Test - Solution

In the following, A denotes the alphabet $A=\{a, b\}, \mathbb{N}$, the set of non negative integers. If w is in A^{*}, we denote by $|w|_{a}$ the number of a 's in w.

1.- Finite image relations.

Recall that a relation α is said to be finite image if $\operatorname{Im} \alpha$ is a finite set (and not if the image $\alpha(w)$ is finite for every $w)$.
Show that a finite image functional rational relation is sequential.
If the relation $\alpha: A^{*} \rightarrow A^{*}$ is finite image, let $\operatorname{Im} \alpha=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ and write $\mathbf{k}=\{1,2, \ldots, k\}$. If α is a rational relation, so is α^{-1} and $\alpha^{-1}\left(w_{j}\right)=K_{j}$ is a rational subset of \mathbb{K}_{j} for every j. The \mathbb{K}_{j} are pairwise disjoint since α is functional. Every \mathbb{K}_{j} is accepted by a complete deterministic automaton $\mathcal{A}_{j}=\left\langle Q_{j}, i_{j}, \delta_{j}, T_{j}\right\rangle$. Based on the product of the \mathcal{A}_{j}, we build a deterministic automaton which recognises all the K_{j} simultaneously :

$$
\begin{gathered}
\mathcal{A}=\left\langle Q, i, \delta, U_{1}, U_{2}, \ldots, U_{k}\right\rangle, \quad \text { with : } \\
Q=\prod_{j \in \mathbf{k}} Q_{j}, \quad i=\left(i_{1}, i_{2}, \ldots, i_{k}\right), \quad \text { et } \quad U_{j}=\prod_{h \in \mathbf{k}, h \neq j} Q_{h} \times T_{j} .
\end{gathered}
$$

For every u in A^{*}, it holds : $\delta(i, u) \in U_{j} \Leftrightarrow u \in K_{j}$.
We transform \mathcal{A} into a transducer \mathcal{T} by adding the output $1_{A^{*}}$ on every transition of \mathcal{A} and by defining the final function U by: $U(q)=w_{j}$ if and only if $q \in U_{j} ; \mathcal{T}$ is sequential since \mathcal{A} is deterministic and $U: Q \rightarrow A^{*}$ functional.

2.- Commutative image.

Let $\alpha: A^{*} \rightarrow \mathbb{N}^{2}$ the commutative image map, i.e. $\alpha(w)=\left(|w|_{a},|w|_{b}\right)$.
Show that the equivalence map of α, i.e. the relation $\alpha^{-1} \circ \alpha: A^{*} \rightarrow A^{*}$ which associates with every word w of A^{*} all the words of A^{*} which have the same number of a 's and the same number of b 's as w, is not a rational relation.

Let $L=(a b)^{*}$, a rational language. It holds :

$$
\left[\alpha^{-1} \circ \alpha\right](L)=\left\{\left.w \in A^{*}| | w\right|_{a}=|w|_{b}\right\}
$$

which is not a rational language, hence $\alpha^{-1} \circ \alpha$ is not a rational relation.

3 .- Coding and deciphering.

(i) Build the Schützenberger covering of the automaton below.

The automaton \mathcal{A}_{1} (left, verticaly), its determinisation $\widehat{\mathcal{A}_{1}}$ (top, horizontaly) and its Schützenberger covering \mathcal{S}_{1}.

(ii) Let $\alpha:\{x, y\}^{*} \rightarrow\{a, b\}^{*}$ be the morphism defined by: $\alpha(x)=a, \alpha(y)=a b a$. Show that α is injective (hence the relation α^{-1} is fonctional).

The automaton \mathcal{A}_{1} is the underlying input automaton of the transducer \mathcal{T}_{1} which realizes α^{-1} and which is drawn below.

The morphism α is injective, and then α^{-1} is functional, if and only if the automaton \mathcal{A}_{1} is unambiguous.
It can be seen on the figure of the former question that the projection of \mathcal{S}_{1} onto $\widehat{\mathcal{A}_{1}}$ is In-bijective, that is, is a co-covering. The successful computations of $\widehat{\mathcal{A}_{1}}$ are then in 1-to- 1 correspondence with those of \mathcal{S}_{1}, and then with those of \mathcal{A}_{1} since \mathcal{S}_{1} is a covering of \mathcal{A}_{1}. Hence \mathcal{A}_{1} is unambiguous as is $\widehat{\mathcal{A}_{1}}$.
(iii) Give a (finite) sequential transducer that realizes α^{-1}.

The representation corresponding to the real-time transducer \mathcal{T}_{1} is
$I_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), \quad \mu_{1}(a)=\left(\begin{array}{ccc}x & y & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), \quad \mu_{1}(b)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), \quad T_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

The sequentialisation process applied to this representation leads to the following computations:

$$
\begin{gathered}
I_{1} \cdot \mu_{1}(a)=\left(\begin{array}{lll}
x & y & 0
\end{array}\right), \quad I_{1} \cdot \mu_{1}(a a)=\left(\begin{array}{lll}
x x & x y & 0
\end{array}\right)=x\left(\begin{array}{lll}
x & y & 0
\end{array}\right) \\
I_{1} \cdot \mu_{1}(a b)=\left(\begin{array}{lll}
0 & 0 & y
\end{array}\right)=y\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \cdot \mu_{1}(a)=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)=I_{1} \\
I_{1} \cdot \mu_{1}(b)=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \cdot \mu_{1}(a)=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Which yields the sequential transducer \mathcal{T}_{2} below, whose underlying input automaton is naturally equal to $\widehat{\mathcal{A}_{1}}$.

4.- Factor replacing.

(i) Let $\alpha: A^{*} \rightarrow A^{*}$ be the relation realized by the synchronous transducer below.

(a) What is the image of the word $a b a a b b$ by α ?
(b) Describe the relation α.
(c) Give a transducer which realizes $\alpha \circ \alpha$.
(a) $\alpha(a b a a b b)=\{a b a a b b, a b b b b b\}$.
(b) The relation α associates with every word u of A^{*} the set of words that are obtained by replacing in u an arbitrary number (and possibly zero) factors $a a$ (without overlapping) by factors $b b$.
(c) The definition of α itself shows that $\alpha \circ \alpha=\alpha$ and the transducer \mathcal{T}_{1} given above answers the question. The computation of the composition of \mathcal{T}_{1} by itself yields another transducer below that is equivalent to \mathcal{T}_{1}.

(ii) Let $\beta: A^{*} \rightarrow A^{*}$ be the (functional) relation which replace every factor $a b$ of a word by a factor ba (which does not prevent the result to contain still factors $a b)$. For instance: $\beta(a b a a b b)=b a a b a b$.
Give a synchronous transducer which realizes β.
Let 1 be the initial state of such a transducer. If a ' b ' is read, ' b ' is output and the transducer stays in the same state. Reading an ' a ' on the contrary opens two possibilities, represented by two distinct states, respectively state 2 and 3 : either this ' a ' is followed by a ' b ', inwhich case a ' b ' is output and the following ' b ' will output an ' a ', or this ' a ' is followed by an ' a ', or it is the last letter of the word, in which case an ' a ' is output. From state 2 , one can read a ' b ' only and go to state 1 . From state 3 , one can read an ' a ' only and this yields the same dilemna as before. This behaviour is realised by the transducer \mathcal{T}_{2} below.

(iii) (a) Give a sequential transducer which realizes β.
(b) Give a sequential transducer which realizes $\beta \circ \beta$.
(a) One can build the same kind of reasoning as above. From the initial state, reading a ' b ' outputs a ' b ' and the transducer stays in the same state. Reading an ' a ' moves the transducer in a state that keeps the memory of that ' a ' and outputs the empty word. In that state, reading an ' a ' proves that the preceding ' a ' is not followed ' b ' and thus yields the output of an ' a ', while the transducer stays in the same state. If the word ends in that state, the ' a ' that is kept by the state has to be output: it is the role of the final function. If a ' b ' is read, since the preceding letter is an ' a ', a factor ' $a b$ ' is read, ' $b a$ ' is output and the transducer goes back to the initial state, which gives the transducer \mathcal{T}_{3} below.

It is also possible to apply the sequentialisation process to the representation corresponding to transducer \mathcal{T}_{2} :
$I_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), \quad \mu_{2}(a)=\left(\begin{array}{ccc}0 & b & a \\ 0 & 0 & 0 \\ 0 & b & a\end{array}\right), \quad \mu_{2}(b)=\left(\begin{array}{lll}b & 0 & 0 \\ a & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad T_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
It then holds:

$$
\begin{gathered}
I_{2} \cdot \mu_{2}(a)=\left(\begin{array}{lll}
0 & b & a
\end{array}\right), \quad I_{2} \cdot \mu_{2}(b)=\left(\begin{array}{lll}
b & 0 & 0
\end{array}\right)=b\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & b & a
\end{array}\right) \cdot \mu_{2}(a)=\left(\begin{array}{lll}
0 & a b & a a
\end{array}\right)=a\left(\begin{array}{lll}
0 & b & a
\end{array}\right) \\
\left(\begin{array}{lll}
0 & b & a
\end{array}\right) \cdot \mu_{2}(b)=\left(\begin{array}{lll}
b a & 0 & 0
\end{array}\right)=b\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

and we get the transducer \mathcal{T}_{3} again.
(b) As \mathcal{T}_{3} is not subnormalised, it is necessary to use the composition of representations. The representation corresponding to transducer \mathcal{T}_{3} is :

$$
I_{3}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), \quad \mu_{3}(a)=\left(\begin{array}{cc}
0 & 1 \\
0 & a
\end{array}\right), \quad \mu_{3}(b)=\left(\begin{array}{cc}
b & 0 \\
b a & 0
\end{array}\right), \quad T_{3}=\binom{1}{a}
$$

The composition of this representation by itself gives:

$$
\begin{gathered}
I_{3} \cdot \mu_{3}\left(I_{3}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right), \quad \mu_{3}\left(T_{3}\right) \cdot T_{3}=\left(\begin{array}{c}
1 \\
a \\
a \\
a a
\end{array}\right), \\
{\left[\mu_{3} \circ \mu_{3}\right](a)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & a
\end{array}\right), \quad\left[\mu_{3} \circ \mu_{3}\right](b)=\left(\begin{array}{cccc}
b & 0 & 0 & 0 \\
b a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & b a & 0 & 0
\end{array}\right) .}
\end{gathered}
$$

And this representation corresponds to the following sequential transducer :

