ASSIGNMENT 5

Exercise 1 (Capacity of two channels). Consider two DMCs $(\mathcal{X}_1, p(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p(y_2|x_2), \mathcal{Y}_2)$ with capacities C_1 and C_2 , respectively. A new channel $(\mathcal{X}_1 \times \mathcal{X}_2, p(y_1|x_1) \times p(y_2|x_2), \mathcal{Y}_1 \times \mathcal{Y}_2)$ is formed in which $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$ are sent simultaneously, resulting in y_1, y_2 . Find the capacity of this channel.

Exercise 2 (Choice of channels). Find the capacity C of the union of two channels $(\mathcal{X}_1, p_1(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p_2(y_2|x_2), \mathcal{Y}_2)$, where at each time, one can send a symbol over channel 1 or channel 2 but not both. Assume that the output alphabets are distinct and do not intersect. Show that $2^C = 2^{C_1} + 2^{C_2}$. Thus, 2^C is the effective alphabet size of a channel with capacity C.

Exercise 3 (Z-channel). The Z-channel has binary input and output alphabets and transition probabilities p(y|x) given by the following matrix:

$$Q = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, x, y \in \{0, 1\}$$

- a. Find the capacity of the Z-channel and the maximizing input probability distribution.
- b. Assume that we choose a $(2^{nR}, n)$ code at random, where each codeword is a sequence of fair coin tosses. This will not achieve capacity. Find the maximum rate R such that the probability of error $P_e^{(n)}$, averaged over the randomly generated codes, tends to zero as the block length n tends to infinity.

Exercise 4 (Erasures and errors in a binary channel). Consider a channel with binary inputs that has both erasures and errors. Let the probability of error be α and the probability of erasure be β , which means that when we send symbol 0, with probability $1 - \alpha - \beta$ we receive symbol 0, with probability α we receive symbol 1 and with probability β we receive an erasure symbol. Find the capacity of this channel.

Exercise 5 (Binary multiplier channel). Consider the channel $Y = X \cdot Z$, where X and Z are independent binary random variables that take on values 0 and 1. Z is Bernoulli(α) [i.e., $P(Z = 1) = \alpha$].

- a. Find the capacity of this channel and the maximizing distribution on X.
- b. Now suppose that the receiver can observe Z as well as Y. What is the capacity?