Two routes to automata minimization and the ways to reach it efficiently

Sylvain Lombardy ${ }^{\text {a }}$ and Jacques Sakarovitch ${ }^{\text {b }}$
${ }^{a}$ LaBRI, Bordeaux INP / Université de Bordeaux / CNRS
${ }^{\text {b }}$ IRIF, CNRS / Université Denis-Diderot and Telecom ParisTech

CIAA 2018, 1 August 2018, Charlottetown (PEI)

Common knowledge in FA Theory

- Every regular language L has a minimal DFA (that is canonically associated with L)

Common knowledge in FA Theory

\mathcal{A} DFA

- Every DFA \mathcal{A} has a minimal quotient
- This quotient is characteristic of $L(\mathcal{A})$

Common knowledge in FA Theory

\mathcal{A} DFA

- Every DFA \mathcal{A} has a minimal quotient
- This quotient is characteristic of $L(\mathcal{A})$
- The minimal quotient of a DFA \mathcal{A} may be effectively computed by a quadratic algorithm

Common knowledge in FA Theory

\mathcal{A} DFA n states

- Every DFA \mathcal{A} has a minimal quotient
- This quotient is characteristic of $L(\mathcal{A})$
- The minimal quotient of a DFA \mathcal{A} may be effectively computed by the 'Moore' algorithm with a complexity $\mathrm{O}\left(n^{2}\right)$

Common knowledge in FA Theory

\mathcal{A} DFA n states

- Every DFA \mathcal{A} has a minimal quotient
- This quotient is characteristic of $L(\mathcal{A})$
- The minimal quotient of a DFA \mathcal{A} may be effectively computed by the 'Moore' algorithm with a complexity $\mathrm{O}\left(n^{2}\right)$
- The minimal quotient of a DFA \mathcal{A} may be effectively computed by the 'Hopcroft' algorithm with a complexity $\mathrm{O}(n \log n)$

What is this talk about
\mathcal{A} NFA

What is this talk about

\mathcal{A} NFA

- Every NFA \mathcal{A} has a minimal quotient

What is this talk about

\mathcal{A} NFA

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$

What is this talk about

\mathcal{A} NFA

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}

What is this talk about

\mathcal{A} NFA n states m transitions

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}
- The minimal quotient of an NFA \mathcal{A} may be effectively computed by a 'quadratic' algorithm

What is this talk about

\mathcal{A} NFA n states m transitions

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}
- The minimal quotient of a NFA \mathcal{A} may be effectively computed by the 'Forward' algorithm with a complexity $\mathrm{O}(m n)$

What is this talk about

\mathcal{A} NFA
n states
m transitions

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}
- The minimal quotient of a NFA \mathcal{A} may be effectively computed by the 'Forward' algorithm with a complexity $\mathrm{O}(m n)$
- The minimal quotient of a NFA \mathcal{A} may be effectively computed by the 'Backward' algorithm with a complexity $\mathrm{O}(m n)$

What is this talk about

\mathcal{A} NFA
n states
m transitions

- Every NFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}
- The minimal quotient of a NFA \mathcal{A} may be effectively computed by the 'Forward' algorithm with a complexity $\mathrm{O}(m n)$
- The minimal quotient of a NFA \mathcal{A} may be effectively computed by the 'Backward' algorithm with a complexity $\mathrm{O}(m n)$
- Under some hypotheses, the Backward algorithm may be improved into the 'Fast Backward' algorithm with a complexity $\mathrm{O}(m \log n)$

What is this talk about

\mathcal{A} WFA
n states
m transitions

- Every WFA \mathcal{A} has a minimal quotient
- This quotient is no more characteristic of $L(\mathcal{A})$
- This quotient is sometimes called
the bisimulation minimal model of \mathcal{A}
- The minimal quotient of a WFA \mathcal{A} may be effectively computed by the 'Forward' algorithm with a complexity $\mathrm{O}(m n)$
- The minimal quotient of a WFA \mathcal{A} may be effectively computed by the 'Backward' algorithm with a complexity $\mathrm{O}(m n)$
- Under some hypotheses, the Backward algorithm may be improved into the 'Fast Backward' algorithm with a complexity $\mathrm{O}(m \log n)$

Examples of automata minimisation

with Awali

Benchmarks

	k	14	17	20	23	26	30
	F_{k}	987	4181	17711	75025	317811	2178309
Forward	$t(\mathrm{~s})$	0.42	7.37	139	-		
	$10^{-7} t / F_{k}^{2}$	4.3	4.2	4.4			
Backward	$t(\mathrm{~s})$	0.010	0.045	0.257	1.36	73	257
	$10^{-7} t / k F_{k}$	7.2	6.3	7.3	7.6	6.7	7.5
Fast	$t(\mathrm{~s})$	0.006	0.025	0.140	0.70	41	139
Backward	$10^{-7} t / k F_{k}$	4.2	3.5	3.9	3.8	3.5	3.7

Minimisation of \mathcal{F}_{k}

Benchmarks

Benchmarks

	n	2^{10}	2^{12}	2^{13}	2^{14}	2^{15}	2^{22}
Forward	$t(\mathrm{~s})$	3.29	53.2	214	-		
	$10^{-6} t / n^{2}$	3.1	3.2	3.2			
Backward	$t(\mathrm{~s})$	0.31	4.92	20.5	86.1	346	-
	$10^{-7} t / n^{2}$	3.0	2.9	3.1	3.2	3.2	
Fast	$t(\mathrm{~s})$	0.008	0.030	0.061	0.12	0.24	30.8
Backward	$10^{-6} t / n$	7.8	7.3	7.4	7.3	7.3	7.3

Minimisation of Railroad(n)

The theory behind minimisation algorithms

- Automata (DFA, NFA, WFA) are (mathematical) structures

The theory behind minimisation algorithms

- Automata (DFA, NFA, WFA) are (mathematical) structures
- Structures admit morpisms $\varphi: \mathcal{A} \rightarrow \mathcal{B}$, that is, maps that respect the structure

The theory behind minimisation algorithms

- Automata (DFA, NFA, WFA) are (mathematical) structures
- Structures admit morpisms $\varphi: \mathcal{A} \rightarrow \mathcal{B}$, that is, maps that respect the structure
- The kernel of $\varphi: \mathcal{A} \rightarrow \mathcal{B}$, that is, the equivalence map of is, a partition of the elements of the structure, here the states, that is called a congruence

A useful trick

$$
\mathcal{A}=\langle I, E, T\rangle
$$

$$
\left(\begin{array}{lll}
2 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
-a & -b & 2 b \\
a & -b & a+2 b \\
a & a & b
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

A useful trick

$$
\mathcal{A}=\langle I, E, T\rangle
$$

A useful trick

$$
\mathcal{A}=\langle I, E, T\rangle
$$

$$
\left(\begin{array}{lll}
2 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
-a & -b & 2 b \\
a & -b & a+2 b \\
a & a & b
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

A useful trick

$$
\mathcal{A}=\langle I, E, T\rangle
$$

$$
\left(\begin{array}{lll}
2 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
-a & -b & 2 b \\
a & -b & a+2 b \\
a & a & b
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

A useful trick

$$
\mathcal{A}=\langle I, E, T\rangle \quad A_{\Phi}=A \cup\{\$\} \quad \mathcal{A}_{\Phi}=\left\langle i, E_{\S}, t\right\rangle
$$

The theory behind minimisation algorithms

Definition
$\mathcal{A}=\langle Q, i, E, t\rangle \mathbb{K}$-automaton
An equivalence \mathcal{P} on Q is a congruence on \mathcal{A}, if:

$$
\begin{gathered}
\{i\} \in \mathcal{P}, \quad\{t\} \in \mathcal{P}, \quad \text { and } \\
\forall p, q \quad p \mathcal{P q} \Longrightarrow \quad \forall a \in A_{\$}, \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r)=\sum_{r \in D} E(q, a, r)
\end{gathered}
$$

The theory behind minimisation algorithms

Definition
$\mathcal{A}=\langle Q, i, E, t\rangle \mathbb{K}$-automaton
An equivalence \mathcal{P} on Q is a congruence on \mathcal{A}, if:

$$
\begin{gathered}
\{i\} \in \mathcal{P}, \quad\{t\} \in \mathcal{P}, \quad \text { and } \\
\forall p, q \quad p \mathcal{P q} \Longrightarrow \quad \forall a \in A_{\$}, \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r)=\sum_{r \in D} E(q, a, r)
\end{gathered}
$$

Theorem
Every \mathbb{K}-automaton \mathcal{A} admits a unique coarsest congruence

The theory behind minimisation algorithms

Definition
$\mathcal{A}=\langle Q, i, E, t\rangle \mathbb{K}$-automaton
An equivalence \mathcal{P} on Q is a congruence on \mathcal{A}, if:
$\{i\} \in \mathcal{P}, \quad\{t\} \in \mathcal{P}, \quad$ and
$\forall p, q \quad p \mathcal{P q} \Longrightarrow \quad \forall a \in A_{\$}, \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r)=\sum_{r \in D} E(q, a, r)$
Theorem
Every \mathbb{K}-automaton \mathcal{A} admits a unique coarsest congruence

Definition
The quotient of \mathcal{A} by its coarsest congruence is

The theory behind minimisation algorithms

Remark

The definition of a congruence (and of Out-morphism) is directed

The theory behind minimisation algorithms

Remark

The definition of a congruence (and of Out-morphism) is directed

The definition of Out-morphism coincides

- for DFA, with the classical notion of morphism
- for NFA, with the notion of bisimulation
- for WFA, with the simulation of Bloom-Ésik

The proto-algorithm

Definition
The signature of state p of $\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
An equivalence \mathcal{P} on Q is a congruence on $\mathcal{A}_{\$}$, if:

$$
\begin{gathered}
\{i\} \in \mathcal{P}, \quad\{t\} \in \mathcal{P}, \quad \text { and } \\
\forall p, q \quad p \mathcal{P} q \Longrightarrow \forall a \in A_{\$}, \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r)=\sum_{r \in D} E(q, a, r)
\end{gathered}
$$

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
An equivalence \mathcal{P} on Q is a congruence on $\mathcal{A}_{\$}$, if:
$\{i\} \in \mathcal{P}, \quad\{t\} \in \mathcal{P}, \quad$ and
$\forall p, q \quad p \mathcal{P q} \Longrightarrow \quad \forall a \in A_{\$}, \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r)=\sum_{r \in D} E(q, a, r)$
Definition
An equivalence \mathcal{P} on Q is a congruence on $\mathcal{A}_{\$}$ if:
$\forall C \in \mathcal{P}, \forall p, q \in C, \quad \forall D \in \mathcal{P} \quad \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$.

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
An equivalence \mathcal{P} on Q is a congruence on $\mathcal{A}_{\$}$ if:
$\forall C \in \mathcal{P}, \forall p, q \in C, \forall D \in \mathcal{P} \quad \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$.

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
An equivalence \mathcal{P} on Q is a congruence on $\mathcal{A}_{\$}$ if:
$\forall C \in \mathcal{P}, \forall p, q \in C, \forall D \in \mathcal{P} \quad \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$.

Definition
split $[C, D]$ map equivalence on C of the signature w.r.t. D
$\forall p, q \in C \quad \operatorname{split}[C, D](p)=\operatorname{split}[C, D](q) \Leftrightarrow \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
split $[C, D]$ map equivalence on C of the signature w.r.t. D
$\forall p, q \in C \quad \operatorname{split}[C, D](p)=\operatorname{split}[C, D](q) \Leftrightarrow \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$

The proto-algorithm

Definition

The signature of state p of $\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$ with respect to $D \subseteq Q$ is the map $\operatorname{sig}[p, D]: A_{\$} \rightarrow \mathbb{K}$ defined by:

$$
\operatorname{sig}[p, D](a)=\sum_{q \in D} E(p, a, q)
$$

Definition
split $[C, D]$ map equivalence on C of the signature w.r.t. D
$\forall p, q \in C \quad \operatorname{split}[C, D](p)=\operatorname{split}[C, D](q) \Leftrightarrow \operatorname{sig}[p, D]=\operatorname{sig}[q, D]$

The proto-algorithm

$$
\mathcal{P}:=\mathcal{P}_{0}
$$

while there exists a splitting pair (C, D) in \mathcal{P}

$$
\mathcal{P}:=\mathcal{P} \wedge \operatorname{split}[C, D]
$$

The Forward Algorithm

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Forward Algorithm

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Forward Algorithm
$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
queue $=$ queue of classes

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

The Forward Algorithm

$$
\text { - } \mathcal{P}_{0}=\{i\}, Q,\{t\}
$$

n states
m transitions
queue $=$ queue of classes
$Q \rightarrow$ queue

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$

$$
Q \rightarrow \text { queue }
$$

- Notion of round in the algorithm
$\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle$
n states
m transitions

The Forward Algorithm

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
queue $=$ queue of classes
- Notion of round in the algorithm
- At round $i+1$, for every $C \in q u e u e$, - compute split $[C, D]$ for every $D \in \mathcal{P}_{i}$
- put the pieces in queue, even if C is not split (but the singletons)
$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
m transitions

The Forward Algorithm
queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$Q \rightarrow$ queue
- Notion of round in the algorithm
- At round $i+1$, for every $C \in q u e u e$, - compute split[C,D] for every $D \in \mathcal{P}_{i}$
- put the pieces in queue, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1}=$ content of queue + singletons
$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
m transitions

The Forward Algorithm
queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$Q \rightarrow$ queue
- Notion of round in the algorithm
- At round $i+1$, for every $C \in q u e u e$, - compute split[$C, D]$ for every $D \in \mathcal{P}_{i}$
- put the pieces in queue, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1}=$ content of queue + singletons
- If no split occurs in round $i+1$, ie if $\mathcal{P}_{i+1}=\mathcal{P}_{i}$, stop
$\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle$
n states
m transitions

The Forward Algorithm
queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$Q \rightarrow$ queue
- Notion of round in the algorithm
- At round $i+1$, for every $C \in q u e u e$,
- compute split[$C, D]$ for every $D \in \mathcal{P}_{i}$
- put the pieces in queue, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1}=$ content of queue + singletons
- If no split occurs in round $i+1$, ie if $\mathcal{P}_{i+1}=\mathcal{P}_{i}$, stop

Theorem
Forward Algorithm computes the coarsest congruence in $\mathrm{O}(n(m+n))$

The Backward Algorithm

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Backward Algorithm

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Backward Algorithm

The Backward Algorithm

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Backward Algorithm
queue $=$ queue of classes

The Backward Algorithm

$$
\mathcal{A}_{\$}=\langle Q, i, E, t\rangle
$$

n states
m transitions

The Backward Algorithm

$$
\mathcal{P}_{0}=\{i\}, Q,\{t\}
$$

$$
\{t\} \rightarrow \text { queue }
$$

$$
Q \rightarrow \text { queue }
$$

The Backward Algorithm

$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
m transitions

The Backward Algorithm

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$\{t\} \rightarrow$ queue
$Q \rightarrow$ queue
- for every $D \in$ queue,
- for every $C \in \mathcal{P}_{i}$ that is not a singleton, and that contains a predecessor of a state in $D \in$ queue
- compute split[C, D]
- if it is a true split, put pieces in queue (even singletons)
- $\mathcal{P}_{i+1}=\mathcal{P}_{i} \wedge \cup \operatorname{split}[C, D]$

The Backward Algorithm

$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
m transitions

The Backward Algorithm

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$\{t\} \rightarrow$ queue
$Q \rightarrow$ queue
- for every $D \in$ queue,
- for every $C \in \mathcal{P}_{i}$ that is not a singleton, and that contains a predecessor of a state in $D \in$ queue
- compute split[C, D]
- if it is a true split, put pieces in queue (even singletons)
- $\mathcal{P}_{i+1}=\mathcal{P}_{i} \wedge \cup$ split $[C, D]$
- stop when queue is empty

The Backward Algorithm

$\mathcal{A}_{\$}=\langle Q, i, E, t\rangle$
n states
m transitions

The Backward Algorithm
queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\}$
$\{t\} \rightarrow$ queue
$Q \rightarrow$ queue
- for every $D \in$ queue,
- for every $C \in \mathcal{P}_{i}$ that is not a singleton, and that contains a predecessor of a state in $D \in$ queue
- compute split[C, D]
- if it is a true split, put pieces in queue (even singletons)
- $\mathcal{P}_{i+1}=\mathcal{P}_{i} \wedge \cup \operatorname{split}[C, D]$
- stop when queue is empty

Theorem
Backward Algorithm computes the coarsest congruence in $\mathrm{O}(n(m+n))$

Hopcroft's algorithm is an improvement of Backward Algorithm for complete DFA

It implements indeed the strategy 'all but the largest' described by Tarjan and Paige

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle
$$

n states
m transitions

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle \quad n \text { states } \quad m \text { transitions }
$$

Signatures are equipped with a pointwise addition

$$
D \cap D^{\prime}=\emptyset \quad \Longrightarrow \quad \operatorname{sig}\left[p, D \cup D^{\prime}\right]=\operatorname{sig}[p, D]+\operatorname{sig}\left[p, D^{\prime}\right]
$$

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle \quad n \text { states } \quad m \text { transitions }
$$

Signatures are equipped with a pointwise addition

$$
D \cap D^{\prime}=\emptyset \quad \Longrightarrow \quad \operatorname{sig}\left[p, D \cup D^{\prime}\right]=\operatorname{sig}[p, D]+\operatorname{sig}\left[p, D^{\prime}\right]
$$

Definition
\mathcal{A} has simplifiable signatures if $\forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q$ $\operatorname{sig}[p, D]=\operatorname{sig}[q, D]$ and $\operatorname{sig}[p, C]=\operatorname{sig}[q, C] \Longrightarrow \operatorname{sig}[p, D \backslash C]=\operatorname{sig}[q, D \backslash C]$.

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle \quad n \text { states } \quad m \text { transitions }
$$

Signatures are equipped with a pointwise addition

$$
D \cap D^{\prime}=\emptyset \quad \Longrightarrow \quad \operatorname{sig}\left[p, D \cup D^{\prime}\right]=\operatorname{sig}[p, D]+\operatorname{sig}\left[p, D^{\prime}\right]
$$

Definition
\mathcal{A} has simplifiable signatures if $\forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q$
$\operatorname{sig}[p, D]=\operatorname{sig}[q, D]$ and $\operatorname{sig}[p, C]=\operatorname{sig}[q, C] \Longrightarrow \operatorname{sig}[p, D \backslash C]=\operatorname{sig}[q, D \backslash C]$.
If $(\mathbb{K},+)$ is a cancellative monoid (in particular if \mathbb{K} is a ring), then all \mathbb{K}-automata have simplifiable signatures.

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle \quad n \text { states } \quad m \text { transitions }
$$

Signatures are equipped with a pointwise addition

$$
D \cap D^{\prime}=\emptyset \quad \Longrightarrow \quad \operatorname{sig}\left[p, D \cup D^{\prime}\right]=\operatorname{sig}[p, D]+\operatorname{sig}\left[p, D^{\prime}\right]
$$

Definition
\mathcal{A} has simplifiable signatures if $\forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q$
$\operatorname{sig}[p, D]=\operatorname{sig}[q, D]$ and $\operatorname{sig}[p, C]=\operatorname{sig}[q, C] \Longrightarrow \operatorname{sig}[p, D \backslash C]=\operatorname{sig}[q, D \backslash C]$.
If $(\mathbb{K},+)$ is a cancellative monoid (in particular if \mathbb{K} is a ring), then all \mathbb{K}-automata have simplifiable signatures.

If \mathcal{A} is a deterministic automaton - not necessarily complete, then \mathcal{A} has simplifiable signatures.

$$
\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle \quad n \text { states } \quad m \text { transitions }
$$

Signatures are equipped with a pointwise addition

$$
D \cap D^{\prime}=\emptyset \quad \Longrightarrow \quad \operatorname{sig}\left[p, D \cup D^{\prime}\right]=\operatorname{sig}[p, D]+\operatorname{sig}\left[p, D^{\prime}\right]
$$

Definition
\mathcal{A} has simplifiable signatures if $\forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q$
$\operatorname{sig}[p, D]=\operatorname{sig}[q, D]$ and $\operatorname{sig}[p, C]=\operatorname{sig}[q, C] \Longrightarrow \operatorname{sig}[p, D \backslash C]=\operatorname{sig}[q, D \backslash C]$.
If ($\mathbb{K},+$) is a cancellative monoid (in particular if \mathbb{K} is a ring), then all \mathbb{K}-automata have simplifiable signatures.

If \mathcal{A} is a deterministic automaton - not necessarily complete, then \mathcal{A} has simplifiable signatures.

If \mathcal{A} is a sequential \mathbb{K}-automaton, then \mathcal{A} has simplifiable signatures.

The Fast Backward Algorithm queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\} \quad\{t\} \rightarrow$ queue $\quad Q \rightarrow$ queue
- for every $D \in$ queue,
- for every $C \in \mathcal{P}_{i}$ that is not a singleton, and that contains a predecessor of a state in $D \in$ queue
- compute split[C, D]
- if it is a true split, put pieces in queue (even singletons) but the largest piece
- $\mathcal{P}_{i+1}=\mathcal{P}_{i} \wedge \cup \operatorname{split}[C, D]$
- stop when queue is empty
$\mathcal{A}_{\Phi}=\langle Q, i, E, t\rangle$
n states
m transitions

The Fast Backward Algorithm queue $=$ queue of classes

- $\mathcal{P}_{0}=\{i\}, Q,\{t\} \quad\{t\} \rightarrow$ queue $\quad Q \rightarrow$ queue
- for every $D \in$ queue,
- for every $C \in \mathcal{P}_{i}$ that is not a singleton, and that contains a predecessor of a state in $D \in$ queue
- compute split[C, D]
- if it is a true split, put pieces in queue (even singletons) but the largest piece
- $\mathcal{P}_{i+1}=\mathcal{P}_{i} \wedge \cup \operatorname{split}[C, D]$
- stop when queue is empty

Theorem
If \mathcal{A} has simplifiable signatures, then Fast Backward Algorithm computes the coarsest congruence in $\mathrm{O}((m+n) \log n)$

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of $\mathrm{O}(n(m+n))$

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of $\mathrm{O}(n(m+n))$
- Devil is in the details of the implementation to achieve the prescribed complexity

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of $\mathrm{O}(n(m+n))$
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $\mathrm{O}((m+n) \log n)$

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of $\mathrm{O}(n(m+n))$
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $\mathrm{O}((m+n) \log n)$
- This subsumes and generalises works of Hopcroft, Béal-Crochemore, Valmari-Lehtinen

Conclusion

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of $\mathrm{O}(n(m+n))$
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $\mathrm{O}((m+n) \log n)$
- This subsumes and generalises works of Hopcroft, Béal-Crochemore, Valmari-Lehtinen
- Open problem:
lower bound for minimisation of Boolean and \mathbb{Z} min-automata

