2024

  • Paul Krzakala, Junjie Yang, Rémi Flamary, Florence d’Alché-Buc, Charlotte laclau, Mathieu Labeau. Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss, NeurIPS 2024
  • Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d’Alché-Buc:
  • Deep Sketched Output Kernel Regression for Structured Prediction. ECML/PKDD (3) 2024: 93-110
  • Staerman, G., Mozharovskyi, P., Colombo, P., Clémençon, S., & d’Alché-Buc, F. (2024). A pseudo-metric between probability distributions based on depth-trimmed regions. TMLR, 2024.

  • Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d’Alché-Buc. Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels, AISTATS 2024.
  • Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharvoskyi, Gaël Richard, Florence d’Alché-Buc. Tackling Interpretability in Audio Classification Networks with Non-negative Matrix Factorization in IEEE Tr. ASLP, 2024.

2023

  • Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d’Alché-Buc. Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels, Arxiv, 2023.
  • Tamim El Ahmad, Pierre Laforgue, Florence d’Alché-Buc. Fast Kernel Methods for Generic Lipschitz Losses via p-Sparsified Sketches, TMLR, 2023.
  • Dimitri Bouche, Rémi Flamary, Florence d’Alché-Buc, Riwal Plougonven, Marianne Clausel, Jordi Badosa, Philippe Drobinski, Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection, Renewable Energy, May, 2023.

2022

2021

2020

2019

2018

2017

2016

  • Céline Brouard, Florence d’Alché-Buc, Marie Szafranski. Input Output Kernel Regression: supervised and semi-supervised structured output prediction with operator-valued kernels, hal-01216708 pdf, JMLR: 17:176 (1- 48), October, 2016.
  • Céline Brouard, Huibin Shen, Kai Dührkop, Florence d’Alché-Buc, Sebastian Böcker, Juho Rousu. Fast metabolite identification with Input Output Kernel Regression, Bioinformatics, May, 2016.
  • Romain Brault, Markus Heinonen, Florence d’Alché-Buc, Random Fourier Features for Operator-valued kernels, Proc. of  8th Asian Conference in Machine Learning, JMLR Workshop and Conference proc., 2016.
  • Romain Brault, Néhémy Lim, Florence d’Alché-Buc, Scaling up Vector Autoregressive models with operator-valued Random Fourier features, AALTD’16, joint workshop to ECML/PKDD 2016.

2015

2014

  • Adriana Birlutiu, Florence d’Alché-Buc, Tom Heskes, A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions, IEEE Trans. on Computational Biology and Bioinformatics, issue 99, Nov 2014.
  • Nicolas Brunel, Quentin Clairon & Florence d’Alché-Buc, Parametric Estimation of Ordinary Differential Equations with Orthogonality Conditions, Journal of American Statistical Association (JASA), 10 Oct 2013, DOI:10.1080/01621459.2013.841583 (version HAL). Published in 2014.
  • Pablo Meyer1*, Thomas Cokelaer2, Deepak Chandran3, Kyung Hyuk Kim4, Po-Ru Loh5, George Tucker5, Mark Lipson5, Bonnie Berger5, Clemens Kreutz8, Andreas Raue78, Bernhard Steiert8, Jens Timmer68, Erhan Bilal1, DREAM 6&7 Parameter Estimation consortium, Herbert M Sauro4, Gustavo Stolovitzky1 and Julio Saez-Rodriguez2*, Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach, BMC Systems Biology 2014, 8:13.
  • Artemis Llamosi*, Adel Mezine*, Florence d’Alché-Buc, Véronique Letort, Michèle Sebag, Experimental Design in Dynamical System Identification: A Bandit-Based Active Learning Approach. ECML/PKDD (2) 2014: 306-321.

2013

2012

  • Blandine Romain, Véronique Letort, Olivier Lucidarme, Florence d’Alché-Buc, Laurence Rouet: Registration of Free-Breathing Abdominal 3D Contrast-Enhanced CT. Abdominal Imaging 2012: 274-282.
  • Blandine Romain, Véronique Letort, Olivier Lucidarme, Florence d’Alché-Buc, Laurence Rouet:Optimisation of reconstruction for the registration of CT liver perfusion sequences. Medical Imaging: Image Processing 2012: 83143S
  • Brouard, C., Guerrera, C., Brouillard, F., Ollero, M., Edelman, A. and d’Alché-Buc, F. (2012) Search for new CFTR-protein interactions using statistical learning. 6th European Cystic Fibrosis Young Investigator Meeting, Paris, France.
  • Brouard, C., Vrain, C., Dubois, J., Castel, D., Debily, M.-A. and d’Alché-Buc, F. (2012) Learning a Markov Logic Network for supervised gene regulation inference: application to the ID2 regulatory network in human keratinocytes. Machine Learning in Systems Biology (MLSB) workshop, Basel, Switzerland.
  • Brouard, C., d’Alché-Buc, F. and Szafranski, M. (2012) Link prediction as a structured output prediction problem using operator-valued kernels. Object, functional and structured data: towards next generation kernel-based methods – ICML Workshop, Edinburgh, Scotland.

2011

  • Brouard, C., d’Alché-Buc, F. and Szafranski, M. (2011) Semi-supervised Penalized Output Kernel Regression for Link Prediction. In Proceedings of the 28th International Conference on Machine Leaning (ICML), Bellevue, Washington, USA. [PDF][Supplementary materials][Slides]
  • Brouard, C., d’Alché-Buc, F. and Szafranski, M. (2012) Link prediction as a structured output prediction problem using operator-valued kernels. Object, functional and structured data: towards next generation kernel-based methods – ICML Workshop, Edinburgh, Scotland.
  • Brouard, C., d’Alché-Buc, F. and Szafranski, M. (2011) A new theoretical angle to semi-supervised output kernel regression for protein-protein interaction network inference. Machine Learning in Systems Biology (MLSB) workshop, Vienna, Austria.

2010

2009

  • François Le Fèvre, Serge Smidtas, C. Combe, M. Durot, Florence d’Alché-Buc, Vincent Schächter: CycSim – an online tool for exploring and experimenting with genome-scale metabolic models. Bioinformatics 25(15): 1987-1988 (2009).
  • Brouard, C., Dubois, J., Vrain, C., Debily, M.-A. and d’Alché-Buc, F. (2009) Statistical relational learning for supervised gene regulatory network inference. Machine Learning in Systems Biology (MLSB) workshop , Ljubljana, Slovenia, (2009).

2008

  • Book edition: Florence d’Alché-Buc, Actes de la Conférence d’APprentissage francophone, 2008.
  • Cédric Auliac, Vincent Frouin, Xavier Gidrol, Florence d’Alché-Buc: Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset. BMC Bioinformatics 9 (2008).

2007

  • Minh Quach, Nicolas Brunel, Florence d’Alché-Buc: Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics 23(23): 3209-3216 (2007)
  • Pierre Geurts, Nizar Touleimat, Marie Dutreix, Florence d’Alché-Buc: Inferring biological networks with output kernel trees. BMC Bioinformatics 8(S-2) (2007).
  • Pierre Geurts, Louis Wehenkel, Florence d’Alché-Buc: Gradient boosting for kernelized output spaces. ICML 2007: 289-296
  • Cédric Auliac, Florence d’Alché-Buc, Vincent Frouin: Learning Transcriptional Regulatory Networks with Evolutionary Algorithms Enhanced with Niching. WILF 2007: 612-619
  • Florence d’Alché-Buc and Louis Wehenkel, edition of Selected Proceedings of Machine Learning in Systems Biology: MLSB 2007, Machine Learning in Systems Biology: MLSB 2007, Evry, France, 24-25 September 2007, BMC Proceedings, Volume 2 Supplement 4.

2006

Theme: Overlay by Kaira
© 2020 Florence d'Alché-Buc