Two routes to automata minimization and the ways to reach it efficiently

Sylvain Lombardy^a and Jacques Sakarovitch^b ^a LaBRI, Bordeaux INP / Université de Bordeaux / CNRS ^b IRIF, CNRS / Université Denis-Diderot and Telecom ParisTech

CIAA 2018, 1 August 2018, Charlottetown (PEI)

 Every regular language L has a minimal DFA (that is canonically associated with L)

${\cal A}$ DFA

- ► Every DFA *A* has a *minimal quotient*
- This quotient is characteristic of L(A)

$\mathcal A$ DFA

- Every DFA \mathcal{A} has a *minimal quotient*
- This quotient is characteristic of L(A)
- ► The minimal quotient of a DFA *A* may be *effectively computed* by a quadratic algorithm

- \mathcal{A} DFA n states
- ▶ Every DFA *A* has a *minimal quotient*
- This quotient is characteristic of L(A)
- ► The minimal quotient of a DFA A may be effectively computed by the 'Moore' algorithm with a complexity O(n²)

 \mathcal{A} DFA n states

- ► Every DFA *A* has a *minimal quotient*
- This quotient is characteristic of L(A)
- ► The minimal quotient of a DFA A may be effectively computed by the 'Moore' algorithm with a complexity O(n²)
- ► The minimal quotient of a DFA A may be effectively computed by the 'Hopcroft' algorithm with a complexity O(n log n)

$\mathcal{A} \ \mathsf{NFA}$

$\mathcal{A} \ \mathsf{NFA}$

• Every NFA \mathcal{A} has a *minimal quotient*

$\mathcal{A} \ \mathsf{NFA}$

- Every NFA \mathcal{A} has a *minimal quotient*
- This quotient is no more characteristic of L(A)

\mathcal{A} NFA

- Every NFA \mathcal{A} has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called

the bisimulation minimal model of $\ \mathcal{A}$

- ► Every NFA *A* has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called the *bisimulation minimal model* of A
- ► The minimal quotient of an NFA *A* may be effectively computed by a 'quadratic' algorithm

- ► Every NFA *A* has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called the *bisimulation minimal model* of A
- ► The minimal quotient of a NFA A may be effectively computed by the '*Forward*' algorithm with a complexity O(mn)

- ► Every NFA *A* has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called the *bisimulation minimal model* of A
- ► The minimal quotient of a NFA A may be effectively computed by the '*Forward*' algorithm with a complexity O(mn)
- ► The minimal quotient of a NFA A may be effectively computed by the 'Backward' algorithm with a complexity O(mn)

- ► Every NFA *A* has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called the *bisimulation minimal model* of A
- ► The minimal quotient of a NFA A may be effectively computed by the '*Forward*' algorithm with a complexity O(mn)
- ► The minimal quotient of a NFA A may be effectively computed by the 'Backward' algorithm with a complexity O(mn)
- ► Under some hypotheses, the Backward algorithm may be improved into the '*Fast Backward*' algorithm with a complexity O(m log n)

- \mathcal{A} WFA n states m transitions
- ► Every WFA *A* has a *minimal quotient*
- This quotient is no more characteristic of L(A)
- This quotient is sometimes called the *bisimulation minimal model* of A
- ► The minimal quotient of a WFA A may be effectively computed by the '*Forward*' algorithm with a complexity O(mn)
- ► The minimal quotient of a WFA A may be effectively computed by the 'Backward' algorithm with a complexity O(mn)
- ► Under some hypotheses, the Backward algorithm may be improved into the '*Fast Backward*' algorithm with a complexity O(m log n)

Examples of automata minimisation with AWALI

Benchmarks

	k	14	17	20	23	26	30	
	F_k	987	4181	17711	75025	317811	2178309	
Forward	t (s)	0.42	7.37	139	-			
	$10^{-7}t/F_k^2$	4.3	4.2	4.4				
Backward	t (s)	0.010	0.045	0.257	1.36	73	257	
	$10^{-7} t/k F_k$	7.2	6.3	7.3	7.6	6.7	7.5	
Fast	t (s)	0.006	0.025	0.140	0.70	41	139	
Backward	$10^{-7} t/k F_k$	4.2	3.5	3.9	3.8	3.5	3.7	

Minimisation of \mathcal{F}_k

Benchmarks

Benchmarks

	п	2 ¹⁰	2 ¹²	2 ¹³	2 ¹⁴	2 ¹⁵	2 ²²
Forward	t (s)	3.29	53.2	214		-	
	$10^{-6}t/n^2$	3.1	3.2	3.2			
Backward	t (s)	0.31	4.92	20.5	86.1	346	_
	$10^{-7} t/n^2$	3.0	2.9	3.1	3.2	3.2	
Fast	t (s)	0.008	0.030	0.061	0.12	0.24	30.8
Backward	$10^{-6}t/n$	7.8	7.3	7.4	7.3	7.3	7.3

Minimisation of Railroad(n)

► Automata (DFA, NFA, WFA) are (mathematical) structures

- Automata (DFA, NFA, WFA) are (mathematical) structures
- \blacktriangleright Structures admit morpisms $\, \varphi \colon \mathcal{A} \to \mathcal{B}$, that is, maps that respect the structure

- Automata (DFA, NFA, WFA) are (mathematical) structures
- \blacktriangleright Structures admit morpisms $\,\,\varphi\colon \mathcal{A}\to \mathcal{B}$, that is, maps that respect the structure
- ▶ The *kernel* of $\varphi : A \to B$, that is, the equivalence map of *is*, a *partition* of the elements of the structure,

here the states, that is called a *congruence*

$$(2 \ 1 \ 0), \begin{pmatrix} -a \ -b \ 2b \\ a \ -b \ a+2b \\ a \ a \ b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -a & -b & 2b \\ a & -b & a+2b \\ a & a & b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$(2 \ 1 \ 0), \begin{pmatrix} -a \ -b \ 2b \\ a \ -b \ a+2b \\ a \ b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathcal{A} = \langle I, E, T \rangle \qquad \qquad \mathcal{A}_{\$} = \mathcal{A} \cup \{\$\} \qquad \qquad \mathcal{A}_{\$} = \langle i, E_{\$}, t \rangle$$

 $\begin{array}{lll} \begin{array}{l} \mbox{Definition} \\ \mathcal{A} = \langle \ Q, i, E, t \ \rangle & \mathbb{K} \mbox{-automaton} \\ \mbox{An equivalence } \mathcal{P} & \mbox{on } Q \mbox{ is a } congruence \mbox{ on } \mathcal{A}, \mbox{ if:} \\ & \quad \{i\} \in \mathcal{P}, \qquad \{t\} \in \mathcal{P}, \qquad \mbox{and} \\ \forall p, q \quad p \mathcal{P} q \quad \Longrightarrow \quad \forall a \in A_{\$}, \ \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r) = \sum_{r \in D} E(q, a, r) \end{array}$

 $\begin{array}{ll} \begin{array}{l} \mbox{Definition} \\ \mathcal{A} = \langle \ Q, i, E, t \ \rangle & \mathbb{K} \mbox{-automaton} \\ \mbox{An equivalence } \mathcal{P} & \mbox{on } Q \mbox{ is a } congruence \mbox{ on } \mathcal{A}, \mbox{ if:} \\ & \quad \{i\} \in \mathcal{P}, \qquad \{t\} \in \mathcal{P}, \qquad \mbox{and} \\ \forall p, q \quad p \mathcal{P} q \quad \Longrightarrow \quad \forall a \in A_\$, \ \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r) = \sum_{r \in D} E(q, a, r) \end{array}$

Theorem

Every \mathbb{K} -automaton \mathcal{A} admits a unique coarsest congruence

 $\begin{array}{ll} \begin{array}{l} \mbox{Definition} \\ \mathcal{A} = \langle \ Q, i, E, t \ \rangle & \mathbb{K} \mbox{-automaton} \\ \mbox{An equivalence } \mathcal{P} & \mbox{on } Q \mbox{ is a } congruence \mbox{ on } \mathcal{A}, \mbox{ if:} \\ & \quad \{i\} \in \mathcal{P}, \qquad \{t\} \in \mathcal{P}, \qquad \mbox{and} \\ \forall p, q \quad p \mathcal{P} q \quad \Longrightarrow \quad \forall a \in A_\$, \ \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r) = \sum_{r \in D} E(q, a, r) \end{array}$

Theorem

Every \mathbb{K} -automaton \mathcal{A} admits a unique coarsest congruence

Definition

The quotient of \mathcal{A} by its *coarsest* congruence is

the minimal quotient of \mathcal{A}

Remark

The definition of a congruence (and of Out-morphism) is directed

Remark

The definition of a congruence (and of Out-morphism) is directed

The definition of *Out-morphism* coincides

- for DFA, with the classical notion of morphism
- for NFA, with the notion of *bisimulation*
- ► for WFA, with the *simulation* of Bloom-Ésik

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: \mathcal{A}_{\$} \to \mathbb{K}$ defined by:

$$sig[p,D](a) = \sum_{q \in D} E(p,a,q)$$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: A_{\$} \to \mathbb{K}$ defined by:

$$sig[p, D](a) = \sum_{q \in D} E(p, a, q)$$

Definition

An equivalence \mathcal{P} on Q is a *congruence* on $\mathcal{A}_{\$}$, if:

 $\{i\} \in \mathcal{P}, \quad \{t\} \in \mathcal{P}, \quad \text{and} \\ \forall p, q \quad p \mathcal{P}q \quad \Longrightarrow \quad \forall a \in A_{\$}, \ \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r) = \sum_{r \in D} E(q, a, r)$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: A_{\$} \to \mathbb{K}$ defined by:

$$sig[p, D](a) = \sum_{q \in D} E(p, a, q)$$

Definition

An equivalence \mathcal{P} on Q is a *congruence* on $\mathcal{A}_{\$}$, if:

 $\{i\} \in \mathcal{P}, \quad \{t\} \in \mathcal{P}, \quad \text{and} \\ \forall p, q \quad p \mathcal{P}q \quad \Longrightarrow \quad \forall a \in A_{\$}, \ \forall D \in \mathcal{P} \quad \sum_{r \in D} E(p, a, r) = \sum_{r \in D} E(q, a, r)$

Definition

An equivalence \mathcal{P} on Q is a *congruence* on $\mathcal{A}_{\$}$ if:

 $\forall C \in \mathcal{P}, \ \forall p,q \in C, \ \ \forall D \in \mathcal{P} \qquad \textit{sig}[p,D] = \textit{sig}[q,D] \ .$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: \mathcal{A}_{\$} \to \mathbb{K}$ defined by:

$$sig[p, D](a) = \sum_{q \in D} E(p, a, q)$$

Definition

An equivalence \mathcal{P} on Q is a *congruence* on $\mathcal{A}_{\$}$ if:

 $\forall C \in \mathcal{P}, \forall p,q \in C, \forall D \in \mathcal{P} \quad sig[p,D] = sig[q,D] .$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: A_{\$} \to \mathbb{K}$ defined by:

$$sig[p,D](a) = \sum_{q \in D} E(p,a,q)$$

Definition

An equivalence \mathcal{P} on Q is a *congruence* on $\mathcal{A}_{\$}$ if:

 $\forall C \in \mathcal{P}, \forall p,q \in C, \forall D \in \mathcal{P} \quad sig[p,D] = sig[q,D] .$

Definition

split[C, D] map equivalence on C of the signature w.r.t. D $\forall p, q \in C$ $split[C, D](p) = split[C, D](q) \Leftrightarrow sig[p, D] = sig[q, D]$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: \mathcal{A}_{\$} \to \mathbb{K}$ defined by:

$$sig[p, D](a) = \sum_{q \in D} E(p, a, q)$$

Definition

split[C, D] map equivalence on C of the signature w.r.t. D $\forall p, q \in C$ $split[C, D](p) = split[C, D](q) \Leftrightarrow sig[p, D] = sig[q, D]$

Definition

The *signature* of state p of $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ with respect to $D \subseteq Q$ is the *map* $sig[p, D]: A_{\$} \to \mathbb{K}$ defined by:

$$sig[p, D](a) = \sum_{q \in D} E(p, a, q)$$

Definition

split[C, D] map equivalence on C of the signature w.r.t. D $\forall p, q \in C$ $split[C, D](p) = split[C, D](q) \Leftrightarrow sig[p, D] = sig[q, D]$

The proto-algorithm

$$\begin{split} \mathcal{P} &:= \mathcal{P}_0 \\ \text{while there exists a splitting pair } (C,D) \text{ in } \mathcal{P} \\ \mathcal{P} &:= \mathcal{P} \wedge \textit{split}[C,D] \end{split}$$

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm

queue = queue of classes

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions The Forward Algorithm queue = queue of classes

• $\mathcal{P}_0 = \{i\}, Q, \{t\}$

 $Q \rightarrow queue$

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions The Forward Algorithm *queue* = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $Q \rightarrow queue$
- Notion of *round* in the algorithm

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $Q \rightarrow queue$
- Notion of *round* in the algorithm
- At round i + 1, for every $C \in queue$,
 - compute split[C, D] for every $D \in \mathcal{P}_i$
 - put the pieces in *queue*, even if C is not split (but the singletons)

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $Q \rightarrow queue$
- Notion of *round* in the algorithm
- At round i + 1, for every $C \in queue$,
 - compute split[C, D] for every $D \in \mathcal{P}_i$
 - put the pieces in *queue*, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1} = \text{content of } queue + \text{singletons}$

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $Q \rightarrow queue$
- Notion of *round* in the algorithm
- At round i + 1, for every $C \in queue$,
 - compute split[C, D] for every $D \in \mathcal{P}_i$
 - put the pieces in *queue*, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1} = \text{content of } queue + \text{singletons}$
- If no split occurs in round i + 1, ie if $\mathcal{P}_{i+1} = \mathcal{P}_i$, stop

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Forward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $Q \rightarrow queue$
- Notion of *round* in the algorithm
- At round i + 1, for every $C \in queue$,
 - compute split[C, D] for every $D \in \mathcal{P}_i$
 - put the pieces in *queue*, even if C is not split (but the singletons)
- $\mathcal{P}_{i+1} = \text{content of } queue + \text{singletons}$
- If no split occurs in round i + 1, ie if $\mathcal{P}_{i+1} = \mathcal{P}_i$, stop

Theorem

Forward Algorithm computes the coarsest congruence in O(n(m + n))

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Backward Algorithm

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions The Backward Algorithm *queue* = queue of classes

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle \qquad n \text{ states} \qquad m \text{ transitions}$ The Backward Algorithm queue = queue of classes $\blacktriangleright \mathcal{P}_{0} = \{i\}, Q, \{t\} \qquad \{t\} \rightarrow queue \qquad Q \rightarrow queue$

 $\mathcal{A}_{\mathfrak{S}} = \langle Q, i, E, t \rangle$ *m* transitions n states

The Backward Algorithm queue = queue of classes

- ▶ $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $\{t\} \rightarrow queue$ $Q \rightarrow queue$
- for every $D \in queue$,

• for every $C \in \mathcal{P}_i$ that is not a singleton, and that contains a *predecessor* of a state in $D \in queue$ - compute split[C, D]

- if it is a true split, put pieces in *queue* (even singletons)

•
$$\mathcal{P}_{i+1} = \mathcal{P}_i \land \cup split[C, D]$$

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Backward Algorithm

queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $\{t\} \rightarrow$ queue $Q \rightarrow$ queue
- for every $D \in queue$,

 for every C ∈ P_i that is not a singleton, and that contains a *predecessor* of a state in D ∈ *queue* - compute *split*[C, D]

- if it is a true split, put pieces in queue (even singletons)

•
$$\mathcal{P}_{i+1} = \mathcal{P}_i \land \cup split[C, D]$$

stop when *queue* is empty

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Backward Algorithm

queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $\{t\} \rightarrow queue$ $Q \rightarrow queue$
- for every $D \in queue$,

• for every $C \in \mathcal{P}_i$ that is not a singleton, and that contains a *predecessor* of a state in $D \in queue$ - compute split[C, D]

- if it is a true split, put pieces in queue (even singletons)

- $\mathcal{P}_{i+1} = \mathcal{P}_i \land \cup split[C, D]$
- stop when *queue* is empty

Theorem

Backward Algorithm computes the coarsest congruence in O(n(m + n))

Hopcroft's algorithm is an improvement of Backward Algorithm for complete DFA

It implements indeed the strategy 'all but the largest' described by Tarjan and Paige

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

 $A_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

Signatures are equipped with a pointwise addition

 $D \cap D' = \emptyset \implies sig[p, D \cup D'] = sig[p, D] + sig[p, D']$

 $A_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

Signatures are equipped with a pointwise addition

 $D \cap D' = \emptyset \implies sig[p, D \cup D'] = sig[p, D] + sig[p, D']$

Definition

 $\mathcal{A} \text{ has simplifiable signatures if } \forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q \\ sig[p, D] = sig[q, D] \text{ and } sig[p, C] = sig[q, C] \Longrightarrow sig[p, D \setminus C] = sig[q, D \setminus C].$

 $A_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

Signatures are equipped with a pointwise addition

 $D \cap D' = \emptyset \implies sig[p, D \cup D'] = sig[p, D] + sig[p, D']$

Definition

 $\mathcal{A} \text{ has simplifiable signatures if } \forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q \\ sig[p, D] = sig[q, D] \text{ and } sig[p, C] = sig[q, C] \Longrightarrow sig[p, D \setminus C] = sig[q, D \setminus C].$

If $(\mathbb{K},+)$ is a *cancellative monoid* (in particular if \mathbb{K} is a ring), then all \mathbb{K} -automata have simplifiable signatures.

 $A_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

Signatures are equipped with a pointwise addition

 $D \cap D' = \emptyset \implies sig[p, D \cup D'] = sig[p, D] + sig[p, D']$

Definition

 $\begin{array}{l} \mathcal{A} \ \text{has simplifiable signatures if } \forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p,q \in Q \\ sig[p,D] = sig[q,D] \ \text{and} \ sig[p,C] = sig[q,C] \Longrightarrow sig[p,D \backslash C] = sig[q,D \backslash C]. \end{array}$

If $(\mathbb{K}, +)$ is a *cancellative monoid* (in particular if \mathbb{K} is a ring), then all \mathbb{K} -automata have simplifiable signatures.

If \mathcal{A} is a *deterministic* automaton — not necessarily complete, then \mathcal{A} has simplifiable signatures.

 $A_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

Signatures are equipped with a pointwise addition

 $D \cap D' = \emptyset \implies sig[p, D \cup D'] = sig[p, D] + sig[p, D']$

Definition

 $\mathcal{A} \text{ has simplifiable signatures if } \forall D \subseteq Q \quad \forall C \subseteq D \quad \forall p, q \in Q \\ sig[p, D] = sig[q, D] \text{ and } sig[p, C] = sig[q, C] \Longrightarrow sig[p, D \setminus C] = sig[q, D \setminus C].$

If $(\mathbb{K}, +)$ is a *cancellative monoid* (in particular if \mathbb{K} is a ring), then all \mathbb{K} -automata have simplifiable signatures.

- If \mathcal{A} is a *deterministic* automaton not necessarily complete, then \mathcal{A} has simplifiable signatures.
- If \mathcal{A} is a *sequential* \mathbb{K} -automaton,

then \mathcal{A} has simplifiable signatures.

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Fast Backward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $\{t\} \rightarrow queue$ $Q \rightarrow queue$
- for every $D \in queue$,

• for every $C \in \mathcal{P}_i$ that is not a singleton, and that contains a *predecessor* of a state in $D \in queue$

- compute split[C, D]
- if it is a true split, put pieces in *queue* (even singletons)
 but the largest piece
- $\mathcal{P}_{i+1} = \mathcal{P}_i \land \cup split[C, D]$
- stop when *queue* is empty

 $\mathcal{A}_{\$} = \langle Q, i, E, t \rangle$ *n* states *m* transitions

The Fast Backward Algorithm queue = queue of classes

- $\mathcal{P}_0 = \{i\}, Q, \{t\}$ $\{t\} \rightarrow queue$ $Q \rightarrow queue$
- for every $D \in queue$,

• for every $C \in \mathcal{P}_i$ that is not a singleton, and that contains a *predecessor* of a state in $D \in queue$

- compute split[C, D]
- if it is a true split, put pieces in *queue* (even singletons)
 but the largest piece
- $\mathcal{P}_{i+1} = \mathcal{P}_i \land \cup split[C, D]$
- stop when *queue* is empty

Theorem

If A has simplifiable signatures, then Fast Backward Algorithm computes the coarsest congruence in $O((m + n) \log n)$

Every automaton (DFA, NFA, WFA) has a minimal quotient

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of O(n(m+n))

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of O(n(m+n))
- Devil is in the details of the implementation to achieve the prescribed complexity

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of O(n(m+n))
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $O((m+n)\log n)$

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of O(n(m+n))
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $O((m+n)\log n)$
- This subsumes and generalises works of Hopcroft, Béal–Crochemore, Valmari–Lehtinen

- Every automaton (DFA, NFA, WFA) has a minimal quotient
- Two main algorithms for computing the minimal quotient
- They both have a time complexity of O(n(m+n))
- Devil is in the details of the implementation to achieve the prescribed complexity
- Simplifiable signatures allow a complexity of $O((m+n)\log n)$
- This subsumes and generalises works of Hopcroft, Béal–Crochemore, Valmari–Lehtinen
- Open problem:

lower bound for minimisation of Boolean and $\mathbb{Z}\text{min-automata}$