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Abstract

The signature of a labelled tree (and hence of its prefix-closed branch language)
is the sequence of the degrees of the nodes of the tree in the breadth-first traver-
sal. In a previous work, we have characterised the signatures of the regular
languages. Here, the trees and languages that have the simplest possible signa-
tures, namely the periodic ones, are characterised as the sets of representations
of the integers in rational base numeration systems.

For any pair of co-prime integers p and q, p > q > 1, the language L p
q
of

representations of the integers in base p
q looks chaotic and does not fit in the clas-

sical Chomsky hierarchy of formal languages. On the other hand, the most basic
example given by L 3

2
, the set of representations in base 3

2 , exhibits a remarkable
regularity: its signature is the infinite periodic sequence: 2, 1, 2, 1, 2, 1, . . .

We first show that L p
q
has a periodic signature and the period (a sequence of

q integers whose sum is p) is directly derived from the Christoffel word of slope p
q .

Conversely, we give a canonical way to label a tree generated by any periodic
signature; its branch language then proves to be the set of representations of
the integers in a rational base (determined by the period) and written with a
non-canonical alphabet of digits. This language is very much of the same kind as
a L p

q
since rational base numeration systems have the key property that, even

though L p
q
is not regular, normalisation is realised by a finite letter-to-letter

transducer.

Keywords: Rational base numeration system, Breath-first signature, Abstract
numeration system

1. Introduction

This work was motivated by the study of rational base numeration systems
which were first defined in [1]. The introduction of these systems allowed to
make some progress in a number theoretic problem, by means of automata
theory and combinatorics of words. At the same time, they raised the problem
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of understanding the structure of the sets of representations of the integers in
these systems from the point of view of formal language theory.

At first sight, these sets look rather chaotic and do not fit at all in the
classical Chomsky hierarchy of languages. They all enjoy a property that makes
them defeat, so to speak, any kind of iteration lemma. On the other hand, the
most common example given by the set of representations in the base 3

2 exhibits
a remarkable regularity. The set L 3

2
of representations, which are words written

with the three digits {0, 1, 2}, is prefix-closed and thus naturally represented as
a subtree of the full ternary tree which is shown in Figure 1. It is then easily
observed that the breadth-first traversal of that tree yields an infinite periodic
sequence of degrees: 2, 1, 2, 1, 2, 1, . . . = (21)ω. Moreover, the sequence of labels
of the arcs in the same breadth-first search is also a purely periodic sequence
0, 2, 1, 0, 2, 1, . . . = (021)ω .1
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Figure 1: The tree T 3
2
, representation of the language L 3

2

Let us call signature of a tree (or of the corresponding prefix-closed lan-
guage) the sequence of degrees in a breadth-first traversal of the tree. With this
example, we face a situation where a regular process, a periodic signature, give
birth to the highly non regular language, L 3

2
. This paradox was the incentive to

look at the breadth-first traversal description of languages in general. We have
shown in [13] that regular languages are characterised by signatures belonging
to a special class of morphic words. The purpose of this paper is to establish
that a periodic signature is characteristic of the languages of representations of
the integers in rational base numeration systems (roughly speaking and up to

1The sequence of degrees observed on the tree in the figure begins indeed with a 1 instead
of a 2, the sequence of labels begins at the second term. These discrepancies will be explained
later.

2



simple and rational transformations).
Let us be more specific in order to state more precisely the characterisation

results. An ordered tree of finite degree T is characterised by the infinite se-
quence of the degrees of its nodes visited in the order given by the breadth-first
traversal, which we call the signature s of T . Such a signature s, together with
an infinite sequence λλλ of letters taken in an ordered alphabet form a labelled sig-
nature (s,λλλ) and characterises then a labelled tree T . The breadth-first search
of T corresponds to the enumeration in the radix order of the prefix-closed
language LT of branches of T .

We call rhythm of directing parameter (q, p) a q-tuple r of integers whose
sum is p: r = (r0, r1, . . . , rq−1) and p = r0 + r1 + · · · + rq−1. With r, we
associate sequences γγγ of p letters that meet some consistency conditions. And
we consider the languages that are determined by the labelled signature (rω, γγγω).
The characterisation announced above splits then in two parts.

We first determine (Theorem 22) the remarkable labelled signature (r p
q

ω, γγγ p
q

ω)

of the languages L p
q
. We call it the Christoffel rhythm associated with p

q , as
it can be derived from the more classical notion of Christoffel word of slope p

q

(cf. [2]), that is, the canonical way to approximate the line of slope p
q on a Z×Z

lattice. Meanwhile, the labelling γγγ p
q
is the integer sequence induced by the

generation of Z/pZ by q.

The converse is more convoluted but essentially resides in the definition of
a special labelling γγγr associated with every rhythm r (Definition 29). It is then
established (Theorem 32) that the language Lr generated by the labelled sig-
nature (rω, γγγωr ) is a non-canonical representation of the integers in the rational
base z where z = p

q is the growth ratio of the rhythm r. The properties of alpha-
bet conversion in rational base numeration systems (cf. [1, 7]) allow to conclude
that for every rhythm r, the language Lr is as complicated (or as simple, in
the degenerate case where the growth ratio happens to be an integer) as these
langages L p

q
.

The same techniques allow to treat the generalisation to ultimately periodic
which raises no special difficulties and the results readily extend.

The languages with periodic labelled signature keep most of their mystery.
But we have at least established that they are all alike, essentially similar to
the representation languages in rational base numeration systems, and that
variations in the rhythm and labelling do not really matter.

A short version of this article has been presented at the LATIN 2016 con-
ference [14]. Earlier versions were posted on arXiv under a different title. Most
of the results are also part of the PhD thesis of the first author [11]. The peri-
odicity of the signature of the languages L p

q
has been observed independently

and in a slightly different setting in [5].
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2. Signatures of trees and languages

For sake of completeness, we reproduce here a section from [13] describing
our general framework.

We describe here a process of serialisation of (infinite) trees, (infinite) la-
belled trees, and (infinite) prefix-closed languages, that is, the representation
of such objects by one, or two, (infinite) words, using the assumption of the
existence of an underlying order. We also recall the related concept of abstract
numeration system and introduce the one of padded language.

2.1. On trees
Classically, a tree is an undirected graph in which any two vertices are con-

nected by exactly one path (cf. [4], for instance). Our point of view differs in
two respects. First, a tree is a directed graph such that (i) there exists a unique
vertex, called root, which has no incoming arc, and (ii) there is a unique (ori-
ented) path from the root to every other vertex. Second, a tree is ordered, that
is, the set of children of every node is totally ordered.

In the figures, we draw trees with the root on the left, arcs rightwards and
the child order will be implicitly defined by the convention that children placed
higher are greater (according to this order).

It will prove to be convenient to have a slightly different look at trees and to
consider that the root of a tree is also a child of itself, that is, bears a loop onto
itself.2 We call such a structure an i-tree. It is so close to a tree that we make
no real distinction between them. Nevertheless, some definitions or results are
easier or more straightforward when stated for i-trees, and others when stated
for trees: it is then convenient to have them both at hand. A tree will usually
be denoted by Tx for some index x and the associated i-tree by Ix. Figure 2
shows such a pair of a tree and the associated i-tree.

The degree of a node is the number of its children. In the sequel, we consider
infinite (i-)trees of finite degree, that is, all nodes of which have finite degree.
(We consider indeed infinite (i-)trees of bounded degree, but this restriction does
not matter for the definitions to come.) The breadth-first traversal of such an
ordered (i-)tree defines a total ordering of its nodes.

Convention. The set of nodes of an (i-)tree is always the set N of the non-
negative integers.

With this convention, the root is 0 and n is the (n+1)-th node visited by the
traversal. For n,m in N, we write

n−−A
T

m

whenever m is a child of n in T . We denote by deg(n) the degree of the node n.

2This convention is sometimes taken when implementing tree-like structures (for instance
in the unix/linux file system).
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(a) A tree that is almost ternary
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(b) The ternary i-tree

Figure 2: The tree and i-tree associated with the base 3 numeration system

2.2. Signatures of trees
We call signature any infinite sequence s = s0 s1 s2 · · · of non-negative inte-

gers. Whenever the signature s is obvious from the context, we simply denote
by Sj , for every integer j, the partial sum of the j first letters of s:

∀j ∈ N Sj =

j−1∑
i=0

si ,

that is, S0 = 0 , S1 = s0 and more generally Sj = Sj−1+ sj−1 for every j > 0.

Definition 1. A signature s = s0s1s2 · · · is valid if the following holds:

∀j ∈ N Sj+1 > j+1 . (1)

In particular, the validity of s implies that s0 is greater than, or equal to, 2.

Definition 2.
(i) The breadth-first signature or, for short, the signature, of an i-tree I is

the sequence s = s0s1s2 · · · of the degrees of the nodes of the i-tree I:

∀i ∈ N si = deg(i) .

(ii) The breadth-first signature of a tree T is the signature of the corresponding
i-tree.

5



In other words, we take the convention that the signature is always the one
of an i-tree. Figure 2 shows both the tree and the i-tree the signature of which
is 3ω . Valid signatures are in bijection with infinite i-trees of finite degree, as
expressed by the next proposition.

Proposition 3.
(i) Let s = s0 s1 s1 · · · be a valid signature. There exists a unique i-tree Is

whose signature is s: the i-tree such that every node n has sn children,
the sn nodes of the integer interval

{
Sn, Sn+1, . . . , Sn+1−1

}
.

(ii) The signature of any infinite (i-)tree of finite degree is valid.

Proof. The proof of (i) takes essentially the form of a procedure that generates
an i-tree from a valid signature s = s0s1s2 · · · . It maintains two integers:
the node n to be processed and the number m of nodes created so far, both
initially set to 0. At step (n+1) of the procedure, sn nodes are created, namely
the nodes m,m+1, . . . , (m+ sn − 1), and sn edges are created, all with starting
point n, and one for each of these new nodes as end point. Then n is incremented
by 1, and m by sn.

This procedure indeed describes an i-tree. The first node created is 0 and
the first arc created is the loop 0−A0 on the root. It is verified by induction
that at every step, m is equal to Sn. The initial conditions (n = m = 0) indeed
satisfies this equality since S0 is an empty sum.

The validity of s ensures that at the end of every step of the procedure n < m
holds (but not at the beginning of the first step where n = m = 0). It follows
that every node is strictly larger than its father, but for the root, whose father
is itself.

(ii) Let I be an infinite i-tree and s = s0s1s2 · · · its signature; Sn is the
number of children of the first n nodes of I. If s is not valid, the smallest
integer j for which Equation (1) does not hold is such that Sj = j, in which
case the set of the children of the j first nodes is of cardinal j, hence I has j
nodes and is finite.

Figure 3 shows the first five steps of the generation process applied to the
signature s = (311)ω. A slightly larger initial part of the resulting infinite
i-tree I(311)ω together with a labelling is shown in Figure 4.

2.3. Labelled signatures of labelled trees
In our framework, alphabets are totally ordered. In the case of alphabets of

digits, the natural order is of course implicitly used. As usual, the length of a
finite word w is denoted by |w|.

We say that a word w = a0 a1 · · · ak−1 is increasing if its letters are in
increasing order, that is if a0 < a1 < · · · < ak−1.

A labelled tree T, or i-tree I, is an (i-)tree every arc of which holds a label
taken in an alphabet A. Since both A and T (or I) are ordered, the labels on
the arcs have to be consistent with these two orders: two arcs originating from
the same node n must be labelled by two letters whose order is the same as the
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Figure 3: The first five steps of the generation of I(311)ω

endpoints of the arcs or, more intuitively, an arc to a greater child is labelled
by a greater letter. For n,m in N, and a in A, we write

n
a−−A
I

m (2)

whenever m is a child of n in I and the arc from n to m holds the label a.
The labelling λλλ = λ0λ1λ2 · · · of a labelled i-tree I (labelled in A) is an

infinite word of Aω. It is the sequence of the labels of the arcs of I visited in a
breadth-first traversal, that is:

for every node m in N, λm is the label of the unique arc incoming to m.
In particular, λ0 is the label of the loop on the root of I.

As it is an infinite sequence of non-negative integers, a signature s naturally
determines a factorisation of any other infinite word λλλ: λλλ = w0w1w2 · · · by
the condition that |wn| = sn for every n in N (and thus wn = ε if sn = 0).

Definition 4. Let s be a signature. An infinite word λλλ in Aω is consistent
with s if the factorisation λλλ = w0w1w2 · · · determined by s has the property
that every wn is an increasing word.

A pair (s,λλλ) of infinite words is a valid labelled signature if s is a valid
signature and if λλλ is consistent with s.

A simple and formal verification yields the following.

Proposition 5. A labelled i-tree I uniquely determines a valid labelled signature
and conversely any valid labelled signature (s,λλλ) uniquely determines a labelled
i-tree I(s,λλλ) whose labelled signature is precisely (s,λλλ).

Figure 4 shows the labelling of the i-tree whose signature is s = (311)ω by
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Figure 4: The padded language 0∗L(311)

the infinite periodic3 word λλλ = (036 .4 .2)ω. (This is of course a very special
labelling: labellings consistent with s do not need to be periodic, but periodic
words are the easiest cases of finitely defined infinite words.)

2.4. Labelled signatures of languages
The branch language of a labelled tree is the set of words that label all paths

from the root to every node of the tree. It is a prefix-closed language. Conversely,
every prefix-closed language over a totally ordered alphabet uniquely defines a
labelled ordered tree.

The branch language of a labelled i-tree is a language of a special form that
we call padded. The most common example of a padded language is given by the
writings of the integers in (an integer) base p. The representation of an integer
is a word over the alphabet Ap = {0, 1, . . . , p− 1} that does not begin with a 0
(and the set of representations is not a padded language). But there are cases
where one wants to have the possibility to write a number differently. For the
addition of two numbers for instance, it is convenient to have representations
of the same length, and the shorter one is prefixed with the adequate numbers
of 0’s such that the length of both words match. It is currently said that the
shorter representation is padded with 0’s.

The branch language K of an i-tree has clearly the property that any word
of K can be prefixed by an arbitrary number of the label of the loop (on the
root) and still be in K. The label of the loop of an i-tree is called padding

3The dots in the period are written to make obvious the factorisation of the labelling λλλ
determined by the signature s.
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letter. The notion of padded language can be given a purely language-theoretic
definition as follows.

Definition 6. Let A be a (totally ordered) alphabet and let a be a letter in A.
A language K over A is said to be a-padded if the following conditions hold:
(i) u ∈ K ⇔ au ∈ K ;
(ii) If bu is in K, with b in A, then b is not smaller than a.

A language is padded if it is a-padded for some letter a.

If a language is padded, it is a-padded for a unique a: the second condition
of Definition 6 implies that if K is both a-padded and a′-padded, then a = a′.

Notation. A padded language is written either as a∗L, or as L̂ if the padding
letter does not need to be specified; in both cases L is then implicitly defined as
the set of the words of the padded language which do not start with the padding
letter.

It is easy to verify that if I is a labelled i-tree and T the corresponding
tree, then the branch language of I is a padded language L̂ where L is the
branch language of T. Our notation transfers at the level of branch languages
the correspondence between trees and i-trees.

To some extent, there is no difference, between a labelled (i-)tree and the
prefix-closed language of its branches. We may thus speak of the labelled signa-
ture, and of the signature, of a prefix-closed language and take the correspond-
ing notation: the branch language of a tree Tx (resp. an i-tree Ix), for some
index x, is denoted by Lx (resp. L̂x). Proposition 5 may then be rephrased in
the following way.

Proposition 7. A prefix-closed padded language L̂ uniquely determines a la-
belled i-tree and hence a valid labelled signature, the labelled signature of L̂ and
conversely any valid labelled signature (s,λλλ) uniquely determines a labelled i-
tree I(s,λλλ) and hence a prefix-closed padded language L̂(s,λλλ), whose signature is
precisely (s,λλλ).

Remark 8. Any language L over a totally ordered alphabet A can be made
padded by adding a new letter # to A and by setting # smaller than all letters
in A. We then consider K = #∗L instead of L and L is rational if and only if
so is K.

This construction may look awkward but it naturally occurs for instance in
the study of ANS (cf. following Section 2.5), where no digit 0 exists in general.

Remark 9. A very ‘simple’ tree may produce an artificially ‘complex’ language
when paired with a ‘complex’ labelling. For instance, the infinite unary tree may
be labelled by an infinite word whose prefixes form a non-recursive language.
Therefore, any result relative to languages defined by signatures will always
require some hypothesis to restrict the labelling. This is illustrated later on in
this article (and in particular in the example shown in Figure 6) by pairing
periodic signatures with periodic labellings.
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2.5. Trees, languages and abstract numeration systems
The identification between a prefix-closed language L over a totally ordered

alphabet and the ordered labelled tree TL whose branch language is L (and
whose set of nodes is N) is very close to the notion of Abstract Numeration
Systems (ANS) introduced by Lecomte and Rigo (cf. [9, 10]). In this setting,
the language L over the totally ordered alphabet A is ordered by the trace of the
radix order over A∗ and — since it is meant to define a numeration system —
the representation of an integer n in this system, also called the L-representation
of n and denoted by 〈n〉L, is the (n+1)-th word of L in the radix order.

This notion generalises the situation in classical numeration systems. Let
us take for instance the numeration in base 3. The usual way for defining the
representation of integers in that system is to define an evaluation function
π3 : A3

∗ → N by the following: if w = dkdk−1 · · · d1d0 is a word of length k+1,
then

π3 (w) = π3 (dkdk−1 · · · d1d0) =

k∑
i=0

di 3
i . (3)

Note that in this case, it is convenient to have the letters of w indexed from
right to left.

As said above, every integer n is uniquely represented by a word 〈n〉3
of A3

∗ = {0, 1, 2}∗ which does not begin with a 0, that is, the set L3 of in-
teger representations in base 3 is defined by

L3 = {〈n〉3 | n ∈ N} = {1, 2}{0, 1, 2}∗ ∪ {ε}

(with the convention that the integer 0 is represented by ε rather than by the
digit 0, which suits us better). It then turns out that 〈n〉3 is the (n+1)-th
word of L3 in the radix order, that is, the representation of n in base 3 coin-
cides with the representation of n in the ANS defined by L3 over the ordered
alphabet {0, 1, 2}:

∀n ∈ N 〈n〉3 = 〈n〉L3 .

On the other hand, since TL is visited by a breadth-first search, the (n+1)-th
node of TL — labelled with n — is reached from the root by the (n+1)-th word
— in the radix order — of the branch language of TL, that is, L itself (under
the hypothesis that L is prefix-closed, which is necessary for the identification
between L and TL).

These two descriptions show that considering a prefix-closed language over
an ordered alphabet as an ANS or as the branch language of a labelled ordered
tree are two ways of expressing the same concept, namely the radix order over
the language. The similarity between the two notions is further shown in the
following equation

∀n ∈ N 0
〈n〉L−−−−A
TL

n , (4)

which implies

∀n,m ∈ N , ∀a ∈ A 〈n〉L a = 〈m〉L ⇐⇒ n
a−−−A
TL

m . (5)
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3. Rythmic Trees and Languages

In this paper, we are interested in signatures and labellings that are periodic.
We call any period of a periodic signature a rhythm and any period of a labelling
still a labelling, by abuse of language.

3.1. Rhythms and their Geometric Representations
Given two integers n and m such that m > 0, we denote by n

m their division
in Q; by n%m the remainder of the Euclidean division of n by m, that is
satisfying n = b nmcm+ (n%m) , hence 0 6 (n%m) < m. We also denote the
integer interval {n, (n+ 1), . . . ,m} by Jn,mK .

Definition 10. Let p and q be two integers with p > q > 1.
(i) We call rhythm of directing parameter (q, p), a q-tuple r of non-negative

integers whose sum is p:

r = (r0, r1, . . . , rq−1) and
q−1∑
i=0

ri = p .

(ii) We say that a rhythm r is valid if it satisfies the following equation:

∀j ∈ J0, q−1K
j∑
i=0

ri > j+1 . (6)

(iii) We call growth ratio of r the rational number z = p
q , also written z = p′

q′

where p′ and q′ are coprime; it is always greater than 1.

Examples of rhythms of growth ratio 5
3 are (2, 2, 1), (3, 1, 1), (1, 2, 2), (3, 0, 2),

(2, 1, 3, 0, 0, 4); all but the third one are valid; the directing parameter is (3,5)
for the first four, and (6,10) for the last one.

A simple verification yields that the notions of validity of rhythms and of
signatures are consistent: a rhythm r is valid if and only if the signature rω is
valid.

In the following, whenever the reference to a rhythm r = (r0, r1, . . . , rq−1) is
clear, we denote simply by Rj the partial sum of the first j components of rω:

∀j ∈ N Rj =

j−1∑
i=0

ri%q ,

that is, R0 = 0, R1 = r0 and more generally Rj = Rj−1 + r(j−1)%q for every
positive integer j. Using previous notation, Rj is equal to Sj for all integers j,
if we set s = rω.

In the following, and when it does not produce ambiguity, we rather write
rhythms as we write words, that is, as plain sequences of letters (integers):
r = r0 r1 · · · rq−1.
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3.2. Generating Trees by Rhythm
As we have already shown in the previous Section 2 (cf. proof of Proposi-

tion 3), an (i-)tree can be generated by its signature s, hence in the present case
from its rhythm r. In fact, the example (Figure 3) we used to illustrate this
generation process had indeed a periodic signature.

Whenever a tree is generated by a rhythm, the procedure becomes periodic
and q consecutive steps always create p (consecutive) new nodes and the p arcs
reaching them. It follows that, in the resulting tree, q consecutive nodes (in
the breadth-first traversal) have p consecutive children, hence the name growth
ratio given to the number p

q . More precisely, the following holds.

Lemma 11. Let Ir be the i-tree generated by a rhythm r of directing parame-
ter (q, p). Then, the following equation holds:

∀n,m ∈ N n−−−A
Ir

m ⇐⇒ (n+ q)−−−A
Ir

(m+ p) .

Rhythms are given a very useful geometric representation as paths in the
(Z × Z)-lattice and such paths are coded by words of {x, y}∗ where x denotes
an horizontal unit segment and y a vertical unit segment. Hence the name path
given to a word associated with a rhythm.

Definition 12. Let r = r0 r1 · · · rq−1 be a rhythm of directing parameter (q, p).
With r, we associate the word path(r) of {x, y}∗:

path(r) = yr0xyr1xyr2 · · ·xyrq−1x

which corresponds to a path from (0, 0) to (q, p) in the (Z× Z)-lattice.

Figure 5 shows the paths associated with three rhythms of directing param-
eter (3, 5). It then appears clearly that Definition 10 (ii) can be restated as a
rhythm is valid if and only if the associated path is strictly above the line of slope
1 passing through the origin.

slope: 5
3

slope:1

y

y

y
x

y
x

y
x

(a) rhythm 311

y

y
x

y

y
x

y
x

(b) rhythm 221
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forbidden
y

y

y

x

y
x

(c) rhythm 122

Figure 5: Words and paths associated with rhythms of directing parameter (3, 5)
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3.3. Generating (Padded) Languages by Rhythm and Labelling
We consider here periodic signatures s = rω where r is a rhythm of di-

recting parameter (q, p). We then will consider pairs (s,λλλ) with λλλ = γγγω where
γγγ = (γ0, γ1, . . . , γp−1) is a sequence of letters (digits) of length p. As for rhythms,
we rather write the labellings as words than with parantheses and commas.

It follows from Lemma 11 that the labelling is consistent on the whole tree
if and only if it is consistent on the first q nodes, hence on the first p arcs. By
abuse of language, we call in the following γγγ the labelling while it is indeed more
precisely the period of the labelling.

Definition 13. Let r be a rhythm of directing parameter (q, p) and γγγ a labelling
of length p.
(i) We call factorisation of γγγ induced by r, the factorisation γγγ = u0 u1 · · · uq−1

satisfying |ui| = ri for every integer i, 0 6 i < q. (Note that ui = ε
if ri = 0.)

(ii) The labelling γγγ is then said consistent with r if each factor ui is increasing.
(iii) The pair (r, γγγ) is then said valid if r is valid and γγγ is consistent with r.

For instance, the labelling γγγ = 03642 = γ0 γ1 · · · γp−1 is consistent with
the rhythm r = 311 since u0 = 036, u1 = 4 and u2 = 2 are all increasing
and u0 u1 u2 is the factorisation of γγγ induced by r.

We denote by I(r,γγγ) (resp. T(r,γγγ)) the labelled i-tree (resp. tree) generated
by a rhythm r of directing parameter (q, p) and a labelling γγγ = γ0 γ1 · · · γp−1
consistent with r. The following equation gives its complete expression:

∀n,m ∈ N n
a−−−−−A
I(r,γγγ)

m ⇐⇒
{
Rn 6 m < Rn+1

a = γ(m%p)
. (7)

For instance, the labelled tree T(r,γγγ) by r = 21 and γγγ = 021 is shown in Figure 1
and the labelled I(r,γγγ) generated by r = 311 and γγγ = 03642 in Figure 4.

The next statement completes Lemma 11 and follows from previous Equa-
tion (7).

Lemma 14. Let Ir,γγγ be the i-tree generated by the rhythm r of directing pa-
rameter (q, p) and a labelling γγγ consistent with r. We denote by A the alphabet
of all the letters appearing in γγγ. Then, the following equation holds:

∀n,m ∈ N , ∀a ∈ A n
a−−−−A
Ir,γγγ

m ⇐⇒ (n+ q)
a−−−−A
Ir,γγγ

(m+ p) .

As previously mentioned, we denote by L(r,γγγ) the branch language of the
tree T(r,γγγ) (rather than the one of i-tree I(r,γγγ)), and we call it the language
generated by (r, γγγ). The branch language of I(r,γγγ) is thus L̂(r,γγγ) = z∗L(r,γγγ)

where z = γ0 is the label of the loop 0−A0 in I(r,γγγ) and we call it the padded
language generated by (r, γγγ).
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4. From Rational Base Numeration Systems to Rhythms

4.1. Integer and Rational Base Numeration Systems
Let p be an integer, p > 2, and Ap = J0, p−1K the digit-alphabet of the

first p non-negative integers. Every word w = an an−1 · · · a0 of A ∗p is given a
value n in N by the evaluation function πp:

πp(an an−1 · · · a0) =

n∑
i=0

ai p
i ,

and w is a p-development of n. Every non-negative integer n has a unique p-
development in A ∗p without leading 0’s : it is called the p-representation of n
and is denoted by 〈n〉p. The p-representation of n can be computed from left-to-
right by a greedy algorithm, but also from right-to-left by iterating the Euclidean
division of n by p, the digits ai being the successive remainders. The language
of the p-representations of the integers is the regular language

Lp = {〈n〉p | n ∈ N} = (Ap \ 0) A ∗p .

Let p and q be two co-prime integers such that p > q > 1. Given a positive
integer N , let us write N0 = N and, for every non negative integer i, let us
define the integer Ni by the equation

qNi = pNi+1 + ai , (8)

where ai is the remainder of the Euclidean division of qNi by p, hence belongs
to Ap = J0, p− 1K. Since p > q, the sequence (Ni)i∈N is strictly decreasing and
eventually stops at Nk+1 = 0. Moreover, it holds that

N =

k∑
i=0

ai
q

(
p

q

)i
.

The evaluation function π p
q
is derived from this formula. Given a word u =

an an−1 · · · a0 over the alphabet Ap, and indeed over any alphabet of digits, its
value (in base p

q ) is defined by

π p
q
(u) = π p

q
(anan−1 · · · a0) =

n∑
i=0

ai
q

(
p

q

)i
. (9)

Conversely, a word u in A ∗p is called a p
q -development of a real number x

if π p
q
(u) = x. Since the development is unique up to leading 0’s (see [1, Theo-

rem 1]) the p
q -development of x which does not starts with a 0 is called the p

q -
representation of x, denoted by 〈x〉p

q
, and can be computed with the modified

Euclidean division algorithm above. By convention, the representation of 0 is
the empty word ε. The set of pq -representations of integers is denoted by L p

q
:

L p
q

= {〈n〉p
q
| n ∈ N} .

14



It is immediate that L p
q
is prefix-closed (since, in the modified Euclidean

division algorithm 〈N〉p
q
= 〈N1〉p

q
a0) and right-extendable (since, for every rep-

resentation 〈n〉p
q
, there exists (at least) an a in Ap such that q divides (np+ a)

and then 〈np+aq 〉pq = 〈n〉p
q
a). The language L p

q
is then considered as a labelled

tree whenever it is convenient, in particular when it is drawn; for instance the
language L 3

2
is shown in Figure 1 (introduction, p. 2) and the padded lan-

guage 0∗L 5
3
= L̂ 5

3
in Figure 6 later on.

It is shown in [1] that the numeration system with rational base p
q coincides

with the abstract numeration system (ANS) L p
q
: the representation of a given

integer n is the (n+1)-th word of L p
q
in the radix order.

It is also shown in the same paper [1] that L p
q
is not a rational language

and not even context-free language. Indeed, L p
q
meets a strong ‘non-iteration’

condition that we call Finite Left Iteration Property.

Definition 15 ([12, 11]). A language L of A∗ has the Finite Left Iteration
Property, or is a FLIP language for short, if for all u, v in A∗, |v| > 1, uvi is
prefix of a word of L for only finitely many exponents i in N. 4

A prefix-closed language is FLIP if and only if it contains no infinite regular
subsets, a property that have been called IRS by Greibach [8]. More precisely,
the following holds.

Proposition 16 ([11]). For a language L, the following statements are equiv-
alent:
(i) L is a FLIP language.
(ii) The prefix closure of L is an IRS language.
(iii) The topological closure of L does not contain any ultimately periodic words.

The finite left iteration property is quite a robust property as stated in the
next lemma.

Lemma 17 ([11]). The class of FLIP languages is stable by finite union, sub-
language, concatenation and inverse morphic image.

The very definition of the finite left iteration property immediately implies
that a FLIP language, hence indeed L p

q
, does not meet any kind of iteration

lemma and in particular is not context-free.

In many respects, the case of integer base can be seen as a special case of
rational base numeration system. Indeed, when q = 1, the definitions of π p

q
, 〈n〉p

q

and L p
q
coincide with those of πp, 〈n〉p and Lp respectively. In the sequel, we

consider the base p
q where p and q are two coprime integers satisfying p > q > 1,

4This property was originally introduced in [12] under the improper name of Bounded Left
Iteration Property, or BLIP for short.
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that is, indifferently one numeration system or the other. In particular, the
following holds in both integer and rational cases:

∀n ∈ N , ∀m ∈ N+ , ∀a ∈ Ap
〈m〉p

q
= 〈n〉p

q
a ⇐⇒ a = qm− pn . (10)

Note that the previous equivalence would be false if m were equal to 0.
Indeed, in the case where m = n = a = 0, the left-hand side equality is satisfied
while the other equality is not. This is not due to a different behaviour in
the case where m = 0, but simply to the fact that padding 0’s are implicitly
excluded in the representation of integers. We are then in a situation where
considering the associated padded language (or labelled i-tree) yields a more
elegant statement:

∀n,m ∈ N , ∀a ∈ Ap n
a−−−A
L̂ p
q

m ⇐⇒ a = qm− pn . (11)

4.2. Rhythm and Labelling of L p
q

With every directing parameter (q, p), we associate a particular rhythm r p
q

(of directing parameter (q, p), of course) and a canonical labelling γγγ p
q
. The latter

results from the generation of Z/pZ by q while the former relates to the classical
notion of Christoffel words if we use the correspondence between rhythms and
paths in the (Z× Z)-lattice that was described in Section 3.2. The remarkable
fact is then that the representation language in the p

q -numeration system is
generated by (r p

q
, γγγ p

q
).

Christoffel words code the ‘best (upper) approximation’ of segments in the
Z×Z-lattice and have been studied in the field of combinatorics of words (cf. [2]).

Definition 18 ([2]). The (upper) Christoffel word of slope p
q , denoted by w p

q
,

is the label of the path from (0, 0) to (q, p) on the (Z× Z)-lattice, such that
• the path is above the line of slope p

q passing through the origin;
• the region enclosed by the path and the line contains no point of Z× Z.

We translate then Christoffel words into rhythms.

Definition 19. The Christoffel rhythm associated with p
q , and denoted by r p

q
, is

the rhythm whose path is w p
q
: path(r p

q
) = w p

q
; its directing parameter is (q, p).

Figure 5b (p. 12) shows the path of w 5
3
= y y x y y x y x , the Christof-

fel word associated with 5
3 ; the Christoffel rhythm associated with 5

3 is then
r 5

3
= 221. Other instances of Christoffel rhythms are r 3

2
= 21, r 4

3
= 211

and r 12
5

= 32322. The definition of Christoffel words yields the following
proposition on rhythms.

Proposition 20. Let r p
q
= r0 r1 · · · rq−1 be the Christoffel rhythm associated

with a base p
q . Then, for every integer k, 0 < k 6 q, the partial sum of the first k

components of r p
q
is equal to the smallest integer greater than k pq : Rk =

⌈
k pq

⌉
.
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The next lemma rewords Proposition 20 in terms of Christoffel words and
follows from their geometrical properties.

Lemma 21. Let w p
q
be the Christoffel word of slope p

q . If ux is prefix of w p
q

then it corresponds to a path from (0, 0) to (k, dk pq e) in the Z×Z lattice, where k
is the number of x’s in ux.

Proof. From Definition 18 of Christoffel word, there is no integer point between
the path and the line of slope p

q and passing through the origin. Since the
point (k, k pq ) is part of this line, the Christoffel path must pass through the
point (k, dk pq e). Besides, the prefix of the Christoffel word reaching this point
must end with an x; indeed, were it ending with an y, the Christoffel path
would pass through the point (k, dk pq e− 1) which is below the line of slope p

q , a
contradiction.

Since p and q are coprime integers, q is a generator of the additive group Z/pZ.
We denote by γγγ p

q
the sequence induced by this generation process:

γγγ p
q

= ( 0, (q%p), (2q%p), . . . , ((p−1)q%p) ) .

0

0

13

2

1

3

4

42

5

0

6

3

7

1

8

4

92

10

0

11

3

12

1

13

4

142

15

0

16

3

17
1

18
4

192

20
0

21
3

22
1

23
4

242

25
0

26
3

27
1

28
4

292

30
0

31
3

32
1

33
4

Figure 6: The padded language 0∗L 5
3
of the representation of integers in base 5

3
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Theorem 22. Let p and q be two coprime integers, p > q > 1. The language L p
q

of the p
q -representations of the integers is generated by the rhythm r p

q
and the

labelling γγγ p
q
.

For instance, L 3
2
, shown in Figure 1, is generated by the rhythm r 3

2
= 21

and the labelling γγγ 3
2
= 021 while the padded language 0∗L 5

3
, shown in Figure 6,

is generated by the rhythm r 5
3
= 221 and the labelling γγγ 5

3
= 03142.

The next proposition follows directly from Equation (10) and implies the
part of Theorem 22 stated by Corollary 24.

Proposition 23. For every positive integer m, the rightmost digit of 〈m〉p
q
is

equal to (qm)%p.

Corollary 24. The labelling of L p
q
is γγγ p

q
.

The proof of the other part of Theorem 22 requires additional definitions
and statements.

Let us consider, for every integer k < q, the difference between the approx-
imation Rk = (r0 + r1 + · · · + rk−1) and the point of the associated line of the
respective abscissa, that is (k pq ). This difference is a rational number smaller
than 1 and whose denominator divides q; we denote by ek the integer resulting
of the multiplication of this difference by q:

∀k ∈ J0, q−1K ek = qRk − k p . (12)

b

e0 e1 e2

p(= 5) segments
of length q(= 3)

q(= 3) segments
of length p(= 5)

r0 = 2 r1 = 2 r2 = 1

Figure 7: Diagrammatic interpretation of the rhythm 221 of base 5
3

Figure 7 describes, on the example of the base 5
3 (also used in Figure 5b and

Figure 6), a more diagrammatic way of characterising Christoffel rhythms. We
consider a length of p× q units divided in two sets of segments: on the top it is
divided in p segments of length q and on the bottom by q segments of length p.
Every top segment is then associated with the bottom segment in which its
leftmost unit lies: for instance the first two top segments, [0, 3) and [3, 6), are
associated with the first bottom segment [0, 5) since their respective first unit
sub-segments, [0, 1) and [3, 4), lie in it. The rk’s and ek’s are then interpreted
as follows.
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• The integer rk is the number of top segments associated with the (k+1)-th
left-most bottom segment.

• The integer ek is the difference of length between the k left-most bottom
segments (of length p×k) and the total number of top segments associated
with them (of length q ×Rk).

Figure 8 then shows why this is an equivalent definition of the Christoffel
rhythm. In this figure, the unit segments x and y are divided into q subsegments
and the ek’s correspond to a number of subsegments.

b e0 = 0

e2

e1

y

y
x

y

y
x

y
x

slope : 5

3p(= 5) segments
of length q(= 3)

q(= 3) segments
of length p(= 5)

Figure 8: Link with Christoffel rhythm

Basic properties of the rj ’s and ej ’s that follow directly from Proposition 20
and Equation (12) are compiled in the following statement.

Property 25. Let r p
q
= (r0, r1, . . . , rq−1) be the Christoffel rhythm of slope p

q .
For every integer k in J0, q − 1K, it holds:

(i) ek belongs to J0, q−1K ;
(ii) rk is the smallest integer such that q rk + ek > p ;
(iii) ek+1 = ek + q rk − p .

Lemma 26. For every integer n, the smallest digit labelling an outgoing arc
of n in the i-tree L̂ p

q
is e(n%q).

Proof. Let n be an integer and k its congruence class modulo q. It follows
from (11) that the digits labelling arcs going out from n are congruent modulo q.
Since ek is in J0, q−1K (Property 25(i)), hence strictly smaller than q, it is
enough to show that ek is an outgoing label of n. From (11), it is the case if
and only if (np+ ek) is a multiple of q or, equivalently if (k p+ ek) is a multiple
of q, which follows from the definition of ek (Equation (12)).
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Proposition 27. For every integer n, there are exacly r(n%q) arcs going out
from n in the i-tree L̂ p

q
.

Proof. Let n be an integer and k its congruence class modulo q. From Prop-
erty 25(ii), rk is the smallest integer such that q rk + ek > p. In other words,
the two following equations hold:

∀j ∈ J0, rk − 1K (ek + q j) < p ;
ek + q rk > p .

The set S = {ek, (ek + q), . . . , (ek + q (rk − 1))} consists of all digits in Ap
that are congruent to ek modulo q. Since ek labels an arc going out from n
(Lemma 26), it follows from Equation (11) that

S = {a ∈ Ap | a labels an arc going out from n} .

The set S is of cardinal rk, concluding the proof.

Proposition 27 states that the rhythm of L p
q
is indeed r p

q
and Corollary 24

that its labelling is γγγ p
q
, hence establishing Theorem 22.

The next statement gives a different way to compute γγγ p
q
; its generalisation

in the next section (Definition 29) to arbitrary rhythms will be instrumental in
the proof of Theorem 32.

Proposition 28. Let r p
q
and γγγ p

q
= γ0 γ1 · · · γp−1 be the Christoffel rhythm and

labelling of directing parameter (q, p). We denote by γγγ p
q
= u0 u1 · · · uq−1 the

factorisation of γγγ p
q
induced by r p

q
. For every index i < p, it holds γi = i q− j p,

where j is the index of the factor uj containing γi.

Proof. Let us denote by c0 c1 · · · cp−1 the sequence of integers computed by the
formula:

ci = q i− pj if γi is a letter of the factor uj .

This definition implies that ci ≡ i q [p], hence ci ≡ γi [p] for every i, 0 6 i < p.
The proof will be complete when we have shown that 0 6 ci < p for every
integer i < p.

Let us take i, j > 0 such that γ0 γ1 · · · γi−1 = u0 u1 · · · uj−1, a word of
length i = Rj . It follows from Proposition 20 that i = dj pq e, or, in other
word, that

j p− q 6 (i−1)q < j p . (13)

Since from the choice of i and j, γi−1 is the last letter of uj−1, it holds

ci−1 = (i−1)q − (j−1)p hence, from (13), ci−1 < j p− (j−1)p = p .

Since |uj | = rj > 1, γi is the first letter of uj which implies that

ci = (i q − j p) hence, from (13), ci > (j p− q) + q − j p = 0 .

We have thus shown that:
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• the first letter of every factor uj is non-negative (note that we have previ-
ously shown the case where j > 0 only, the remaining case is trivial: the
first letter of the first factor is always equal to 0);

• the last letter of every factor uj is strictly smaller than p.
Since every factor is an increasing word (each letter being equal to the previous
letter plus q), every letter a of every factor satisfies 0 6 a < p.

As previously mentioned, for each integer i < p, since ci ≡ γi [p], the previous
paragraph implies that ci = γi.

5. From Rhythms Back to Rational Bases

We now establish a kind of converse of Theorem 22. With an arbitrary
rhythm is associated a rational base (its growth ratio) and a special labelling.
We consider the language generated by this labelled rhythm as an abstract
numeration system and show that it is simply a rational base numeration system
on a non-canonical alphabet (Theorem 32)

In this section, p and q are two integers, p > q > 1, not necessarily coprime
anymore, and r is a rhythm of directing parameter (q, p). As in Definition 10,
we denote by p′ and q′ the respective quotients of p and q by their gcd, denoted
by d.

5.1. Special Labelling
The next definition is a generalisation of the labelling of a Christoffel rhythm

for arbitrary rhythms; it is based on the characterisation given by Proposition 28
but is more complicated in order to take into account the possible components
equal to 0 appearing in the rhythm.

Definition 29. The special labelling γγγr = γ0 γ1 · · · γp−1 associated with r, is
defined as follows. Let γγγr = u0 u1 · · · uq−1 be the factorisation of γγγr induced by r
(for all i, 0 6 i < p, |ui| = ri, cf. Definition 13(i)).

For every integer i, 0 6 i < p, let j be the index such that the digit γi belongs
to uj; then γi is defined by γi = i q′ − j p′.

The previous Definition 29 may be rewritten by means of a recurrence
formula as follows. First γ0 = 0. Then, for every i, 0 6 i < p−1, if k
and j are the indices such that γi belongs to uj and γi+1 belongs to uj+k,
then γi+1 = γi + q′ − k p′. This alternate definition of the special labelling is
easier to showcase, it is therefore used in examples.

Example 30. Let r = 311; its directing parameter is (3, 5), hence p = p′ = 5,
q = q′ = 3 and the computation of γγγr is given below. Within a factor ui, the
difference between two consecutive digits is 3 (= q′), otherwise it is −2 (=
q′ − p′).

r = 3 1 1

γγγr =

u0︷︸︸︷
0 3 6

u1︷︸︸︷
4

u2︷︸︸︷
2
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Example 31. Let now r = 4002; its directing parameter is (4, 6), p′ = 3, q′ = 2
and the computation of γγγr is given below. Within a factor ui, the difference
between two consecutive digits is +2 (= +q′); the fourth digit belongs to u0 and
the fifth to u3: the difference between the two is −7 (= +q′ − 3p′).

r = 4 0 0 2

γγγr =

u0︷ ︸︸ ︷
0 2 46

u1︷︸︸︷
ε

u2︷︸︸︷
ε

u3︷ ︸︸ ︷
−1 1 )

Definition 29 implies that two consecutive digits in the same factor are in
increasing order (γi+1 = (γi+q) since j is unchanged), hence that γγγr is consistent
with r.

Notation. We denote by Lr the language generated by a rhythm r and the
associated special labelling γγγr, that is, Lr = L(r,γγγr)

.

5.2. Non-Canonical Representation of Integers
If r happens to be a Christoffel rhythm, then, by Theorem 22, Lr is equal

to L p′
q′

(which, in this case, is also L p
q
). The key result of this work is that Lr

and L p′
q′

are indeed of the same kind.

Theorem 32. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, the language Lr is a set of representations of the integers

in the rational base p′

q′ using a non-canonical set of digits.

Let us now call r-representation of an integer n, and denote it by 〈n〉r,
the representation of n in the abstract numeration system Lr. We know from
Equation (4) that 〈n〉r labels the path from the root 0 to the node n in the
labelled tree defined by Lr. First we show that the existence of arcs in Lr has
a necessary condition similar to those of L p′

q′
(cf. Equation (10)).

Lemma 33. For every integers n and m and every letter a, it holds:

〈n〉r a = 〈m〉r =⇒ a = q′m− p′n .

Proof. Let n and m be two integers and a be a letter such that 〈n〉r a = 〈m〉r.
From Equation (5) follows that

n
a−−−A
Lr

m .

We then apply the converse direction of Lemma 14 iteratively as many times as
possible and write k the number of times it was used. It yields two integers n′,m′
and an integer k such that

n′
a−−−A
Lr

m′ , (14a)

n′ = n− k q , m′ = m− k p , (14b)
m′ < p and n′ < q . (14c)
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Note that Lemma 14 directly implies only one of the two conditions of Equa-
tion (14c), but since Equation (14a) holds, they are equivalent.

It then follows from Equation (7) that

Rn′ 6 m′ < Rn′+1 and a = γm′%q ,

hence from Definition 29 that

a = q′m′ − p′n′ .

Combining the previous equation with (14b) yields (d is the gcd of p and q):

a = q′ (m− k p) − p′ (n− k q) = q′m − k (q′p− p′q) − p′n

= q′m − k (q′p′d− p′q′d) − p′n = q′m− p′n

which concludes the proof.

The converse of Lemma 33 does not hold in general; it holds only for rhythms
(of directing parameter (q, p)) such that p and q are coprime, and for powers of
such rhythms. Otherwise, the alphabet of the letters appearing in γγγr contains
at least two different digits congruent modulo p′; the incoming arc of a given
node then depends on its congruence class modulo p (and not only modulo p′).

The following proposition rewords Theorem 32 in a more precise way.

Proposition 34. Let r be a rhythm of directing parameter (q, p), p
′

q′ the reduced

fraction of p
q and π p′

q′
the evaluation function in the p′

q′ -numeration system.

Then, π p′
q′

is the evaluation function of the ANS Lr, that is:

∀n ∈ N π p′
q′
(〈n〉r) = n .

Proof. By induction on the length of 〈n〉r. The equality is obviously verified
for 〈0〉r = ε. Let m be a positive integer and 〈m〉r = ak+1 ak ak−1 · · · a1 a0 its
r-representation, that is, a word of Lr. The word ak+1 ak ak−1 · · · a1 is also
in Lr; it is the r-representation of an integer n strictly smaller than m, sat-
isfying 〈n〉r a0 = 〈m〉r, hence n

a0−−−A
Lr

m. On the right hand, by induction
hypothesis, n = π p′

q′
(〈n〉r) and on the other hand, it follows from the previous

Lemma 33 that a0 = q′m− p′n , or, equivalently, that m = np′+a0
q′ , hence

m =
p′

q′
π p′
q′
(〈n〉r) +

a0
q

= π p
q
(〈n〉r a0) = π p′

q′
(〈m〉r) .

It is shown in [1] that in spite of the ‘complexity’ of L p
q
, the conversion

from any digit-alphabet B into the canonical alphabet Ap is realised by a finite
transducer exactly as in the case of an integer numeration system (cf. also [7]).
More precisely:
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Theorem 35 ([1]). For every digit alphabet B, the function χ : B∗ → A ∗p′ which
maps every word w of B∗ onto the word of A ∗p′ which has the same value in the
p′

q′ -numeration system — that is, π p′
q′
(w) = π p′

q′
(χ(w)) — is a (right sequential)

rational function.

If we write B for the set of digits appearing in γγγr, Theorem 35 implies in
particular that χ(Lr) = L p′

q′
. Since χ is a rational function, Lr cannot be

‘simpler’ than L p′
q′
. More precisely, the following holds.

Corollary 36. Let r be a rhythm of directing parameter (q, p). If p
q is not an

integer, then Lr is a FLIP language.

Proof. We denote by B the alphabet of Lr, that is, the set of the digits appearing
in γγγr. Since B is finite, it follows from Theorem 35 that there exists a letter-to-
letter, sequential and right transducer T such that

∀w ∈ Lr π p′
q′
(w) = π p′

q′
(T (w)) . (15)

Moreover, since the p′

q′ -developments of a given integer are unique up to lead-
ing 0’s, (see [1, Theorem 1]), it follows from Proposition 34, that

∀w ∈ Lr T (w) ∈ 0∗L p′
q′

. (16)

For sake of contradiction, let us assume that Lr is not a FLIP language. Since
it is a prefix-closed and infinite language, it then contains an infinite rational
language that we denote by K. In addition, the words of K have pairwise
distinct values. It follows from (16) that the rational language T (K) is contained
in 0∗L p′

q′
and from (15) that the words of T (K) have pairwise distinct values.

Then, (0∗)−1T (K) ∩ (A ∗p \ 0A ∗p ) is an infinite rational language contained
in L p′

q′
, a contradiction with the property that L p′

q′
is a FLIP language.

Conversely, an easy proof that may be found in [13, 11] establishes the next
statement.

Theorem 37 ([13]). Let r be a rhythm of directing parameter (q, p). If pq is an
integer, then Lr is a regular language.

For instance, Figure 9 shows L̂321 and the automaton accepting it.

5.3. The FK Variant and its Associated Rhythm
Let p and q be two coprime integers such that p > q > 1. Let r be the extreme

rhythm of directing parameter (q, p) where all components are 0 but one which
is p. For r to be valid, the positive digit needs to be the first one: r = p0 · · · 0
and the associated special labelling is then γγγr = 0q (2q) · · · ((p− 1)q). Since
every letter of γγγr is a multiple of q, we perform a component-wise division of γγγr
by q and obtain γγγ = 012 · · · (p− 1).
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(a) The padded language L̂321
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(b) Automaton accepting it

Figure 9: The padded language L̂321 is rational

The language L(r,γγγ) generated by (r, γγγ) is then the language of the repre-
sentations of the integers in a variant (that we call FK after its authors) of pq -
numeration systems considered in [6]. In the FK variant, the value of a word u,
denoted by θ p

q
(u), is q times its standard evaluation: θ p

q
(u) = q × π p

q
(u). This

is exactly the behaviour described by Proposition 34, since all digits have been
divided by q. This example highlights the soundness of the relationship between
rational base numeration system and periodic signature.

Figure 10 shows the language of the representations of integers in the variant
FK of base 3

2 , that is the language L(30, 012) generated by the rhythm (30) and
labelling (012).

6. The Case of Ultimately Periodic Signature

We now generalise the results Section 5 to ultimately periodic signatures.
Let us first recall a few facts related to (non-necessarily periodic) signatures
and previously accounted in Section 2. First, we recall that whenever a signa-
ture s = s0 s1 s2 · · · is clear, Si denotes the partial sum s0 + s1 · · ·+ si−1 of the
first i terms of s. Moreover, the explicit definition of the edges of the tree Is
generated by a (valid) signature s (cf. Proposition 3(i), page 6):

∀n,m ∈ N n−−−A
Is

m ⇐⇒ Sn 6 m < Sn+1 . (17)

Finally, if moreover λλλ = λ0 λ1 λ2 · · · denotes a labelling, then its factorisa-
tion λλλ = u0 u1 u2 · · · determined by s (that is, satisfying |ui| = si, for all i)
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Figure 10: Padded language of the representations of the integers in the FK variant of base 3
2

obviously meets :

∀n,m ∈ N Sn 6 m < Sn+1 ⇐⇒ λm belongs to the factor un . (18)

We first consider arbitrary signature and show that with the appropriate
definition of special labelling (below), the extended versions of Lemma 33 and
Proposition 34 hold. However, as detailed by Remark 39, this definition goes
beyond the framework of language theory and the results presented here are
only meaningful when applied on ultimately periodic signatures.

Definition 38. Let s be a signature and p, q two integers such that p > q > 1.
We write as usual p

′

q′ the reduced fraction of pq .
The special labelling λλλs,(q,p) = λ0λ1λ2 · · · of directing parameter (q, p) and

associated with s is defined as follows. We denote by λλλs,(q,p) = u0 u1 u2 · · · the
factorisation of λλλs,(q,p) induced by s. For every integer i, let j be the index such
that the letter λi belongs to uj and then we define λi = i q′ − j p′.

Remark 39. The preceding Definition 38 of special labelling yields an infinite
sequence of integers that is not bounded in general. The generated (padded)
language will in that case be over an infinite alphabet, hence beyond the frame-
work set in Section 2. Later on, we will restrict signatures to be ultimately
periodic and show that in this case the special labelling is bounded (Lemma 42).

The next lemma follows directly from the previous Definition 38 together
with Equations 17 and 18.
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Lemma 40. Let s be a signature and p, q be two integers such that p > q > 1.
We denote by L = Ls,(q,p) the language generated by the signature s and the
labelling λλλs,(q,p). Then, the following implication holds:

〈m〉L = 〈n〉L a =⇒ a = q′m− p′n .

The next proposition may then be proven using the Lemma 40 much like
Proposition 34 has been shown using Lemma 33.

Proposition 41. Let s be a signature and p, q two integers such that p > q > 1.
We write p′

q′ the reduced fraction of p
q and denote by L = Ls,(q,p) the language

generated by the signature s and the labelling λλλs,(q,p). Then, the following equa-
tion holds:

∀n ∈ N π p′
q′

(
〈n〉L

)
= n .

In the remainder of this section, we consider an ultimately periodic signa-
ture s = trω, where t and r are two rhythms; the former will be called pre-period
and its directing parameter is denoted by (g, h); the later, r, is called period,
its directing parameter is denoted as usual by (q, p). By convention, the special
labelling associated with an ultimately periodic signature always has a directing
parameter equal to the one of the period, that is (q, p); it is then denoted simply
by λλλs for short.

Lemma 42. The special labelling associated with an ultimately periodic signa-
ture is written on a finite alphabet of digits.

Proof. Let s = trω be an ultimately periodic signature, (g, h) the directing
parameter of t and (q, p) the directing parameter of r.

Let us first show that the following equation holds:

∀j , j > g Sj+q = Sj + p . (19)

Let j be an integer greater than g. The partial sum Sj then contains all the
terms of t, hence Sj = Tg +Rj−g; the same reasoning applied to (j + q) yields
that Sj+q = Tg + Rj+q−g. Since for all integer k, Rk+q = Rk + p, the proof of
Equation (19) is complete.

We write the special labelling associated with s, and its factorisation deter-
mined by s as follows:

λλλs = λ0λ1λ2 · · · = u0 u1 u2 · · ·

The whole statement is then a consequence of the following equation that we
prove thereafter:

∀i , i > h λi = λi+p . (20)

Let i be an integer greater than or equal to h. We denote by j the integer such
that Sj 6 i < Sj+1. Since i is greater than h = Tg, j is necessarily greater
than g. Applying Equation (19) hence yields that Sj+q 6 i+ p < Sj+1+q.
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It follows that the letters λi and λi+p belong respectively to the factors uj
and uj+q. From Definition 38 these two letters are then defined as follows:

λi = i q′ − j p′ and λi+p = (i+ p)q′ − (j + q)p′ .

Since p′ q = pq′, it follows that λi = λi+p.

The next corollary then follows from Theorem 35.

Corollary 43. Let s = trω be an ultimately periodic signature, let (q, p) be the
directing parameter of r and let Ls be the language generated by the pair (s,λλλs).
If pq is not an integer, then Ls is a FLIP language .

Once again, an easy proof that may be found in [13, 11] establishes the next
statement.

Theorem 44. Let s = trω be an ultimately periodic signature, let (q, p) be the
directing parameter of r and let Ls be the language generated by the pair (s,λλλs).
If pq is an integer, then Ls is a regular language.

7. Conclusion

We have established in this paper that the infinite trees or languages gen-
erated by periodic signatures are completely determined (up to very simple
transformations — that is, rational sequential functions) by the growth ratio of
the period only and independent of the actual components of the period.

There is certainly still much to be understood on the relationship between the
‘high regularity’ of periodic signatures and the apparent disorder or complexity
of trees that are generated by these periodic signatures. Some questions, such
as statistics of labels along infinite branches, are indeed related to identified
problems in number theory that are recognised as very difficult.

Using rhythm often sheds light on problems related to rational base. It
is the case for the question of representation of the negative integers, tackled
in [6], that may be given a new approach in terms of Christoffel words and their
properties.

This ‘characterisation’ of rational base numeration system by the period
was somehow unexpected. It makes the scenery simpler but the call for further
investigations on the subject even stronger.

References

[1] Shigeki Akiyama, Christiane Frougny, and Jacques Sakarovitch. Powers
of rationals modulo 1 and rational base number systems. Israel J. Math.,
168:53–91, 2008.

[2] Jean Berstel, Aaron Lauve, Christophe Reutenauer, and Franco Saliola.
Combinatorics on Words: Christoffel Words and Repetition in Words, vol-
ume 27 of CRM monograph series. American Math. Soc., 2008.

28



[3] Valérie Berthé and Michel Rigo, editors. Combinatorics, Automata and
Number Theory. Number 135 in Encyclopedia Math. Appl. Cambridge
University Press, 2010.

[4] Reinhard Diestel. Graph Theory. Springer, 1997.

[5] Tom Edgar, Hailey Olafson, and James van Alstine. The combinatorics of
rational base representations. to appear.

[6] Christiane Frougny and Karel Klouda. Rational base number systems for
p-adic numbers. RAIRO Theor. Informatics and Appl., 46(1):87–106, 2012.

[7] Christiane Frougny and Jacques Sakarovitch. Number representation and
finite automata, chapter 2, pages 34–107. In Berthé and Rigo [3], 2010.

[8] Sheila A. Greibach. One counter languages and the IRS condition. J.
Comput. Syst. Sci., 10(2):237–247, 1975.

[9] Pierre Lecomte and Michel Rigo. Numeration systems on a regular lan-
guage. Theory Comput. Syst., 34:27–44, 2001.

[10] Pierre Lecomte and Michel Rigo. Abstract numeration systems, chapter 3,
pages 108–162. In Berthé and Rigo [3], 2010.

[11] Victor Marsault. Énumération et Numération. PhD thesis, Télécom–
ParisTech, 2016.

[12] Victor Marsault and Jacques Sakarovitch. On sets of numbers rationally
represented in a rational base number system. In Traian Muntean, Dim-
itrios Poulakis, and Robert Rolland, editors, CAI 2013, number 8080 in
Lect. Notes in Comput. Sci., pages 89–100, 2013.

[13] Victor Marsault and Jacques Sakarovitch. The signature of rational lan-
guages. Theoret. Computer Sci., 2016. To appear.

[14] Victor Marsault and Jacques Sakarovitch. Trees and languages with pe-
riodic signature. In Evangelos Kranakis, Gonzalo Navarro, and Edgar
Chávez, editors, LATIN 2016, number 9644 in Lect. Notes in Comput.
Sci., pages 605–618, 2016.

29


