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Denoising Functional MR Images: A Comparison of
Wavelet Denoising and Gaussian Smoothing

Alle Meije Wink and Jos B. T. M. Roerdink*, Senior Member, IEEE

Abstract—We present a general wavelet-based denoising
scheme for functional magnetic resonance imaging (fMRI) data
and compare it to Gaussian smoothing, the traditional denoising
method used in fMRI analysis. One-dimensional WaveLab thresh-
olding routines were adapted to two-dimensional (2-D) images,
and applied to 2-D wavelet coefficients. To test the effect of these
methods on the signal-to-noise ratio (SNR), we compared the
SNR of 2-D fMRI images before and after denoising, using both
Gaussian smoothing and wavelet-based methods. We simulated
a fMRI series with a time signal in an active spot, and tested
the methods on noisy copies of it. The denoising methods were
evaluated in two ways: by the average temporal SNR inside the
original activated spot, and by the shape of the spot detected by
thresholding the temporal SNR maps. Denoising methods that
introduce much smoothness are better suited for low SNRs, but for
images of reasonable quality they are not preferable, because they
introduce heavy deformations. Wavelet-based denoising methods
that introduce less smoothing preserve the sharpness of the images
and retain the original shapes of active regions. We also performed
statistical parametric mapping on the denoised simulated time
series, as well as on a real fMRI data set. False discovery rate
control was used to correct for multiple comparisons. The results
show that the methods that produce smooth images introduce
more false positives. The less smoothing wavelet-based methods,
although generating more false negatives, produce a smaller total
number of errors than Gaussian smoothing or wavelet-based
methods with a large smoothing effect.

Index Terms—False discovery rate control, functional neuro-
imaging, Gaussian smoothing, statistical parametric mapping,
wavelet-based denoising.

I. INTRODUCTION

FUNCTIONAL neuroimages often need preprocessing be-
fore being subjected to statistical analysis. A common pre-

processing step is denoising, which is usually done via Gaussian
smoothing. Smoothing suppresses noise, but it also changes the
intensity variation of the underlying image. This suppresses, or
even removes, detailed features of the original image. In this
paper, we study wavelet-based denoising as a possible alterna-
tive to Gaussian smoothing. Wavelet-based denoising has the
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advantage over low-pass filtering that relevant detail informa-
tion is retained, while small details, due to noise, are discarded.
The performance of both approaches is compared with respect
to: 1) the improvement of the signal-to-noise ratio (SNR); 2) the
preservation of the shapes of active regions during the denoising
process; and 3) the improvement in the statistical analysis via
statistical parametric mapping (SPM).

The focus of this paper is on functional magnetic resonance
imaging (fMRI) time series. In an fMRI experiment, a person
lying inside an MRI scanner is asked to perform a certain
task while a series of scans of the brain are made. Brain
regions involved in this task show increased concentrations of
oxygenated blood, inducing local signal changes [1]. These
signal changes are referred to as the blood oxygenation level
dependent (BOLD) contrast, and detecting and characterising
these changes is the main goal of fMRI time series analysis.

Most of the standard statistical tests assume Gaussian dis-
tributed noise. However, in the MR literature, noise in MR im-
ages is shown to be Rician distributed [2]. We analyze the BOLD
contrast as the difference between two MR images (active minus
baseline) both containing Rician distributed noise, and show
that the distribution of BOLD noise is a close approximation of
a Gaussian distribution. Thus, the standard tests requiring nor-
mally distributed noise can still be used.

The use of wavelets for the statistical analysis of fMRI
and positron emission tomography (PET) studies is not new.
Feilner et al. [3] use the wavelet transforms of difference
images constructed from epoch-related fMRI experiments.
Assuming a normal distribution of values in the difference
images, activation is found by applying a test to the wavelet
coefficients, using Bonferroni correction for multiple testing.
The statistical map is found by applying the inverse wavelet
transform. Ruttimann et al. [4] follow a similar approach. Their
algorithm performs a two-stage test in the wavelet domain.
The first test analyzes the wavelet coefficients per direction
channel: the coefficients are ordered by resolution and by
direction (horizontal, vertical, and diagonal). It assumes the cu-
mulative energy in each direction channel to be -distributed.
All coefficients in a direction channel at a certain resolution
are discarded if its cumulative energy is lower than the value
predicted via this -distribution. The second test thresholds
the wavelet coefficients in the remaining channels individually
via a two-sided -test. Both the channelwise test and the vox-
elwise test use the Bonferroni correction for multiple testing.
The inverse wavelet transform is applied to the output of the
second test, yielding an activation map. Raz et al. [5] perform
an analysis of variance in the wavelet domain, by thresholding
the wavelet coefficients according to their score in a statistical
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test. The testing is done blockwise: at the lowest resolution,
each coefficient is a block, and at higher resolutions the same
number of blocks is used. The false discovery rate (FDR)
is used to correct for multiple testing. Hilton et al. [6] use a
wavelet-based denoising procedure known from the WaveLab
project [7], an open source collection of wavelet routines, and
compare this to their own data analytic thresholding procedure.
The denoised time series are subjected to statistical testing by
means of a voxelwise -test. Turkheimer et al. [8] model PET
images in wavelet space by applying statistical models to the
frame-by-frame wavelet transformations of PET time series.

The main novelty of this paper is an extensive comparison
of wavelet-based denoising and Gaussian smoothing, which
is the standard denoising tool for functional neuroimages. All
wavelet-based denoising methods mentioned above except
Hilton’s [6] perform the ensuing statistical tests in the wavelet
domain. We favor the approach used by Hilton et al. for two
reasons. First, performing a statistical test in the original
domain enables a comparison between the wavelet-based
methods and Gaussian smoothing as preprocessing steps. The
statistical analysis process is exactly the same for all data sets
and can be kept outside the discussion. Second, performing
the statistical test in the wavelet domain requires an inverse
wavelet transform afterwards, which spreads out the activation
in the final statistical map. Whether or not another threshold is
needed on this map before display is questionable. Separating
the denoising and the statistical analysis has another advantage.
The data sets used in this study only require a simple statistical
test, but most recent fMRI experiments often require much
more complex procedures. It is not likely that all these tests
can be done in the wavelet domain. However, if the denoised
images are transformed back to the original domain, this
problem does not occur.

Another difference between the current study and previous
publications on this subject is that we include tests on simu-
lated time series of which the SNRs and noise characteristics are
known. Our definition of the BOLD signal allows a very precise
characterization of the noise in all test cases, so that the effect
of each method on the SNR can be accurately determined.

Third, we simulate brain activity in the time series by super-
imposing a time signal on a selected area. From the difference
between the shape of the original active spot and the shape of
the spot detected by SPM, we can make quantitative analyses of
the denoising methods in terms of false positive and false nega-
tive error rates.

The remainder of this paper is organized as follows. Section II
reviews a number of procedures to correct for multiple hypoth-
esis testing. Section III first describes the noise in MR images,
and introduces BOLD noise as the noise in the difference of
two MR images. In Section IV, we present the wavelet-based
denoising methods available in WaveLab [7]. Adjustments have
been made to these methods, to 1) make them suitable for pro-
cessing two-dimensional (2-D) images and 2) to support noise
with unknown autocorrelations. These denoising methods, as
well as various degrees of Gaussian smoothing, are tested on
2-D images in Section V. In Sections VI and VII, the wavelet-
based and Gaussian methods are tested on an artificial time se-
ries, and compared in terms of their effects on the temporal

TABLE I
CLASSIFICATIONS AND MISCLASSIFICATIONS IN STATISTICAL TESTS

SNR of the denoised time series and on the quality of the sta-
tistical parametric map. Finally, we compare the effects of these
methods in a statistical analysis of a real fMRI data set in Sec-
tion VIII. Section IX contains some general conclusions.

II. THRESHOLDING STATISTICAL MAPS:
MULTIPLE HYPOTHESES

Neuroimage analysis often entails hypothesis testing. Con-
sider an experiment in which a subject is asked to perform a
task while being recorded by the MRI scanner. The null hypoth-
esis states that a brain region is not involved in that task.
There may be more than one alternative hypothesis, indicating
different patterns of activity. In general, rejecting means that
brain activation related to the experiment has been detected. If
a large number of hypothesis tests are done simultaneously, the
expected number of rejected null hypotheses increases. This in-
troduces the risk of false positives, also called type I errors (see
Table I).

SPM [9] is the common method to analyze functional neu-
roimages. SPM is based on the general linear model, which
states that the response in an fMRI experiment can be written as
a weighted sum of explanatory signals. Let the matrix
denote the fMRI data measured in the experiment, where each
matrix element denotes the value measured at time

and voxel location . According to the
general linear model

(1)

where is a matrix, called the design matrix, whose
column vectors are the signals that represent the modeled ef-
fects, called the explanatory variables. The row vectors of the
matrix are the weighting factors for those signals, and
the values in the matrix are the residual errors of each
voxel in each scan. A least-squares estimate for is given by

. Given a model of , the significance of the co-
efficients of , and thus of the modeled effects, can be found in
each voxel via hypothesis testing.

A statistical parametric map of voxels consists of the
-values . Given a distribution of outcomes,

a -value is the probability of getting an outcome at least as
extreme as the one observed when the null hypothesis
is correct. The SPM method allows for many statistical tests
( -tests, analysis of (co-) variance, regression analysis). In this
paper, we will only discuss the one-sample -test. The temporal
noise in fMRI data sets is assumed to be Gaussian distributed,

. The null hypothesis states that . We test for
increased activation, which means that we perform a one-sided
test: states that . We do not know the real of the
temporal noise distribution, so it must be estimated via the
sample variance , which can be computed using the residual
time signals in . Using this estimate, we can test for increased
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activation via the -test. BOLD contrasts are constructed as
linear combinations of rows of (each of which is an image
of voxels), and their values are -distributed. The relation
between -values and -values is as follows. If a -value in the
BOLD contrast is in the upper % of the distribution, it -value
is below . In other words: A small -value provides strong
evidence against the null hypothesis. Active voxels are those
with -values below a significance level . For one test, is
the probability of erroneously rejecting .

Testing multiple independent hypotheses with the same sig-
nificance level leads to false positives. For one test, a level of
0.05 is acceptable, but for simultaneous tests, approximately

detected activations will be false positives. Simultaneous
tests deal with the “omnibus” null hypothesis [10], which states
that there is no activation in any of the individual tests. Testing
the omnibus null hypothesis at level can be used to decide if
there is activity in the image, but not where it is. The omnibus
null hypothesis is said to have weak type I error control.

One way to deal with this is Bonferroni correction, where the
significance level is replaced by . This guarantees that
the proportion of false positives does not exceed in any subset
of the simultaneous tests. Bonferroni is therefore said to have
strong type I error control [11], meaning that rejecting in a
certain region in the brain is evidence for activation in that very
region. Bonferroni correction not only affects the number of
type I errors: reducing the probability of rejecting the omnibus
null hypothesis also affects the number of true positives. This
introduces false negatives, or type II errors (see Table I). For
fMRI signals, which are spatially correlated, Bonferroni correc-
tion may be too conservative.

In most neuroimage analysis programs that use the SPM
method for the statistical part of the analysis, images are
smoothed with Gaussian filters [12]. The motivation for this
is twofold: 1) it increases the SNR and 2) it controls the
smoothness of the noise in the images when viewed as a lattice
representation of a continuous, stationary Gaussian random
field (GRF). In order to use GRF theory, smoothing may be
necessary to bring the data more into agreement with the model
assumptions. Once the smoothness of an image is known or
controlled via filtering, threshold values for statistical maps
can be computed using the Euler characteristic of GRFs to
correct for multiple testing [13], [14]. The method has strong
type I error control. This approach has two drawbacks. First,
even after filtering, the noise in the smoothed images often still
differs from a GRF. Noise and signal are smoothed together, so
smoothing makes it even more difficult to separate signal from
noise. The underlying image is not likely to represent a con-
tinuous GRF, so the corrected threshold is likely to be biased.
This will influence all corrected -values. This problem is even
more serious when the smoothing kernel has another full-width
at half-maximum (FWHM) than the intrinsic FWHM of the
underlying images. Second, the smoothing process suppresses
and removes details in the images. This hampers the detection
of detailed regions during subsequent analysis.

The FDR is another alternative for multiple test correction,
that is also applied in functional neuroimaging [11]. It does not
require spatial smoothness. The FDR is defined as the expected

proportion of false positives among the rejected null hypotheses
[15]

(2)

denoting expectation, and is identical to 0 when
. The following algorithm results in an

FDR approximately equal to , with . Given
voxels with -values and an FDR parameter ,
an FDR-controlling threshold selection procedure is given as
follows:

1) define

-

2) order the -values so that for every ;
3) let be the largest for which ;
4) reject the null hypotheses of the voxels with .

This method has weak type I error control. Notice that, when
, the graph of vs. is a straight line from

to , and that and correspond to the
Bonferroni-corrected threshold and the “omnibus” threshold,
respectively. If , the method is much more
conservative [11], so the option is preferable if it is
allowed.

This correction method has a number of advantages over Bon-
ferroni correction and correction based on GRF theory. It is less
conservative than Bonferroni correction and it does not require
smoothing, in contrast to GRF theory. The most important ad-
vantage is its adaptivity: the threshold is selected on the basis of
the distribution of -values, so after hypothesis testing. There-
fore, it can be applied to any set of -values resulting from a sta-
tistical test. It is independent of the type of test and the number
of hypotheses, so that comparisons between studies with equal
FDRs are possible.

The value is not only valid for uncorrelated p-values,
but also for sets of -values that are positive regression depen-
dent within subsets (PRDS). Genovese et al. [11] explain the
PRDS property briefly, and they argue that statistical parametric
maps have this property. In Section VII we discuss the distribu-
tion of the -values under the null hypothesis and their spatial
correlation in greater detail. A uniform distribution of -values
under the null hypothesis proves the validity of the statistical
test. The spatial correlation of the residual noise is tested be-
cause a time series with Gaussian noise that is positively corre-
lated among voxels, is PRDS [11].

III. NOISE MODELS FOR FMRI

The computation of -values in fMRI research is usually done
with standard tests, such as the -test or -test. The use of these
tests is justified by assuming the BOLD noise to be Gaussian
under the null hypothesis. In the MR literature, however, the
noise in MR images is assumed to be Rician distributed [2],
[16], [17]. Rician noise differs from Gaussian noise in that it is
multiplicative instead of additive, i.e., it depends on the signal
intensity, and the probability density function (pdf) of the noise
is very asymmetric for low signal intensities.
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TABLE II
p VALUES PRODUCED BY THE KS TEST FOR THE DIFFERENCE BETWEEN

IMAGES WITH RICIAN DISTRIBUTED NOISE (R), WITH SIGNAL AMPLITUDES

(A) OF 1 AND 5, AND FOR IMAGES OF THE SAME SIZE WITH N(0; 1)-NOISE (N)

The difference between two images with Rician distributed
noise has a symmetric distribution (see Fig. 2). In such differ-
ence images, the distribution of noise is very close to a Gaussian,
as can be seen in Table II. This table shows, for each listed image
size, the mean -values of the Kolmogorov–Smirnov (KS) test
statistic on 32 images of that size, for: 1) the difference between
two images with Rician noise and signal intensity one; 2) the
difference between two images with Rician noise and signal
intensity five; and 3) an image containing noise. The
null hypothesis of the KS test is that the noise is normally dis-
tributed, and it is rejected if the -value of the KS test statistic
is below 0.05. For very low signal intensities, a deviation from
Gaussianity is noticeable only in very large images. We con-
clude that it is safe to use techniques based on the assumption
of Gaussian noise for BOLD images.

The BOLD effect involves spatial autocorrelation due to the
spatial extent of neuronal events, but this autocorrelation is not
exactly known [18]. We tested two types of spatial correlation:
white noise, and noise, which has a power spectrum.
The motivation for the latter type of noise is that, due to the MR
frequency encoding, a unit pulse gets the shape of a peak with
exponential slopes [19]. Section V describes how we simulated
MR noise.

IV. WAVELET-BASED DENOISING

Wavelet bases are bases of nested function spaces, which can
be used to analyze signals at multiple scales. Wavelet coeffi-
cients carry both time and frequency information, as the basis
functions vary in position and scale. The fast wavelet transform
(FWT) efficiently converts a signal to its wavelet representa-
tion [20]. In a one-level FWT, a signal is split into an ap-
proximation part and a detail part . In a multilevel FWT,
each subsequent is split into an approximation and de-
tail . For 2-D images, each is split into an approximation

and three detail channels , and , for hori-
zontally, vertically, and diagonally oriented details, respectively
[see Figs. 1(b) and 4(a)]. The inverse FWT (IFWT) reconstructs
each from and . If the wavelet basis functions do not
have compact support, the FWT is computed most efficiently in
the frequency domain. This transform and its inverse are called
the Fourier-wavelet decomposition (FWD) and Fourier-wavelet
reconstruction (FWR), respectively, see [21] for more details.

Fig. 1. (a) A simulated MR image. (b) A 2-D nonstandard FWT of (a).

Fig. 2. (a) Rician pdfs for different signal intensities. Higher intensities have
noise distributions similar to a Gaussian. (b) pdfs of the difference of two Rician
distributed sets for a fixed signal intensity, with different standard deviations.
(c) Gaussian pdfs, with different standard deviations.

Fig. 3. The FWT and FWD of a signal are interchangeable via the fast Fourier
transform.

Fig. 4. (a) Ordering of the approximation and detail coefficients of a two-level
2-D nonstandard FWT. (b) Symmetric orthonormal cubic spline scaling function
(top) and corresponding wavelet (bottom).

A. Wavelet Bases

As it is difficult to mathematically characterize functional
brain signals, a basis with general properties is preferable. Of
the common wavelet bases, like Daubechies wavelets [22],
symmlets, coiflets [23], and splines, spline bases have been
shown to possess the best approximation properties, such as the
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smallest error [24]. Because of their smoothness, splines
are well localized in both the frequency and time domains.
Earlier studies about the use of wavelets in fMRI analysis [4],
[25] favor the use of symmetric wavelets and scaling functions,
because they do not introduce phase distortions. Orthogonal
bases are recommended, because they transform white noise
into white noise [26]. Unser et al. have proposed an FWT that
uses fractional spline wavelets [27], [28]. Fractional splines are
splines of a real-valued degree, which can be used to produce
wavelet bases. They come in many flavors, such as symmetric
and causal, orthogonal and biorthogonal.

In view of the above, symmetric, orthonormal cubic spline
wavelets [see Fig. 4(b)] are the best choice for this study. Sym-
metric, orthogonal, smooth wavelet basis functions cannot have
compact support but exponential decay [29]. For this reason, we
use a frequency domain implementation via the FWD to com-
pute the FWT.

B. Denoising Images by Wavelet Domain Thresholding

The WaveLab package by Donoho et al. [7] contains a
number of schemes for wavelet-based denoising, including
HybridThresh, InvShrink, MinMaxThresh, MultiMAD,
SUREThresh, VisuShrink, and WaveJS [30], [31]. These
routines are based on thresholding detail coefficients in the
wavelet domain. An important characteristic of these schemes
is the amount of smoothness they introduce in the denoised
image [6].

InvShrink uses the VisuThresh threshold, which is
for a vector of detail coefficients of length . The signal
is scaled before thresholding so that it has unit standard
deviation. In multilevel transforms, the height of threshold
is doubled for each subsequent level. MultiMAD also uses
VisuThresh, and rescales the of each level so that its median
absolute coefficient value is 0.6745, which is the median
absolute deviation (MAD) of an -distribution. Min-
MaxThresh uses a minimax threshold [31], which minimizes
the maximum risk. SUREThresh uses Stein’s Unbiased Risk
Estimate [30]. VisuShrink uses VisuThresh with shrinkage of
small coefficients, called soft thresholding, as the default, but
hard thresholding, i.e., removal of small coefficients, is also
used. HybridThresh uses VisuThresh for sparse vectors and
SUREThresh for dense vectors. WaveJS uses a threshold based
on the James-Stein estimate [30]. InvShrink and MultiMAD
change the threshold for each decomposition level, while
MinMaxThresh, SUREThresh, VisuShrink, HybridThresh, and
WaveJS use one global threshold.

If a one–dimensional (1-D) threshold selection scheme were
used in a 2-D FWT, for example by applying a 1-D thresholding
scheme in both spatial dimensions, assumptions used by the
WaveLab routines would be violated, because the threshold for
detail coefficients would in some cases be determined from both
approximation and detail coefficients, and in some cases from
detail coefficients only [see Fig. 4(a)]. It is necessary to respect
the ordering of coefficients in a 2-D FWT. The WaveLab thresh-
olding schemes are based on the assumption of white Gaussian
noise. If the autocorrelation of the noise is unknown, a level-de-
pendent threshold should be used [32]. To meet these require-
ments, we have made 2-D versions of the denoising routines

in which all channels with detail coefficients can be thresh-
olded individually. Each direction channel at each resolution
[each square in Fig. 4(a)] is thresholded independently using
the WaveLab routines. This setting works for each FWT of sta-
tionary noise with an unknown autocorrelation: there is a differ-
ence in variance between detail channels at different resolutions,
but within each channel there is constant variance [32].

V. DENOISING 2-D IMAGES

The BOLD contrast is defined as the difference between an
MR image of a brain with increased local activity and an image
of the same brain under resting conditions [33]. We used the
BrainWeb Simulator [34] to obtain a noise-free T2*-weighted
MR image template. The parameters of the simulator were as
follows. Modality: T2; voxel size: 1 1 1 mm ; noise: 0%;
intensity nonuniformity: 0%. The Brain Extraction Tool [35]
was used to remove nonbrain voxels, by setting their intensities
to 0. One slice (slice no. 108) of this image was selected, and
used as a noise-free MR brain template.

Rician noise was added to this template as follows. Let
denote the template slice, and its standard deviation. Two
images and containing independent identically dis-
tributed. -distributed noise with a known standard de-
viation were made, and the noisy MR image was com-
puted as . The Rician
distributed noise in , computed as , has
a standard deviation with approximately
[2]. This approximation was used to create noisy MR images
with a known SNR. The SNR of the noisy images was com-
puted as

(3)

Gaussian noise with a power spectrum was produced by
transforming both and to the frequency domain and mul-
tiplying their frequency spectra with a mask, yielding
power spectra with a falloff. Both the real and imaginary
parts of the spectra were multiplied, so the phase spectra did not
change. Multiplication in the frequency domain is equivalent to
convolution in the spatial domain. Because this is a linear op-
eration, the noise distribution in the versions of the and

images remains Gaussian. These transformed versions of
and were used to obtain Rician distributed noise with a
power spectrum.

The BOLD image was constructed from two of these noisy
MR images as follows:

1) create two noisy MR images and using the above
procedure;

2) define an “active region” inside the template brain and
create a noise-free BOLD image as

3) add activity to by adding , where % of the
maximum intensity of the MR template;

4) compute a BOLD image as .
The top row of Fig. 5 shows the active spot (bright area), and
two noisy images , with white and noise, respectively.
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Fig. 5. Image without noise and the active spot magnified and shown in
white (a). Noisy MR images with increased intensities inside the active spot,
containing white (b) and 1=f (c) Rician noise of 15 dB, respectively. The
noise-free BOLD image (d) and BOLD images created from noisy MR images
with white (e) and 1=f (f) noise of 15 dB, respectively.

The bottom row shows the noise-free BOLD image, and
BOLD images with white noise and noise, respectively
with an SNR of 15 dB. Because there is hardly any signal
in the noise-free BOLD image image [see Fig. 5(d)],
the BOLD images have a much lower SNR than the MR
images used to construct them. MR images with an SNR of

dB yield BOLD images with an SNR
of dB, respectively.

For these input images, we compared wavelet-based de-
noising and various degrees of Gaussian smoothing (see Fig. 6).
Each of the wavelet-based schemes started with a 2-D FWT of

, computed as shown in Fig. 4(b). Symmetric orthonormal
cubic spline basis functions and a decomposition level of 4
were used for all tests. After denoising with one of the methods
listed in Section IV-B, a 2-D IFWT yielded the denoised image

. Denoting the standard deviation of an arbitrary image
by , the following procedure was carried out for each of the
tested methods:

1) the noise present in before denoising was
computed as ;

2) the SNR before denoising, denoted , was computed
as

(4)

3) the residual noise after denoising was obtained as
;

4) the SNR of the denoised image, denoted , was com-
puted as

(5)

Fig. 7 shows plotted against the input SNR of the MR
images.

Of the Gaussian smoothing methods, the wider kernels per-
form better for low input SNRs, and smaller kernels perform
better for higher input SNRs. The maximum input SNR where

Fig. 6. Images from the 2-D denoising test, each with a cross section (solid
line) of a line in the image (dotted line) plotted inside: (a) Original (f ),
(b) noisy (f ), (c) denoised (f ) with Gaussian smoothing, FWHM = 3
pixels, (d) denoised (f ) with VisuThresh (s).

Fig. 7. Performance of various wavelet denoising schemes, and Gaussian
smoothing for several values for the FWHM parameter. The SNR of the
denoised image is plotted against the SNR of the noisy image.

Gaussian smoothing still shows SNR improvement decreases as
the filter width increases. Fig. 7(a) and (c) shows that even for
Gaussian smoothing with an FWHM of one pixel, the maximum
output SNR is about 7 dB.

The wavelet methods perform as well as Gaussian smoothing
for low SNRs, and better than Gaussian smoothing for higher
SNRs. All wavelet-based methods show maximum output
SNRs above 10 dB. For white noise and low SNRs, there is a
marked difference in output SNRs. HybridThresh, InvShrink,
MultiMAD, and VisuThresh with both hard (h) and soft (s)
thresholding increase the SNR most. WaveJS, MinMaxThresh,
and SUREThresh (both h and s) thresholding increase the SNR
less. For higher SNRs the differences are smaller, but InvShrink,
WaveJS, SUREThresh (h), and VisuThresh (s) now produce
visibly lower SNRs. There is another difference between these
methods: The images produced by HybridThresh, WaveJS, and
VisuThresh (s) smear the active spot out much more than the
other methods do. We refer to these schemes as “smoothing
wavelet methods.” MinMaxThresh and SUREThresh (both h
and s) produce sharp output images. The other methods produce
images of intermediate smoothness. In general, the smoothing
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Fig. 8. The time signal in the active spot of the simulated time series.

wavelet methods perform better for low input SNRs, but the
less smoothing wavelet methods are better when the input SNR
is higher. In this experiment SUREThresh (h) performs bad
with a low input SNR, but with both noise types it performs
best for higher input SNR.

The differences in performance is smaller for noise than
for white noise. This holds for the wavelet methods as well
as for Gaussian smoothing. For all wavelet methods except
InvShrink, WaveJS, and VisuTresh(s), the output SNR is a
linear function of the input SNR: unlike Gaussian smoothing,
the wavelet methods improve the SNR of input images that
already have a high SNR. This suggests that in terms of
SNR improvement, wavelets are an attractive alternative to
Gaussian smoothing. With white noise and for low SNRs,
the less smoothing wavelet methods, such as MinMaxThresh
and SUREThresh (h and s), produce relatively lower output
SNRs than the other methods. This indicates that introducing
smoothness, thereby discarding image features, is necessary
to improve images with very low SNRs. Of the methods
mentioned above, MultiMAD and VisuThresh(h) give good
results for all tested SNRs.

VI. DENOISING A SIMULATED TIME SERIES

In most neuroimaging applications it is not possible to sep-
arate signal and noise, so the SNR is not known. Therefore, a
simulation study was performed in which the SNR is known a
priori. We constructed an artificial time series of 64 copies of the
MR template image of the previous experiment, and superim-
posed noise on each image according to the procedure described
in Section V. A block signal (see Fig. 8) was superimposed
on the time signals at the voxel locations inside the active re-
gion [see Fig. 5(a)]. The sign of the superimposed signal altered
after every eighth time point. The size of the original active re-
gion was 762 pixels.

The time series consisted of 8 blocks of 8 images: 4 blocks
were labeled “rest,” and 4 were labeled “task.” The “task”
blocks were those in which the time signal is positive (see
Fig. 8). The amplitude of the time signal was set to 5% of
the maximum intensity in the MR template. Starting with the
image from Section V, we use to denote the original
time series with the time signal superimposed on it, but
without the noise

(6)

Fig. 9. Performance of the wavelet denoising schemes, as well as Gaussian
smoothing for six FWHM values. The average temporal SNR inside the original
active spot in the denoised image is plotted against the spatial SNR of the noisy
input image.

The noisy time series was computed as

(7)

where and denote the noisy time series and the value
of the input noise, respectively. A BOLD image was computed
from each individual image by subtracting the time series mean.
As demonstrated in Section III, the noise distribution in such
difference images is approximately Gaussian. The BOLD image
was denoised using the methods from the previous section, after
which the time series mean was added to the denoised image.

Let denote the denoised time series. After denoising, we
tested each voxel location for the presence of the signal .
The residual noise was computed as

(8)

We denote the temporal residual noise in a voxel as a function
of by . The temporal SNR in a voxel after
denoising was computed as

(9)

where and are the standard deviations of and ,
respectively.

A. Effect on the Temporal SNR

Fig. 9 shows , averaged over all locations inside
the active spot, plotted against the input spatial SNR. The
graphs for Gaussian denoising show the same behavior as
in the 2-D image experiment, i.e., the SNR curve eventually
reaches a plateau value. The wavelet-based methods improve
the temporal SNR both for low and high input SNR. The same
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Fig. 10. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained white noise with a spatial SNR of 11 dB.

Fig. 11. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained 1=f noise with a spatial SNR of 11 dB.

relation observed in the previous experiment between smooth-
ness of the output image and the output SNR is visible here.
The smoothing wavelet methods and wide Gaussian smoothing
filters produce the highest temporal SNRs for low input SNRs,
and the less smoothing wavelet methods and narrow Gaussian
filters perform better for high input SNRs.

B. Effect on the Shape of the Detected Spots

Apart from comparing the average temporal SNRs in the ac-
tive spot, we also look at spatial maps of temporal SNR values
of the denoised time series. Ideally, these maps should have
high values inside the active spot and low values outside it.
Figs. 10–13 show the temporal SNRs in the area containing the
active spot for white noise and noise of 11 dB and 14 dB,
respectively. Note that the images were inverted (reverse video
mode) for enhanced display purposes.

Gaussian smoothing with small smoothing kernels and the
smoothing wavelet methods show bright spots, even for a low
input spatial SNR like 11 dB. Wider kernels, with
pixels, produce maps with a very smooth spot, which is less
bright. The smoothing wavelet methods show bright spots,
while those produced by the less smoothing wavelet methods
are fainter, cf. Fig. 10. The smoother the output image, the

Fig. 12. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained white noise with a spatial SNR of 14 dB.

Fig. 13. Temporal SNR maps (inverted) of the area around the active spot.
The original images contained 1=f noise with a spatial SNR of 14 dB.

more the shape and the SNR value distribution of the visible
spot differs from the original active spot. Temporal SNR maps
of methods that produce smooth images (both Gaussian and
wavelet-based) show spots with a somewhat elliptic shape and a
peaked (nonuniform) intensity distribution. The less smoothing
wavelet methods retain the shape of the original spot and its
uniform intensity distribution. For noise of 14 dB, InvShrink,
MinMaxThresh, SUREThresh, and Gaussian smoothing with

return almost exactly the original spot, with
a very uniform distribution of temporal SNR values. Other
less smoothing wavelet methods, such as MultiMAD and
VisuThresh (h), and Gaussian smoothing with ,
retain the shape of the spot quite well, with most of the changes
in the temporal SNR values near the contour of the spot.

C. Segmentation via SNR Thresholding

Segmentation of MR images based on thresholding is a com-
monly used technique, and it has also been used on statistical
parametric maps, see [36], [37] for examples and references. We
assumed the temporal SNR maps to have bimodal histograms:
one peak of low values for the background and another peak of
high values for the active spot. This assumption was used to seg-
ment the maps into a “nonactive” area and an “active” area. We
used the following steps to determine a threshold.
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Fig. 14. Six situations in which the temporal SNR threshold was determined.
Dashed line: histogram entries; solid line: log-histogram; vertical line:
threshold; �: background intensities; �: activation intensities. BOLD images:
SNR of�10 dB (a),�5 dB (b), 0 dB (c), and 5 dB (d). (e) Activation (inverted)
detected from (b and (f) activation (inverted) detected from (c).

1) Smooth the histogram with a moving average filter.
2) Take the logarithm of each entry in the smoothed his-

togram.
3) Model the log-histogram as the sum of two Gaussian

peaks.
4) Use the 99.9% level of the cumulative histogram of the

left peak as a threshold.

Filtering the histogram was implemented by applying a
three-tap averaging filter ten times. The logarithm was used
to amplify the second peak: the number of background pixels
is generally much larger than the size of the active spot, and
large values decrease more by taking their logarithm than small
values. The histogram was approximated by the sum of two
Gaussian peaks with the Levenberg–Marquardt curve fitting
algorithm. The threshold was based on the distribution of the
noise.

This is a very simple method, based on a simple assump-
tion of the bimodality of the histogram. We demonstrate its
performance in a number of cases, with SNRs ranging from
low to high. If the temporal SNR is very low, the histogram of
the temporal SNR map is equal to the histogram of an image
just containing noise. As it is not possible to distinguish two
peaks in this case, the threshold is determined incorrectly [see
Fig. 14(a)–(b)].

In the worst case we tested [Fig. 14(a)], the temporal SNR
map itself also has a very low SNR of dB, and the his-
togram of the SNR map has the shape of the noise distribution,
so that separation of signal and noise is not possible. The his-
togram in Fig. 14(b) yields a sensible threshold, though the noise
prevents a better detection [see Fig. 14(e)]. Fig. 14(c)–(d) shows
that temporal SNR maps with an SNR of at least 0 dB can be
segmented well with this technique.

In the experiment, we looked at two measures: the number
of false positive classifications, i.e., points outside the original
active spot labeled “active,” and false negative classifications,
i.e., points inside the original active spot labeled “nonactive.”

TABLE III
NUMBER OF FALSE POSITIVE CLASSIFICATIONS FOR WHITE (LEFT) AND

1=f (RIGHT) NOISE. THE SNR MAPS WERE ASSUMED

TO HAVE BIMODAL HISTOGRAMS

TABLE IV
NUMBER OF FALSE NEGATIVE CLASSIFICATIONS FOR WHITE (LEFT) AND

1=f (RIGHT) NOISE. THE SNR MAPS WERE ASSUMED

TO HAVE BIMODAL HISTOGRAMS

Tables III and IV show the false positive and false negative
classifications, respectively. Images with spatial SNRs of 8 dB
do not yield SNR maps that can be analyzed in this way, be-
cause the SNRs of the BOLD images, as well as the SNRs of
the temporal SNR maps, are too low [see the list of BOLD
SNRs in Section V and Fig. 14(a)–(b)]. They either yield many
false positives or many false negatives. In general, the denoising
methods that introduce much smoothness yield more false pos-
itive classifications for higher SNRs, while the less smoothing
methods yield many false negatives for the lowest SNR. Of the
wavelet-based methods, InvShrink and SUREThresh (h) per-
form well for both noise types, and MultiMAD, MinMaxThresh,
and VisuThresh (h) yield good results for moderate and high
SNRs. The relatively high numbers of type II errors for Gaussian
smoothing with large FWHM relate to the blurring effect visible
in Figs. 10–13. The intensity distribution in the spot changes
from uniform to peaked, which influences detections close to the
boundary of the spot. InvShrink, SUREThresh (h) and Gaussian
smoothing with yield good results. MultiMAD
and MinMaxThresh also perform well, the other methods yield
more errors.

VII. STATISTICAL TESTS ON THE SIMULATED TIME SERIES

We also performed a standard statistical analysis on the de-
noised time series with the SPM method [9]. The design matrix,

in (1), had two columns: a block signal like in Fig. 8 and a
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Fig. 15. Sorted p-values in the statistical map of denoised time series
with white noise, without activation. (a) No denoising, (b) FWHM = 1,
(c) FWHM = 3, (d) InvShrink, (e) MultiMAD, and (f) MinMaxThresh.
The symbols fo; x;+; �; g represent the time series of images with an input
SNR of f5; 10; 15;20;25g dB.

column containing a constant signal to capture the time series
mean. In terms of (1), the matrix contained two columns, each
representing an image. The first image, , contained the co-
variance of the block signal with the time signal at each location

. Image contained the time series mean of each voxel.
Although the noise in the MR images is Rician distributed,

the noise in the BOLD image has, to very good approximation,
a Gaussian distribution, as explained in Section III. If the tem-
poral noise is Gaussian distributed, the values in are -dis-
tributed. Using the sample variance (see Section II) we can
compute a statistical parametric map of -values by means of
the -test. We used FDR correction as described in Section II,
with an FDR parameter of 0.05, to threshold . This yielded
the statistically significant activations for all denoising methods.
To obtain more robust results, this experiment was repeated
20 times and the outcomes of the individual experiments were
averaged.

Two important issues are critical to the validity of this
method. First, a -test is only appropriate if, after denoising,
the temporal noise is still Gaussian. Second, to use the
setting described in Section II, the data is required to be PRDS.
The validity of these two assumptions is discussed in the
Sections VII-A and VII-B.

A. Impact of Spatial Filtering on the Distribution of Temporal
Noise

The -values resulting from a set of statistical tests are
uniformly distributed on [0, 1] if the “omnibus” null hypothesis
is true [38]. The sequence of ordered -values from that set of
tests should lie on a straight line. We tested this by constructing
time series similar to those previously described, but without
activation: the null hypothesis was true for all voxels. We
applied all denoising methods to these time series and sorted
the -values acquired in the statistical analysis. Fig. 15 shows
representative results of both wavelet methods and Gaussian
smoothing. Some methods produce Gaussian temporal noise,

others introduce a deviation from Gaussianity. The top row
shows that Gaussian smoothing with yields
uniformly distributed -values under the null hypothesis, while
for or higher, nonuniformly distributed -values
are obtained. The plots in the bottom row show results for
three wavelet methods. For InvShrink and MinMaxThresh the
distribution of -values is uniform, but for MultiMAD it is
nonuniform.

The fact that even for Gaussian smoothing the distribution of
the noise may become non-Gaussian may seem puzzling, but
can be explained by the fact that, for Rician noise, a higher in-
tensity in the image leads to a larger noise amplitude. This gives
a kind of spatial structure to the noise, which is observable in
the (BOLD) difference images. Denoising methods that produce
smoother images change this structure, thus introducing errors.
Although the deviation from normality varies between methods,
we chose to keep all methods in the statistical analysis, since the
-test is quite robust to deviations from normality.

B. Positive Regression Dependence of the -Values

Benjamini et al. [39] show that the setting can be
used in the FDR-controlling procedure if the data are PRDS,
and that multivariate, positively correlated, normally distributed
data are PRDS. Genovese et al. [11] argue that most fMRI data
sets satisfy this condition.

To test the spatial correlation of the noise after applying a
denoising method, we observed the time series (without acti-
vation) of the residual noise in the GLM, i.e., the images
in (1). We used the SPMd toolbox [40] to compute a normal-
ized residual time series . The noise in this time series was

-distributed. We tested for a positive correlation as fol-
lows. Let denote the normalized residual time signal (the
matrix in (1)) at location as a function of . We assumed the
autocorrelation function to be localized, and for each location

in the image, the amount of spatial correlation was es-
timated by averaging the covariances of the voxel’s time signal
with those of a number of neighboring voxels

(10)

with from a small neighborhood of of size (in our
case, was 11 11 voxels). Fig. 16 shows this function for
a number of settings. The top rows show the amount of cor-
relation found without applying denoising. Wavelet methods
introduce positive spatial correlations for lower input SNRs,
and hardly any negative correlations for higher input SNRs.
Gaussian smoothing introduces strong positive correlations for
all SNRs.

Another way to characterize the autocorrelation function is to
look at statistics of the distribution of . Fig. 16 and Table V
show that every denoising method changes the spatial corre-
lations in the residual time series. All methods, except Mul-
tiMAD, introduce significantly more positive correlations than
negative ones. Wavelet methods change the spatial correlation
much less than Gaussian smoothing. We assume that without
denoising, the residuals do not have significant negative corre-
lations. In our test data (spatially white or Gaussian noise)
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Fig. 16. Surface plots of the spatial autocorrelation function (top) and
histograms (bottom) of individual correlations computed in (10) of residual
time series. The original time series contained white noise. (a)–(e) SNR
input images = f5; 10; 15;20;25g dB, without denoising. (f)–(j) Idem,
denoised with MinMaxThresh. (k)–(o) Idem, after Gaussian smoothing with
FWHM = 3 voxels.

TABLE V
MINIMAL, MAXIMAL, MEAN, AND MEDIAN VALUES AND THE STANDARD

DEVIATIONS OF THE TEMPORAL STATISTICAL CORRELATION OF VOXELS WITH

THEIR NEIGHBOURS. THE INPUT TIME SERIES CONTAINED NO ACTIVATION,
AND THE SNR WAS 15 dB. LEFT: WHITE NOISE, RIGHT: 1=f NOISE

we know that this is the case. Because the only significant cor-
relations introduced by denoising are positive, the residuals are
either uncorrelated, or positively correlated in space. These re-
sults indicate that the setting is allowed in the statistical
tests.

TABLE VI
NUMBER OF TYPE I ERRORS IN THE SPM ANALYSIS WITH FDR CONTROL

(q = 0:05) FOR WHITE (LEFT) AND 1=f (RIGHT) NOISE

TABLE VII
NUMBER OF TYPE II ERRORS IN THE SPM ANALYSIS WITH FDR CONTROL

(q = 0:05) FOR WHITE (LEFT) AND 1=f (RIGHT) NOISE

C. Results

In this experiment, we investigate the effect of denoising on
the outcomes of the usual statistical analysis. In particular, we
look at two measures: the number of false positives and the
number of false negatives. It is important to realize that de-
noising has two effects: first, the desired effect of noise re-
duction, and second, an unwanted but unavoidable change of
the shape of the active spot. In order to take the latter effect
into account, false positives/negatives were defined as points
outside/inside the original active spot [see Fig. 5(d)] after de-
noising, which are marked “active”/“inactive” in the -test with
FDR control . These numbers are shown in Tables VI
and VII. The FDRs can be obtained from this table by computing
the number of false positives, divided by the number of detec-
tions; the latter number equals the size of active spot (
pixels), plus the number of false positives, minus the number
of false negatives. A consequence of taking the original active
spot as a reference is that the observed FDRs after denoising
may exceed the 5% threshold imposed by the FDR controlling
procedure.

These tables show that the smoothing methods produce
more false positives, whereas InvShrink, MinMaxThresh,
SUREThresh(h), VisuThresh(h) and Gaussian smoothing with

produce very few false positives. The other
wavelet methods and Gaussian smoothing with an FWHM
of two voxels also perform well. For larger Gaussian filters,
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Fig. 17. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNR of 11 dB.

Fig. 18. Statistical parametric maps of the area surrounding the active spot.
The original images contained 1=f noise with a spatial SNR of 11 dB.

the number of type I errors increases with the filter width.
The number of type I errors is larger for noise than for
white noise. The less smoothing wavelet-based methods and
Gaussian smoothing with an FWHM of one voxel produce
more type II errors than the other methods. With noise,
this effect is worse than with white noise. In general, the
wavelet-based methods and Gaussian smoothing with an
FWHM of one voxel introduce more type II errors, the other
Gaussian filters introduces more type I errors. Figs. 17–20
show statistical parametric maps built from the denoised time
series with white noise and noise of 11 dB and 14 dB,
respectively. Generally, the less smoothing methods produce
spots that are closest to the original. The spots detected after
InvShrink, MinMaxThresh, and SUREThresh (h) denoising
and Gaussian smoothing with an FWHM of one voxel are
closest to the original spot [see Figs. 17–20]. Because the
boundary voxels are not detected, the resulting active spot
is smaller than the original (type II errors). HybridThresh,
WaveJS, and VisuThresh(s) and all the Gaussian smoothing
methods produce larger spots (type I errors).

Fig. 19. Statistical parametric maps of the area surrounding the active spot.
The original images contained white noise with a spatial SNR of 14 dB.

Fig. 20. Statistical parametric maps of the area surrounding the active spot.
The original images contained 1=f noise with a spatial SNR of 14 dB.

VIII. STATISTICAL TESTS ON A REAL FMRI DATA SET

To test the denoising methods on real data, we used an ex-
ample fMRI data set provided by the Dartmouth Brain Imaging
Center [41]. This is a recording of an experiment in which a
subject was scanned for 4 min with a TR of 2000 ms. The sub-
ject’s condition switched every 30 s (15 scans) between “rest”
and “task,” starting with “rest.” During the “task” periods, the
subject had to perform an object manipulation task. The data
set consists of 120 volumes with a resolution of 64 64 27
voxels. Each voxel has a volume of 3.75 3.75 5.50 mm .

The three–dimensional volumes, each consisting of 27 axial
planes of 64 64 voxels, were transformed plane-by-plane
to the wavelet domain. The decomposition level was set
to 4. Denoising was done by both the wavelet-based
methods and Gaussian smoothing. For the latter we used
smoothing kernels of 5 5 5.5 mm , 10 10 5.5 mm ,
and 15 15 5.5 mm . We compared the activation images,
using the activation map of the original data without prepro-
cessing (see Fig. 21) as a reference: the shape of the active
region detected after denoising should not differ too much from
that detected from the original time series. The data underwent
the same statistical analysis as the simulated time series. Fig. 22
shows the voxels in a selected plane whose -statistic was above
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Fig. 21. Activation detected by the SPM method in the original fMRI time
series, after FDR thresholding with the FDR parameter set to q = 0:05.

Fig. 22. Activation detected with the SPM method in the denoised fMRI time
series, after FDR thresholding with the FDR parameter set to q = 0:05.

the FDR threshold, for all denoising methods, overlayed on the
first image of the original time series.

As in the case of the simulated time series, the active spot
takes an elliptic shape for Gaussian smoothing with large
FWHMs. The spots detected from the data sets denoised
with MinMaxThresh and SUREThresh look very similar, and
those found with WaveJS, InvShrink, and VisuThresh(h) are
also similar. HybridThresh, MultiMAD, and VisuThresh(s)
yield rather different maps. After smoothing with a Gaussian
kernel with an FWHM of 5 5 5.5 mm , the detected spot
resembles the ones found after InvShrink and VisuThresh with
hard thresholding. The other smoothing kernels yield heavily
deformed maps and show active spots very different from the
one in the reference image.

IX. CONCLUSION

We have compared wavelet denoising and Gaussian
smoothing in the context of functional MRI in three settings:
1) 2-D images and 2) time series of 2-D images, both con-
taminated by white or noise with a known SNR, and

3) a real fMRI data set with an unknown noise type and SNR.
The noise in BOLD images was described as the difference
of two MR images containing Rician noise, and was shown
to have a Gaussian-like distribution. The denoising methods
were compared with respect to SNR improvement, effect on
the shape of activated regions, and the effect on the quality
of statistical parametric maps. In contrast to most previous
wavelet-based denoising schemes, we have chosen to do the
subsequent statistical analysis in the spatial domain. This
allowed us to directly compare the results of Gaussian and
wavelet-based methods.

A discriminating characteristic of all tested denoising
methods is the amount of smoothing they introduce. This
characteristic plays a significant role in the applicability of the
methods. When the input SNR is very low, denoising schemes
that produce smoother images are preferred, and the gain in
SNR is highest. However, when the images have moderate
to high SNRs, these denoising schemes change the shapes
of objects in the images. The more smoothing is introduced,
the heavier the deformation, and in this case less smoothing
wavelet-based denoising methods are preferred. Gaussian
smoothing may be the best choice for SNRs which are too low
even for smoothing wavelet-based methods, but the resulting
SNR may still not be high enough for a reliable analysis.

The experiment with artificial time series showed that
all denoising schemes have an effect on the shape of the
activation spot. Gaussian smoothing and the more smoothing
wavelet-based methods introduce severe deformations and blur
the edges of the active spot. We used spatial maps of the tem-
poral SNR as a diagnostic to compare the denoising methods.
Segmentations based on the temporal SNR maps showed that
heavy smoothing obscures the border regions of the active
spot, introducing false negatives, while for low SNRs the less
smoothing methods lead to false positives. In the intermediate
SNR range, wavelet methods generally show smaller numbers
of errors than Gaussian smoothing. The same was observed in
the statistical analysis. Via plots of the distribution of -values
under the null hypothesis, we have shown that after the less
smoothing wavelet-based denoising methods and after modest
Gaussian smoothing, fMRI data do not violate the assumption
of normally distributed temporal noise. All tested denoising
method preserved the PRDS property of fMRI data, which
allowed us to use the favorable setting for the FDR
controlling procedure.

For the real fMRI data set, only the smallest Gaussian
smoothing kernel yielded reliable results. The wide smoothing
kernels yield much larger detected areas (meaning more type I
errors), in contrast to those obtained via less smoothing wavelet
denoising methods.

Summarizing all of these results, wavelet denoising methods
that introduce relatively little smoothness are generally prefer-
able over Gaussian smoothing for denoising fMRI time series.
In particular, InvShrink, MinMaxThresh or SUREThresh (h)
are safe choices. For low SNRs, the methods MultiMAD and
SUREThresh (s) are best applied.

We expect to find similar results for PET data, although there
are differences with fMRI regarding noise models and the SNR.
We did not use temporal denoising of the time series in this
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study, but wavelet denoising may prove a good alternative to
smoothing in time as well. This will be the subject of future
work.
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