u(p;) and the coarsely
reconstructed gradient field v(p) are established by finding the
points p;(d)

pi(d) = pi + uc(pi) - d 4)

at a distance d along the direction u.(p;) of the gradient
u(p;);ue(pi) = u(p;)/|u(p;)|, using fixed sized increments
[35]. The optimal point p;(d*) maximizes the point-to-point
gradient similarity between the gradient *T - u(p;) and corre-
sponding gradient v(*T - p;(d))

() = asg (T - u(py)| - V(T
pi(d)

Pi(d)] - f(ai) - Fg(d)) (5
where ¥ g(d) is a monotonously decreasing weighting function

that penalizes larger distances d from p,. The gradient v(*T -
pi(d)) is obtained by interpolation of the gradient field v(p).
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For a current registration transformation *T and for each gra-
dient *T - u(p;), the obtained hypothetical point-to-point geo-
metrical correspondence (p;, pi(d*)),7i = 1,2,..., I, thus rep-
resents the strongest and most colinear reconstructed gradient
v(*T - p;(d*)) along the line defined by u(p;).

Second, in the hypothesis selection step, the current registra-
tion transformation *T is refined:

by an incremental transformation *AT defined by the prese-
lected hypothetical point-to-point geometrical correspondences
(p:,pi(d*)). This is carried out in a robust manner by adapting
a random sample consensus algorithm (RANSAC) [32]. First,
three, a minimal number for 3-D rigid transformation, point-to-
point correspondences (p;,p;(d*)) are repeatedly randomly se-
lected L times; [ = 1,2,..., L, from all I hypothetical cor-
respondences, least-squares fitted to obtain the hypothetical in-
cremental transformation *! AT and hypothetical transforma-
tion K+ 1IT = FT . B! AT, Next, all gradients u(p;) are trans-
formed by **1!T, yielding **%!T - u(p;). Finally, the trans-
formation that maximizes the sample consensus, i.e., the robust
gradient-matching function (2) between all transformed gradi-
ents *+1LIT . u(p;) and the coarsely reconstructed gradient field
v(p), is selected

T = arg max CF(*TLT, u(p;), v(p)). @)

k+1,0T

The registration transformation *T is iteratively; k =
1,2,..., K, refined by interleaving the hypothesis generation
and the hypothesis selection step and changing (annealing) the
distance weighting function ¥g(d) in (5) by the square root of
the iteration index k

*9(d) = g(d - V). (8)

Considering the Gaussian weighted function g(d) and (8), re-
sults in the distance weighting function:

k —3 (=)
g(d)=e 2 walVk )

where o, is the distance weighting parameter, defining
the point-to-point correspondence-finding capture range
PCR;PCR = 04/ Vk, that decreases by the square root of the
iteration index k. Large initial pcr(k = 1,2,3,...) enables
the selection of hypothetical point-to-point correspondences
at larger distances d and thereby increases the registration
capture range. On the other hand, a smaller pcr in the final
iterations (kK — K') generates more hypothetical point-to-point
correspondences at smaller distances and thereby increases the
registration accuracy.

Since the RGB method should be fast and accurate, while the
RGRB method was designed to increase the robustness of the
registration, we also introduce an extension of the RGRB by the
GRB method, yielding the so-called RGRB extended method
(RGRBe) as it might prove the most optimal solution in terms of
speed, accuracy and robustness of registration. For implemen-
tation details the reader is referred to Section III-C.
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MR

Gradient reconstruction from 11 X-rays

Fig. 3. Axial and lateral cross-sections taken from 3DRX, CT, and MR VOIs (top row from left to right), and coarsely reconstructed 3-D gradients from 2, 5, and

11 X-ray images (bottom row from left to right).

III. REGISTRATION EVALUATION

Evaluating the performance of a 3-D/2-D registration method
requires a reference data set with known reference registration
[36] also refered to as “gold” standard registration [19], [33].
A variety of validation approaches were used in the past, but to
the best of our knowledge, currently there are only two refer-
ence data sets for 3-D/2-D registration publicly available [19],
[33]. The publicly available! standardized evaluation method-
ology [33], consists of image data sets, reference transforma-
tions, regions of interest with corresponding centers of rota-
tions, and measures for registration error, capture range, and
success rate. Using this methodology in the current study, we
were able to objectively compare the proposed method to three
well-known 3-D/2-D registration methods. Namely, the inten-
sity-based method (IB) [21] that compares 2-D digitally recon-
structed radiographs (DRRs) and X-ray images using the gra-
dient difference criterion function, the gradient-based method
(GB) [28] that matches 3-D normals to bony surfaces and 2-D
X-ray gradients back-projected into 3-D, and the reconstruc-
tion-based method (RB) [29] that integrates 2-D X-ray image in-
formation in 3-D and then performs 3-D/3-D image registration
by a special multifeature mutual information similarity measure.

A. Experimental Data

The experimental image data consisted of 2-D X-ray images,
CT and MR images, and 3DRX images of two defrosted seg-
ments of a spinal column with some soft tissue around both
segments. One spinal segment consisted of three thoracolumbal
vertebral bodies while the other of five thoracic vertebral bodies.
The X-ray images were obtained by a clinical 3DRX system (In-
tegris BV5000, Philips Medical Systems). A set of 100 X-ray
images was acquired for each spinal segment in 8 s runs of 180°
rotation around the imaged object. The images of the first and
the second segment were acquired with image intensifier size
of 380 and 310 mm, respectively. The 3DRX images were re-
constructed from 100 X-ray projection images. The CT images
were acquired with a clinical multislice CT scanner (MX8000,

Thttp://www.isi.uu.nl/Research/Databases/GS/

TABLE 1
SIZES AND RESOLUTIONS OF THE X-RAY, 3DRX, CT, AND MR IMAGES

Modality ~ Segment Resolution Size
X-ray 1 0.63x0.63 mm? 5122
2 0.53x0.53 mm? 5122
3DRX 1 0.87x0.87x0.87 mm? 2563
2 0.52x0.52x0.52 mm?3 2563
CT 1 0.31x0.49x0.31 mm?3  320x260x320
2 0.31x0.49x0.31 mm?3  280x300x300
MR 1 1.00x0.75x0.75 mm?3  100x256x256
2 1.00x0.88x0.88 mm?3  120x256x256

IDT 16, Philips Medical Systems). The MR images were ob-
tained with a 1.5-T MR scanner (Gyroscan NT, Philips Medical
Systems) using a sagittal 3-D turbo spin echo acquisition (turbo
factor 29, TR = 1500 ms, TE = 90 ms). Examples of the
acquired 3DRX, CT, and MR images are shown in Fig. 3 (top
row), while the sizes and resolutions of all image data are given
in Table 1.

The reference registration between 3DRX images and 2-D
projection images was already established in the process of cre-
ating 3DRX images, while the reference registrations of CT and
MR images to 2-D X-ray images were obtained by a 3-D/3-D
rigid registration of CT and MR images to the corresponding
3DRX images using the mutual information based registration
method [37]. The error of the reference registration was eval-
uated to be similar to the error of 3-D/3-D registration, which
was considered to be subvoxel and therefore at least as accurate
as marker-based registration [38].

B. Evaluation Methodology

The mean target registration error (nNTRE) was used to mea-
sure the distance of a vertebra from the reference position before
and after registration. For the calculation of mTRE, positions of
all voxels in a volume of interest (VOI), containing a whole ver-
tebra, were used as target points [33]

M
1
mTRE = - z_jl I TregPm — TretPmll  (10)
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where M is the number of target points p,,, T, the registra-
tion determined by the registration algorithm and T',.r the ref-
erence or “gold” standard registration. To assess the accuracy,
success rate, and capture range, registrations from 200 starting
positions defined by randomly generated translations and rota-
tions were performed for each VOI. The translations and rota-
tions were chosen to yield mTRE values of the starting positions
uniformly distributed in an interval from 0 to 20 mm, with 10
starting positions in each of the 1-mm-wide subintervals, as pre-
pared by van de Kraats et al. [33]. Each registration was classi-
fied as successful if the mTRE after registration was smaller than
a prespecified threshold of 2 mm. The success rate was defined
as the number of successful registrations against the number of
all registrations. The registration accuracy was computed as the
average mTRE value of all successful registrations, while the
capture range was defined as the distance from the reference
position to the first 1-mm subinterval for which the registration
was successful in less than 95% of all cases [33].

C. Implementation Details

The 3-D images were preprocessed using the 3-D Gaussian
filter with the standard deviation of 0.3 mm for the CT and MR
images, and of 0.5 mm for the 3DRX images. Next, the images
were isotropically resampled to the resolution of 1 mm and sub-
jected to the 3-D Canny edge detector. Finally, the resulting gra-
dient images were thresholded as in [29] and [33] so as to extract
the boundaries of anatomical structures and the corresponding
set of gradients u(p;). Before preprocessing and gradient ex-
traction, the MR images were corrected for intensity inhomo-
geneity by the information minimization method [39]. Spurious
strong gradients corresponding to the spine phantom-to-back-
ground transition, which are not present in real MR spine im-
ages, were suppressed by simple morphological operations.

The X-ray images were blurred by the Gaussian filter with the
standard deviation of 0.5 mm and subjected to the Roberts edge
detector so as to calculate the intensity gradients vP (p?D ).
The 3-D gradient fields v(p) were coarsely reconstructed in
volumes of 137 x 150 x 145 and 140 x 200 x 134 image el-
ements for the first and second spinal segment, respectively,
with the isotropic resolution of 0.63 mm. To calculate the gra-
dient-matching criterion function (2), the gradient v(T - p;) cor-
responding to each gradient T - u(p;) was determined using tri-
linear interpolation of the gradient field v(p). The value of the
parameter n in the angle weighting function (3) was set to 4 as
in [28].

In the hypothesis generation step, the distance weighting pa-
rameter o4 was set to 10 mm. The point-to-point geometrical
correspondences (p;,pi(d*)) were established in discrete steps
of pcr/10 mm; pcr = od/\/E, along directions u.(p;) in the
range of £2 - pcg mm, requiring a total of 41 evaluations of
point-to-point gradient similarities (5) for each point p;.

In the hypothesis selection step, the number L of random
selections of three point-to-point geometrical correspondences
(p:,pi(d*)) has to be selected according to the rate of expected
outliers, i.e., the rate of expected non-corresponding boundaries
of anatomical structures that are due to different imaging modal-
ities and corresponding artifacts in the two images undergoing
registration. The parameter L was determined [32] for the 70%
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Number of iterations K

Fig. 4. Typical convergence curves of the RGRB method for the registration
of 3DRX, CT and MR images to two X-ray images showing the mTRE value
as a function of iterations k. For each 3-D modality, one successful registration
(three bottom curves) and one unsuccessful registration (three top curves) are
given.

rate of expected outliers (w = 1 — 0.7 = 0.3) and with 95%
probability (z = 0.95) of randomly selecting at least one set of
three (¢ = 3) outlier-free point-to-point geometrical correspon-
dences (p;,pi(d*))
log(1—2)  log(1—0.95)
= = 3 ~ 100.
log(1 —w®)  log(1—0.3%)

Y

The value of the number of iterations K was determined
experimentally by observing typical convergence curves, i.e.,
by observing the mTRE as a function of iteration index k
(Fig. 4). With respect to good convergence properties of the
RGRB method, the value of parameter K was set to 10, al-
though such a small number of iterations may yield suboptimal
registration accuracy. To increase the registration accuracy, a
considerably larger number of iterations would be required.
However, a computationally more attractive solution is to use
the RGRBe method that performs a coarse registration by the
RGRB method with a small K, the result of which is then
refined by the GRB registration method that optimizes the gra-
dient-matching criterion function (2) by the Powell’s method
[40].

D. Experiments

The performances of all three variations of the gradient recon-
struction-based registration method (GRB, RGRB, and RGRBe
method) were assessed by the standardized evaluation method-
ology [33] and compared to the IB [21], GB [28], and RB [29]
methods. The VOIs, containing a single vertebra, from 3DRX,
CT, and MR images were registered to sets of 2, 3, 5, and 7 X-ray
images, while the MR images were also registered to sets of 9
and 11 X-ray images. The same as the authors of the standard-
ized evaluation methodology [33], we have selected the ante-
rior-posterior (AP) and the lateral (LAT) X-ray image from the
100 acquired X-ray images for the registration of two X-ray im-
ages to 3DRX, CT and MR images. When more that two X-ray
images were used for registration, the first X-ray image was al-
ways the first image acquired with the 3DRX system, while the
other images were chosen so as to yield an angle between the



1710

X-ray views of approximately 60°, 35°, 24°, 18°, and 15° for
the 3, 5, 7, 9, and 11 X-ray images, respectively. For each of
3DRX, CT, and MR modalities and each set of X-ray images
1600 registrations were performed by each registration method,
200 per each of the eight VOlIs, resulting in a total of more than
60.000 registrations.

Three additional experiments were performed. First, the per-
formance of the RGRB method was assessed for more iterations
in an experiment using registration of CT VOlIs to two X-ray im-
ages with 30 iterations (K = 30).

The second additional experiment was performed to com-
pare the proposed approach for estimating the 3-D gradients
from 2-D projection images to an alternative approach by
reconstructing a 3-D image from two X-ray images using the
algebraic reconstruction technique (ART) followed by gradient
calculation [29]. The performances of the GRB, RGRB, and
RGRBe methods using the alternative gradient estimation
approach were also assessed by the standardized evaluation
methodology [33].

The final additional experiment was performed to assess the
algorithm’s robustness to outliers, i.e., to additional structures
that may appear in the projection images due to medical tools in
clinical settings. Since to the best of our knowledge such data
sets with reference registrations are not publicly available, we
simulated a tube in 3-D for each of the VOIs and projected it to
the X-ray images. This was performed by a simplified model of
the X-ray image generation

1(p?P) = Iye™ J e (12)

where I(p?P) is the intensity of the X-ray image at point
p2P ., I is the reference intensity, p is a 3-D point and s the
attenuation coefficient of the anatomy [28]. The intensities of

the X-ray image with simulated medical tool I,(p?”) were
obtained as
L(p?P) = I o= J r@)dp= [ i (p)dp
= I(p?P) ¢~ [ reterte (13)

where I,(p?P) is the simulated intensity at point p?? and
1+ the attenuation coefficient of the simulated medical tool.
Fig. 5 shows the AP and LAT X-ray images and corresponding
cross-sections of the coarsely reconstructed 3-D gradient im-
ages. Registration experiments using clinically relevant CT and
MR modalities and 2, 3, and 5 X-ray images were performed.

E. Results

Coarse 3-D reconstructions of 2-D gradients v=~ (p5~) ex-
tracted from 2, 5, and 11 X-ray images are shown in Fig. 3
(bottom row). Reconstruction artifacts are notable in the axial
cross sections (left images). In the lateral cross-sections (right
images) boundaries of anatomical structures are better depicted
by the reconstructed 3-D gradients even when gradients are re-
constructed from only two X-ray images.

According to the standardized evaluation methodology [33],
the registration results are presented in Table III by the mTREs,
capture ranges, and success rates. Besides the registration re-
sults obtained for the three proposed variations of the gradient
reconstruction-based method, GRB, RGRB, and RGRBe, the

2D (p2D
J

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 12, DECEMBER 2008

Fig. 5. Anterior—posterior (top left) and lateral (top right) X-ray images of a
single vertebra with a simulated tube imitating medical tools and corresponding
anterior—posterior (bottom left) and lateral (bottom right) cross sections of the
coarsely reconstructed 3-D gradient images.

results of IB, GB, and RB, acquired from corresponding publi-
cations [29], [33] are also given. The RGRBe method yielded
the best accuracies, capture ranges, and success rates for all
three preinterventional modalities and especially when only two
X-ray images were used for registration. The RGRBe method
inherits the robustness of the RGRB method and the accuracy
of the GRB method, which is demonstrated by scatter diagrams
and convergence curves in Fig. 6.

The processing times for the GRB, RGRB (K = 10), and
RGRBe registration methods, are presented in Table II. Pro-
cessing times are independent of the number of X-ray images
because the reported data do not include the times needed for
coarsely reconstructing the gradient fields v(p). These times
ranged from 3 to 14 s for the coarse reconstruction from 2 to 11
X-ray images, respectively. All processing times were obtained
on an Intel Core 2 Duo, 2-13 GHz computer running Windows
XP.

The additional experiment using 30 iterations K of the
RGRB method for the CT to two X-ray registration yielded an
almost identical capture range and success rate with respect to
the RGRBe method with just 10 iterations (Table III, Fig. 6).
However, the registration accuracy was smaller and the registra-
tion time was more than doubled, which justifies the proposed
extension of the RGRB method by the optimization based GRB
method, yielding better performance and higher speed.

The results of the registration methods using the gradients ex-
tracted from the reconstructed image, instead of coarsely recon-
structed back-projected gradients, are presented in Table IV. By
relating these results to the results in Table III, no major differ-
ences can be identified. The CT to X-ray registration with ART
reconstruction was slightly more accurate but less robust, while
a slight reduction of accuracy can be observed for the 3DRX
and MR to X-ray registrations. The performances of the two ap-
proaches for estimating 3-D gradients from 2-D X-ray images
are therefore similar but the proposed coarse 3-D gradient re-
construction is approximately 20 times faster.

The results of registration experiments using the X-ray im-
ages with the simulated medical tools are presented in Table V.
In comparison to the results in Table III, a slight degradation
of all registration performance criteria can be observed. For the
CT to X-ray registration, the differences are very small, with the
exception of the success rate of the GRB method. These results
indicate that in terms of success rate the GRB method could not
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Fig. 6. Results for registration of 3DRX, CT, and MR VOIs to two X-ray images (rows, respectively) for the GRB, RGRB, and RGRBe methods (first three
columns, respectively) in the form of scatter diagrams, indicating the mTRE value before and after registration. The corresponding success rates are illustrated as

a function of initial mTRE (rightmost column).

TABLE II
AVERAGE PROCESSING TIMES FOR THE GRB, RGRB (K = 10),
AND RGRBE REGISTRATION METHODS, ON AN INTEL CORE
2 Duo, 2.13-GHz COMPUTER RUNNING WINDOWS XP

Time to process (s)

Modality

GRB RGRB RGRBe
3DRX 9 18 27
CT 12 30 42
MR 15 38 53

cope well with the induced outliers in the X-ray images, while
in combination with the RGRB method the success rate is not
seriously impaired. MR to X-ray registration, on the other hand,
was slightly more affected by the simulated outliers. While the
degradation of registration performance was minor when only
two X-rays were used for registration, using more X-ray im-
ages did not yield better registration results in terms of capture
range and success rate. This is most likely due to the fact that
when more X-ray images are used, the tools are better recon-
structed and thereby represent strong outliers, which adversely
affect the registration methods. This phenomenon was expect-
edly much less prominent for the CT images as these typically
exhibit stronger bone edges.

IV. DiscussioN

There are four important issues that need to be addressed
before a 3-D/2-D registration method can be considered clini-
cally acceptable. Namely, the registration accuracy required for

a specific clinical application, the robustness of the alignment in
terms of success rate and capture range, the speed with which
a method can be performed, and the clinical feasibility in terms
of image acquisition, user interaction, and interventional pro-
tocol requirements and/or acceptance. The proposed methods
were designed with respect to these four fundamental require-
ments, combining the advantages of the methods proposed in the
past and proposing novel solutions for overcoming their draw-
backs. The performances of the proposed solutions were objec-
tively evaluated and compared to IB [21], GB [28], and RB [29]
methods via the standardized evaluation methodology [33].
Image intensity gradients proved beneficial for increasing the
registration accuracy not only of the gradient-based [6], [28] but
also of the intensity and reconstruction-based methods [2], [7],
[8], [21]-[23], [29]. However, the local nature of intensity gra-
dients greatly reduces the robustness of the gradient-based reg-
istration. While this is not the case for the reconstruction-based
method [29], in which gradients are used as additional features,
these methods typically require more intrainterventional X-ray
images, which may be a serious clinical limitation both in terms
of the image availability and of high computational demands re-
quired for intrainterventional reconstruction. The computational
demands are also high for the intensity DRR-based methods [2],
[31, [71-19], [20]-[23], although several solutions for accelera-
tion were proposed [25]-[27]. Another drawback of the DRR-
based methods is the projection of 3-D image data into 2-D,
because of which some valuable 3-D information is inherently
lost. Feature-based methods seem appealing, using point distri-
bution or statistical anatomical models [16], [17], but the de-
manding model construction makes them less so. Furthermore,
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TABLE III
MEAN TARGET REGISTRATION ERRORS (TRES), CAPTURE RANGES, AND SUCCESS RATES FOR DIFFERENT MODALITIES, NUMBER OF X-RAY IMAGES, AND
FOR THE IB, GB, AND RB METHODS AND THE THREE VARIATIONS OF THE GRADIENT RECONSTRUCTION-BASED METHODS (GRB, RGRB, RGRBE).
THE NUMBERS IN BOLD ARE THE RESULTS OF EXPERIMENTS PERFORMED IN THIS STUDY, THE NUMBERS IN PLAIN TEXT WERE TAKEN FROM [29],
WHILE THE NUMBERS IN ITALIC WERE ACQUIRED FROM [33]

Modality | X-rays mTRE (mm) Capture range (mm) Success rate (%)
IB GB RB GRB RGRB RGRBe|IB GB RB GRB RGRB RGRBe|IB GB RB GRB RGRB RGRBe
3DRX 2 0.13 0.31 052 0.19 0.54 017 |4 0 4 6 9 11 43 76 69 86 91
3 0.19 0.33 0.26 047 0.24 7 9 7 12 14 68 89 75 91 95
5 0.12 0.17 0.18 0.37 0.17 8§ 12 9 12 13 76 91 84 94 96
7 0.11 0.12 0.16 033 0.16 8§ 12 9 14 14 83 92 86 95 97
CT 2 0.65 038 043 032 058 032 |3 6 5 5 9 11 56 65 69 88 92
3 0.32 0.37 033 0.55 0.32 7 1 6 8 13 63 78 74 89 94
5 0.27 0.27 0.26 043 0.26 8§ 10 10 12 13 72 87 84 94 96
7 0.27 0.26 0.26 0.38 0.26 9 12 10 14 14 78 91 87 96 97
MR 2 045 050 1.06 0.48 1 2 4 6 4 68 69
3 059 1.04 055 2 3 6 39 63 69
5 044 094 0.42 2 5 6 46 70 75
7 040 083 0.39 3 5 6 51 73 77
9 0.54 098 042 0.79 0.37 2 0 2 8 9 24 69 54 74 78
11 0.50 0.67 038 0.74  0.37 2 7 3 7 8 23 84 56 74 78
TABLE IV terms of success rate and capture range, which is likely due to

MEAN TARGET REGISTRATION ERRORS (TRES), CAPTURE RANGES, AND
SUCCESS RATES FOR GRB, RGRB, AND RGRBE METHODS USING THE
ART RECONSTRUCTION FROM TWO X-RAY IMAGES [29]

Modality mTRE (mm) Capture range (mm) | Success rate (%)
GRB RGRB RGRBe|GRB RGRB RGRBe|GRB RGRB RGRBe
3DRX |0.21 0.51 0.20 5 8 10 70 88 92
CT 0.28 0.53 0.27 5 9 9 68 87 90
MR 0.67 1.10 0.65 2 0 5 4 62 74
TABLE V

MEAN TARGET REGISTRATION ERRORS (TRES), CAPTURE RANGES, AND
SUCCESS RATES FOR THE GRB AND RGRBE METHODS USING CT AND MR,
AND 2, 3, AND 5 X-RAY IMAGES WITH SIMULATED MEDICAL TOOLS

. mTRE (mm) | Capture range (mm) | Success rate (%)
Modality | X-rays
GRB RGRBe | GRB RGRBe GRB RGRBe
CT 2 0.34 0.34 5 10 64 88
3 035 034 6 11 67 91
5 0.27 0.27 8 12 63 94
MR 2 0.67 0.60 2 5 35 67
3 0.61 0.60 2 5 37 61
5 0.47 045 2 40 65

some feature-based methods require segmentation of pre-inter-
ventional images [4], [13]-[15], which is a very demanding task
that usually requires user interaction.

To fulfill the abovementioned four clinical requirements for a
3-D/2-D registration method, a new gradient-based method has
been proposed that coarsely reconstructs the 2-D gradients in
3-D. Calculated once before registration, the coarse gradient re-
construction is straightforward, computationally undemanding,
and produces results comparable to those achieved by gradient
extraction from reconstructed images (Table IV). The registra-
tion results (Table III) showed that the proposed optimization
based GRB method outperforms the IB and GB methods in

the coarse gradient reconstruction that integrates gradient in-
formation from all the available X-ray images in 3-D. How-
ever, since medical interventions require high robustness, e.g.,
for the purpose of surgical guidance a success rate of 95% is
typically required [6], the robust iterative RGRB registration
method was proposed. In this way, the success rate and cap-
ture range were improved significantly (Table III), but because
only a small number of iterations was used to keep the regis-
tration time short, the registration accuracy was not optimal.
The obvious solution at hand was to extend the coarse itera-
tive RGRB method by the fine optimization based GRB method
into the coarse-to-fine RGRBe registration method. As a result,
the obtained RGRBe method inherits the accuracy of the GRB
method and even further increases the high robustness of the
RGRB method (Fig. 6).

Finally, we compare the proposed RGRBe method with the
IB, GB, and RB methods with respect to accuracy, robustness,
speed, and clinical feasibility. Because it is desirable that the
number of intrainterventional images is kept low, we focus on
registration results when only two X-ray images were used.
First, the registration accuracy of the RGRBe method was on
par with the IB, GB, and RB methods, except for the 3DRX
to two X-ray image registration for which the IB method was
slightly more accurate. However, significant improvements in
comparison with the GB and RB methods are notable when just
two X-ray images were used. Furthermore, the RGRBe method
was superior in MR to X-ray image registrations, yielding better
accuracy with two X-ray images than the GB and RB methods
with nine X-ray images.

Second, considering the robustness, i.e., the capture range and
success rate, the RGRBe method has performed far the best.
This was especially true for registering CT and 3DRX to two
X-ray images for which the capture ranges and success rates
were approximately 100% better than those of the IB, GB, and
RB methods, not to mention MR to X-ray image registrations.
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However, when more X-ray images had been used for registra-
tion the improvements of the capture ranges and success rates
were less prominent.

Third, the registration speed is a serious drawback of the
IB (9 min on a multiuser Linux Dell PowerEdge 1600, dual
Xeon 2.8 GHz with 4 GB memory) and RB methods for the
reasons stated above, while the GB method is rather fast (25
s on a Windows 2000 Dell Workstation PWS340 Intel Pen-
tium 4, 1.7 GHz, 1.6 GB RAM). However, it should be noted
that in the recent years the intensity-based methods were a sub-
ject of intensive research that led to much more efficient im-
plementations. The processing times of 180 s were reported
for hardware acceleration by NVidia FX 5600 graphics card
with 256 MB of texture memory [8], while the processing times
of 25-100 s were reported for software acceleration using a
2.2 GHz Intel Xeon processor [25]. These accelerations make
the intensity-based methods feasible for clinical use. The speed
of the RGRBe method depends on the number I of the ex-
tracted 3-D gradients that correspond to distinctive boundaries
of anatomical structures and ranges from approximately 30-60
s on a Windows XP Intel Core 2 Duo, 2.13 GHz (Table II).
The method was implemented in C++ and was not optimized
for speed, although this could easily be achieved by paralleliza-
tion of finding the point-to-point geometrical correspondences
in the hypothesis generation step or by a more optimal determi-
nation of the number L of random selections in the hypothesis
selection step, to mention but a few.

Fourth, considering the clinical feasibility, the proposed
methods, as well as the IB, GB, and RB methods, do not require
intrainterventional segmentation of 2-D X-ray images, which is
a drawback of feature-based methods. The extraction of the set
of 3-D gradients is accomplished by simple thresholding and
since this is done prior to intervention, other more sophisticated
methods can be used to extract less but more representative
surface points of the 3-D anatomical structures of interest and
thereby further improve the registration accuracy and speed.
Nevertheless, the registration results demonstrate that the
proposed RGRBe method outperforms the IB, GB, and RB
methods in terms of registration accuracy and robustness. This
is especially true when only two X-ray images are used for reg-
istration and for MR to X-ray registration, which are important
advantages for numerous clinical applications. Furthermore,
additional experiments (Table V) showed that for the CT to
X-ray registration the proposed RGRBe method is robust to
outliers like medical tools introduced in the intrainterventional
X-ray images. This was not the case for the MR to X-ray
registration, where outliers hampered the success rate when
more than two X-rays were used for registration. Nevertheless,
when only two X-rays were used, the registration accuracy and
robustness were similar to the cases with no outliers also in MR
to X-ray registration.

V. CONCLUSION

The advantages of gradient and reconstruction-based
methods were efficiently combined into a novel robust 3-D/2-D
registration method. The proposed method can register both 3-D
CT and MR preinterventional images to only a few 2-D X-ray
intrainterventional images. The method was thoroughly tested

1713

using the standardized evaluation methodology for 3-D/2-D
registration [33] and objectively compared to some of the
well-known registration methods [21], [28], [29]. The obtained
results indicated better registration accuracy and robustness,
especially when just a few X-ray images and when MR images
were used for registration. As such, the proposed method might
prove valuable in various image-guided interventions.
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