Jeudi 1er mars 2007, à 14h30, amphi Grenat.
Orateur : Pascal Moyal (Univ. Paris Dauphine).
Titre : Champs moyens des processus de transport à valeurs mesures. Applications à la file avec clients impatients et au système pur délai.
Transparents.
Résumé :
Nous présentons un résultat de champ moyen pour une classe de processus
Markoviens à valeurs mesures ponctuelles, après changement d'échelle en
temps/espace/amplitude, ou loi des grands nombres fonctionnelle. Nous
appliquons ce résultat à deux modèles de files d'attente: la file
d'attente avec clients impatients et le système à une infinité de
serveurs,
pour lesquels nous donnons des approximations fluides des processus de
congestion et de perte. Dans le second cas, nous donnons en outre le
théorème central limite fonctionnel correspondant, i.e. la convergence
faible du processus des écarts normalisés au champ moyen par un processus
de diffusion à valeurs mesures. Les preuves de ces résultats utilisent des
méthodes de compacité (tension des suites de processus) et unicité via une
représentation dans l'espace des distributions tempérées.