The sequentialisation of automata and transducers

Jacques Sakarovitch

CNRS / Université Denis-Diderot and Telecom ParisTech

Joint work with Sylvain Lombardy, Université de Bordeaux

Survey Lecture at the International Workshop Weighted Automata: Theory and Applications Leipzig, 22 May 2018 Based on the results presented in the survey paper:

Sequential ? Theoret. Computer Sci. **359** (2006)

with S. Lombardy

and described in the general framework set up in:

Chapter III

Chapter 4

 A_2

Part I

Some views on the weighted automaton model

Paradigm of a machine for the computer scientists

Paradigm of a machine for the rest of the world

Paradigm of a machine for the rest of the world

$$x \in \mathbb{R}^n$$
, $y \in \mathbb{R}^m$

Paradigm of a machine for the rest of the world

The input belongs to a *free monoid* A^*

The input belongs to a *free monoid* A^*

The input belongs to a *free monoid* A^*

The output belongs to the Boolean semiring $\mathbb B$

The input belongs to a *free monoid* A^*

The output belongs to the *Boolean semiring* $\mathbb B$

The function realised is a language

The input belongs to a *free monoid* A^*

The output belongs to the *Boolean semiring* $\mathbb B$

The function realised is a language,

that is, the set of words that are accepted by the machine

The simplest Turing machine

Direction of movement of the read head

The 1-way 1-tape Turing Machine (1W1TTM)

The simplest Turing machine is equivalent to finite automata

$L(\mathcal{B}_1) = \{w \in A^* \mid w \in A^* b A^*\} = \{w \in A^* \mid |w|_b \geqslant 1\}$

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language (minimal deterministic automaton)

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language (minimal deterministic automaton)

Based on

Theorem

Every finite automaton is equivalent to a deterministic one.

And what about the case of weighted finite automata?

The weighted automaton model

$$\begin{aligned} |\mathcal{B}_1|: w \longmapsto |w|_b & |\mathcal{B}_1|: A^* \longrightarrow \mathbb{N} & |\mathcal{B}_1| \in \mathbb{N} \langle\!\langle A^* \rangle\!\rangle \\ |\mathcal{B}_1| = b + ab + ba + 2ba + aab + aba + \dots + 2bab + \dots \end{aligned}$$

The weighted automaton model

Weight of a path c: product of the weights of transitions in c
Weight of a word w: sum of the weights of paths with label w

$$\begin{aligned} |\mathcal{C}_1|: w \longmapsto \langle \overline{w} \rangle_2 & |\mathcal{C}_1|: A^* \longrightarrow \mathbb{N} & |\mathcal{C}_1| \in \mathbb{N} \langle\!\langle A^* \rangle\!\rangle \\ |\mathcal{C}_1| = b + ab + 2ba + 3ba + aab + 2aba + \dots + 5bab + \dots \end{aligned}$$

The system theory view of weighted automata

$$\mathbb{K} \ni k \quad \longleftarrow \quad \alpha(\cdot) \qquad \longleftarrow \quad w \in A^*$$

The input belongs to a *free monoid* A^*

The output belongs to the $\textit{semiring}\ \mathbb{K}$

The system theory view of weighted automata

The input belongs to a *free monoid* A^*

The output belongs to the semiring \mathbb{K}

The function realised is a function from A^* to \mathbb{K}

The system theory view of weighted automata

The input belongs to a *free monoid* A^*

The output belongs to the semiring $\mathbb K$

The function realised is *a function from* A^* to \mathbb{K} ,

that is, a series in $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Series play the role of languages $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ plays the role of $\mathfrak{P}(A^*)$

Richness of the model of weighted automata

- ▶ B 'classic' automata
 ▶ N 'usual' counting
- ► Z, Q, R
- $\land \ \ \langle \mathbb{Z} \cup +\infty, \min, + \rangle$
- $\langle \mathbb{Z}, \min, \max \rangle$
- $\mathfrak{P}(B^*) = \mathbb{B}\langle\!\langle B^* \rangle\!\rangle$
- ▶ N((B*))
- ▶ 𝒱(F(B))
- $\mathfrak{P}(M)$

- 'usual' counting numerical multiplicity
- tropical automata
 - fuzzy automata
 - transducers
 - weighted transducers
 - pushdown automata
 - register automata, M-automata

Automata are matrices

Traversal of a graph corresponds to matrix multiplication

$$E_1^* = \sum_{n \in \mathbb{N}} E_1^n \qquad |C_1| = I_1 \cdot E_1^* \cdot T_1$$
.

$$\mathcal{C}_1 = \langle I_1, E_1, T_1 \rangle = \left\langle \begin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} a+b & b \\ 0 & 2a+2b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle .$$

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} a + \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} b$$
$$\mu_1 \colon A^* \to \mathbb{K}^{2 \times 2} \qquad \qquad \mu_1(a) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} , \quad \mu_1(b) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

 $\begin{array}{ccc} Q \ \ \mathsf{finite} & \mu \colon A^* \to \mathbb{K}^{Q \times Q} & \mathsf{morphism} \\ (I, \mu, T) & I \in \mathbb{K}^{1 \times Q} & \mu \colon A^* \to \mathbb{K}^{Q \times Q} & T \in \mathbb{K}^{Q \times 1} \end{array}$

 $\begin{array}{lll} \mathbb{K} \mbox{ semiring } & A^* \mbox{ free monoid} \\ \end{tabular} \\ \mathbb{K}\mbox{-representation} \\ Q \mbox{ finite } & \mu \colon A^* \to \mathbb{K}^{Q \times Q} \mbox{ morphism} \\ (I, \mu, T) & I \in \mathbb{K}^{1 \times Q} \mbox{ } \mu \colon A^* \to \mathbb{K}^{Q \times Q} \mbox{ } T \in \mathbb{K}^{Q \times 1} \\ \\ (I, \mu, T) \mbox{ realises (recognises) } & s \in \mathbb{K} \langle\!\langle A^* \rangle\!\rangle \\ & \forall w \in A^* \mbox{ } \langle s, w \rangle = I \cdot \mu(w) \cdot T \end{array}$

K semiring **■** A^* free monoid **K**−representation *Q* finite $\mu \colon A^* \to \mathbb{K}^{Q \times Q}$ morphism $(I, \mu, T) \qquad I \in \mathbb{K}^{1 \times Q} \qquad \mu \colon A^* \to \mathbb{K}^{Q \times Q} \qquad T \in \mathbb{K}^{Q \times 1}$ (I, μ, T) realises (recognises) $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\forall w \in A^* \qquad \langle s, w \rangle = I \cdot \mu(w) \cdot T$

A series over A^* is $(\mathbb{K}-)$ *rational* or $(\mathbb{K}-)$ *recognisable* if it is realised by

a finite (\mathbb{K} -)automaton or a (\mathbb{K} -)representation

A series over A^* is $(\mathbb{K}-)$ *rational* or $(\mathbb{K}-)$ *recognisable* if it is realised by

a finite (\mathbb{K} -)automaton or a (\mathbb{K} -)representation

A finite (\mathbb{K} -)automaton is *sequential*

if its *support* is a *deterministic* Boolean automaton

A finite (\mathbb{K} -)automaton is *sequential* if its *support* is a *deterministic* Boolean automaton

Definitions

A finite (\mathbb{K} -)automaton is *sequential* if its *support* is a *deterministic* Boolean automaton

A series over A^* is *sequential*

if it is realized by a finite *sequential* automaton or by a *row-monomial* representation

Is it decidable whether a given rational series

is sequential or not ?

Is it decidable whether a given rational series

is sequential or not ?

$$s_1 = \sum_{n \in \mathbb{N}} 2^n a^n$$

Is it decidable whether a given rational series

is sequential or not ?

 4_{2}

Is it decidable whether a given rational series

is sequential or not ?

42

A word on terminology

Most probably, what I call

sequential automaton

is what you call

deterministic automaton.

Part II

The common sequentialisation algorithm

$$I \cdot \mu(w) \cdot T$$
 A $w \in A^*$
 $\mathcal{A} = (I, \mu, T)$ $\mu \colon A^* \longrightarrow \mathbb{K}^{Q \times Q}$

$$I \cdot \mu(w) \cdot T \longleftarrow A^* \longrightarrow \mathbb{K}^{Q \times Q}$$
$$\mathbb{K}^{1 \times Q} \text{ state space } I \text{ initial state}$$

 $I \cdot \mu(w)$ state after reading w

$$\mathcal{A} = (I, \mu, T) \qquad \mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

 μ morphism \implies $I \cdot \mu(w a) = (I \cdot \mu(w)) \cdot \mu(a)$

 $\mathcal{A} = (I, \mu, T) \qquad \mu \colon A^* \longrightarrow \mathbb{K}^{Q \times Q}$ $\mu \text{ morphism } \implies I \cdot \mu(w \text{ a}) = (I \cdot \mu(w)) \cdot \mu(a)$

 μ defines an *action* of A^* over $\mathbb{K}^{1\!\times\!Q}$

 $\mathcal{A} = (I, \mu, T) \qquad \mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

 $\mu \text{ morphism } \implies I \cdot \mu(w \, a) = (I \cdot \mu(w)) \cdot \mu(a)$ $\mu \text{ defines an action of } A^* \text{ over } \mathbb{K}^{1 \times Q}$ This action (with I and T) defines an automaton: the determinisation $\widehat{\mathcal{A}}$ of \mathcal{A}

 $\mathcal{A} = (I, \mu, T) \qquad \mu \colon A^* \longrightarrow \mathbb{K}^{Q \times Q}$ $\mu \text{ morphism } \implies I \cdot \mu(w \text{ a}) = (I \cdot \mu(w)) \cdot \mu(a)$ $\mu \text{ defines an action of } A^* \text{ over } \mathbb{K}^{1 \times Q}$ This action (with I and T) defines an automaton:
the determinisation $\widehat{\mathcal{A}}$ of \mathcal{A}

$$J = I \cdot \mu(u)$$

.....

.....

If $\mathbb{K} = \mathbb{B}$, determinisation = subset construction

If $\mathbb{K} = \mathbb{B}$, determinisation = subset construction

Determinisation yields a *deterministic automaton*

If $\mathbb{K} = \mathbb{B}$, determinisation = subset construction

Determinisation yields a *deterministic automaton* and *conversely*

The input belongs to a free monoid A^*

The output belongs to ${\mathbb K}$

 $s \in \mathbb{K}\langle\!\langle A^*
angle$

 $s' \in \mathbb{K}\langle\!\langle A^*
angle\!
angle$

The series s' is *the quotient* of s by a_1a_2

The series s' is *the quotient* of s by u

$$\langle s, w \rangle$$
 \checkmark $w \in A^*$

 $\mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$ set of quotients of s

$$\langle s, w \rangle$$
 \checkmark $w \in A^*$

 $\mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$ set of quotients of s $\mathbf{Q}_{s_1} = \{2^n s_1 \mid n \in \mathbb{N}\}$

$$\langle s, w \rangle$$
 \checkmark $w \in A^*$

 $\mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$ set of quotients of s

Theorem (Schützenberger–Fliess–Jacob) A series s is recognisable iff \mathbf{Q}_s is contained in a finitely generated stable submodule of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

$$\langle s, w \rangle$$
 \checkmark $w \in A^*$

 $\mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$ set of quotients of s

Theorem (Schützenberger–Fliess–Jacob) A series s is recognisable iff \mathbf{Q}_s is contained in a finitely generated stable submodule of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Theorem (Myhill-Nerode) A language L is recognisable iff \mathbf{Q}_1 is finite

Associativity in $A^* \implies (uv)^{-1}s = v^{-1}[u^{-1}s]$

Associativity in $A^* \implies (uv)^{-1}s = v^{-1}[u^{-1}s]$ If $u^{-1}s$ written $s \circ u$, then $s \circ (uv) = (s \circ u) \circ v$

Associativity in $A^* \implies (uv)^{-1}s = v^{-1}[u^{-1}s]$ If $u^{-1}s$ written $s \circ u$, then $s \circ (uv) = (s \circ u) \circ v$ The *quotient* defines an *action* of A^* over $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Associativity in $A^* \implies (uv)^{-1}s = v^{-1}[u^{-1}s]$ If $u^{-1}s$ written $s \circ u$, then $s \circ (uv) = (s \circ u) \circ v$ The *quotient* defines an *action* of A^* over $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ This action defines, for every s, *a deterministic automaton*: the minimal deterministic automaton \mathcal{A}_S of s

Associativity in $A^* \implies (uv)^{-1}s = v^{-1}[u^{-1}s]$ If $u^{-1}s$ written $s \circ u$, then $s \circ (uv) = (s \circ u) \circ v$ The *quotient* defines an *action* of A^* over $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ This action defines, for every s, *a deterministic automaton*: the minimal deterministic automaton \mathcal{A}_S of s

 $\mathcal{A}_2 = \left(egin{pmatrix} 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}
ight)$

$$\mu_3(a) = egin{pmatrix} 3/2 & 1/2 \ 1/2 & 3/2 \end{pmatrix}$$
 $\mu_3(b) = egin{pmatrix} 2/3 & 4/3 \ 4/3 & 2/3 \end{pmatrix}$

 \mathcal{A}_3

.........

Theorem (Schützenberger–Fliess–Jacob) A series s is recognisable iff \mathbf{Q}_s is contained in a stable finitely generated submodule of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Theorem (Schützenberger–Fliess–Jacob) A series s is recognisable iff \mathbf{Q}_s is contained in a stable finitely generated submodule of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

 $\begin{array}{l} \text{Definition} \\ \ell \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \ \text{ is a } \textit{line if } \ell = \{k \, r \mid k \in \mathbb{K}\} \ \text{ for a given } r \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \end{array}$

Theorem (Schützenberger–Fliess–Jacob) A series s is recognisable iff Q_s is contained in a stable finitely generated submodule of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

 $\begin{array}{l} \text{Definition} \\ \ell \subseteq \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \ \text{ is a } \textit{line} \text{ if } \ \ell = \{k \, r \mid k \in \mathbb{K}\} \ \text{ for a given } r \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \end{array}$

Proposition

A series s is sequential iff Q_s is contained in a stable finite set of lines of $\mathbb{K}\langle\!\langle A^* \rangle\!\rangle$

Further hypothesis

 \mathbbm{K} admits a greatest common divisor operation (gcd)

Further hypothesis

K admits a *greatest common divisor* operation (gcd)

Examples

- $\mathbb{K} = \mathbb{N}$ gcd(4, 6, 12) = 2
- $\mathbb{K} = \mathbb{N}$ min $gcd(4, 6, 12) = min\{4, 6, 12\} = 4$
- $\mathbb{K} = \mathbb{Z}$ min, $\mathbb{K} = \mathbb{F}$ need for a convention
- $\mathfrak{P}(B^*)$ has no gcd but {B^{*} ∪ ∅} has one: the longuest common prefix

Further hypothesis

 \mathbb{K} admits a greatest common divisor operation (gcd)

Notation let \mathbb{K} with gcd • $\xi \in \mathbb{K}^Q$ $\stackrel{\circ}{\xi} \in \mathbb{K}$ $\stackrel{\circ}{\xi} = \gcd(\{\xi_q \mid q \in Q\})$ • $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\stackrel{\circ}{s} \in \mathbb{K}$ $\stackrel{\circ}{s} = \gcd(\{\langle s, w \rangle \mid w \in A^*\})$ • $\xi^{\sharp} \in \mathbb{K}^Q$ $\xi^{\sharp} = \left(\stackrel{\circ}{\xi}\right)^{-1} \xi$ *i.e.* $\xi = \stackrel{\circ}{\xi} \xi^{\sharp}$ • $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $s^{\sharp} = \left(\stackrel{\circ}{s}\right)^{-1} s$ *i.e.* $s = \stackrel{\circ}{s} s^{\sharp}$

Further hypothesis

K admits a greatest common divisor operation (gcd)

Notation let \mathbb{K} with gcd $\flat \xi \in \mathbb{K}^{Q}$ $\stackrel{\circ}{\xi} \in \mathbb{K}$ $\stackrel{\circ}{\xi} = \gcd(\{\xi_{q} \mid q \in Q\}))$ $\flat s \in \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle$ $\stackrel{\circ}{s} \in \mathbb{K}$ $\stackrel{\circ}{s} = \gcd(\{\langle s, w \rangle \mid w \in A^{*}\}))$ $\flat \xi^{\sharp} \in \mathbb{K}^{Q}$ $\xi^{\sharp} = \left(\stackrel{\circ}{\xi}\right)^{-1} \xi$ *i.e.* $\xi = \stackrel{\circ}{\xi} \xi^{\sharp}$ $\flat s \in \mathbb{K}\langle\!\langle A^{*} \rangle\!\rangle$ $s^{\sharp} = \left(\stackrel{\circ}{s}\right)^{-1} s$ *i.e.* $s = \stackrel{\circ}{s} s^{\sharp}$

Example

 $s_1 = 1_{A^*} + 2a + 4a^2 + 8a^3 + \dots + 2^n a^n + \dots$

Further hypothesis

 \mathbb{K} admits a greatest common divisor operation (gcd)

Notation let \mathbb{K} with gcd $\flat \xi \in \mathbb{K}^Q$ $\stackrel{\circ}{\xi} \in \mathbb{K}$ $\stackrel{\circ}{\xi} = \gcd(\{\xi_q \mid q \in Q\})$ $\flat s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\stackrel{\circ}{s} \in \mathbb{K}$ $\stackrel{\circ}{s} = \gcd(\{\langle s, w \rangle \mid w \in A^*\})$ $\flat \xi^{\sharp} \in \mathbb{K}^Q$ $\xi^{\sharp} = \left(\stackrel{\circ}{\xi}\right)^{-1} \xi$ *i.e.* $\xi = \stackrel{\circ}{\xi} \xi^{\sharp}$ $\flat s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $s^{\sharp} = \left(\stackrel{\circ}{s}\right)^{-1} s$ *i.e.* $s = \stackrel{\circ}{s} s^{\sharp}$

Example

 $s_1 = 1_{A^*} + 2a + 4a^2 + 8a^3 + \dots + 2^n a^n + \dots$ $t = a^{-2}s_1 = 41_{A^*} + 8a + \dots + 2^{n+2}a^n + \dots$

Further hypothesis

K admits a greatest common divisor operation (gcd)

Notation let \mathbb{K} with gcd $\flat \xi \in \mathbb{K}^Q$ $\stackrel{\circ}{\xi} \in \mathbb{K}$ $\stackrel{\circ}{\xi} = \gcd(\{\xi_q \mid q \in Q\})$ $\flat s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\stackrel{\circ}{s} \in \mathbb{K}$ $\stackrel{\circ}{s} = \gcd(\{\langle s, w \rangle \mid w \in A^*\})$ $\flat \xi^{\sharp} \in \mathbb{K}^Q$ $\xi^{\sharp} = \left(\stackrel{\circ}{\xi}\right)^{-1} \xi$ *i.e.* $\xi = \stackrel{\circ}{\xi} \xi^{\sharp}$ $\flat s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $s^{\sharp} = \left(\stackrel{\circ}{s}\right)^{-1} s$ *i.e.* $s = \stackrel{\circ}{s} s^{\sharp}$

Example

$$s_1 = 1_{A^*} + 2a + 4a^2 + 8a^3 + \dots + 2^n a^n + \dots$$

$$t = a^{-2}s_1 = 41_{A^*} + 8a + \dots + 2^{n+2}a^n + \dots$$

$$\overset{\circ}{t} = 4$$

Further hypothesis

K admits a *greatest common divisor* operation (gcd)

Notation let \mathbb{K} with gcd ► $\xi \in \mathbb{K}^Q$ $\overset{\circ}{\xi} \in \mathbb{K}$ $\overset{\circ}{\xi} = \gcd(\{\xi_q \mid q \in Q\})$ ► $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\overset{\circ}{s} \in \mathbb{K}$ $\overset{\circ}{s} = \gcd(\{\langle s, w \rangle \mid w \in A^*\})$ $\blacktriangleright \ \xi^{\sharp} \in \mathbb{K}^{Q} \qquad \qquad \xi^{\sharp} = \left(\overset{\circ}{\xi}\right)^{-1} \xi \qquad i.e. \quad \xi = \overset{\circ}{\xi} \xi^{\sharp}$ ► $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $s^{\sharp} = \left(\stackrel{\circ}{s}\right)^{-1} s$ *i.e.* $s = \stackrel{\circ}{s} s^{\sharp}$ Convention $\mathbb{K} = \mathbb{F}$, \mathbb{Z} min

• $\xi \in \mathbb{K}^Q$ first entry of $\xi^{\sharp} = 1_{\mathbb{K}}$ • $s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle$ $\langle \xi^{\sharp}, 1_{A^*} \rangle = 1_{\mathbb{K}}$

$\begin{array}{l} \mbox{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \ , \ u \in A^* \qquad [u^{-1}s]^{\sharp} \ translation \ \text{of} \ s \ \text{by} \ u \\ \mbox{G}_s = \left\{ [u^{-1}s]^{\sharp} \ \big| \ u \in A^* \right\} \qquad \text{set of translations of} \ s \end{array}$

$\begin{array}{l} \begin{array}{l} \text{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \text{, } u \in A^* & [u^{-1}s]^{\sharp} \text{ translation of } s \text{ by } u \\ \\ \mathbf{G}_s = \left\{ [u^{-1}s]^{\sharp} \mid u \in A^* \right\} & \text{set of translations of } s \end{array}$

Translation is an *action* on G_s

Translation defines a *sequential* \mathbb{K} -*automaton* of dimension G_s : *the minimal sequential* automaton of *s*, \mathcal{D}_s

$\begin{array}{l} \mbox{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \ , \ u \in A^* \qquad [u^{-1}s]^{\sharp} \ translation \ \text{of} \ s \ \text{by} \ u \\ \mbox{G}_s = \left\{ [u^{-1}s]^{\sharp} \ \big| \ u \in A^* \right\} \qquad \text{set of translations of} \ s \end{array}$

Translation is an *action* on G_s

Translation defines a *sequential* \mathbb{K} -*automaton* of dimension G_s : *the minimal sequential* automaton of *s*, \mathcal{D}_s

$\begin{array}{l} \begin{array}{l} \text{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \text{ , } & u \in A^* \\ \end{array} \begin{array}{l} \left[u^{-1}s \right]^{\sharp} & \textit{translation} \text{ of } s \text{ by } u \\ \mathbf{G}_s = \left\{ \left[u^{-1}s \right]^{\sharp} \mid u \in A^* \right\} \\ \end{array} \right. \\ \text{set of translations of } s \end{array}$

Translation is an *action* on G_s

Translation defines a *sequential* \mathbb{K} -*automaton* of dimension G_s : *the minimal sequential* automaton of s, \mathcal{D}_s

$\begin{array}{l} \begin{array}{l} \text{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \text{ , } & u \in A^* \\ \end{array} \begin{array}{l} \left[u^{-1}s \right]^{\sharp} & translation \text{ of } s \text{ by } u \\ \mathbf{G}_s = \left\{ \left[u^{-1}s \right]^{\sharp} \mid u \in A^* \right\} \\ \end{array} \right. \\ \text{set of translations of } s \end{array}$

Translation is an *action* on G_s

Translation defines a *sequential* \mathbb{K} -*automaton* of dimension G_s : *the minimal sequential* automaton of *s*, \mathcal{D}_s

$$t = [u^{-1}s]^{\sharp} = t^{\sharp}$$

$$\overset{\circ}{\overset{\circ}{s}} \overset{\circ}{\overset{\circ}{s}} \overset{\circ}{s} \overset{\circ}{\overset{\circ}{s}} \overset{\circ}{\overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s} \overset{\circ}{s}$$

 $\begin{array}{l} \begin{array}{l} \text{Definition} \\ s \in \mathbb{K}\langle\!\langle A^* \rangle\!\rangle \text{ , } & u \in A^* \\ \end{array} \begin{array}{l} \left[u^{-1}s \right]^{\sharp} & \textit{translation} \text{ of } s \text{ by } u \\ \mathbf{G}_s = \left\{ \left[u^{-1}s \right]^{\sharp} \mid u \in A^* \right\} \\ \end{array} \right. \\ \text{set of translations of } s \end{array}$

Translation is an *action* on G_s

Translation defines a *sequential* \mathbb{K} -*automaton* of dimension \mathbf{G}_s : *the minimal sequential* automaton of s, \mathcal{D}_s

Theorem (Raney 58) A series s is sequential iff G_s is finite

$$\mathcal{A} = (I, \mu, T) \qquad \mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

Distributivity $\implies [I \cdot \mu(w a)]^{\sharp} = \left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a) \right]^{\sharp}$

$$\mathcal{A} = (I, \mu, T) \qquad \mu \colon A^* \longrightarrow \mathbb{K}^{Q \times Q}$$

Distributivity $\implies [I \cdot \mu(w \, a)]^{\sharp} = \left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a) \right]^{\sharp}$

 $\mu \circ \sharp$ defines an *action* of A^* over $\left[\mathbb{K}^{1 \times Q}\right]^{\mu}$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

Distributivity
$$\implies [I \cdot \mu(w a)]^{\sharp} = [[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)]^{\sharp}$$

 $\mu \circ \sharp$ defines an *action* of A^* over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

Distributivity
$$\implies [I \cdot \mu(w a)]^{\sharp} = [[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)]^{\sharp}$$

 $\mu \circ \sharp$ defines an *action* of A^* over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

Distributivity
$$\implies [I \cdot \mu(w a)]^{\sharp} = [[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)]^{\sharp}$$

 $\mu \circ \sharp$ defines an *action* of A^* over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$

$$\mathcal{A} = (I, \mu, T)$$
 $\mu \colon \mathcal{A}^* \longrightarrow \mathbb{K}^{Q \times Q}$

Distributivity
$$\implies [I \cdot \mu(w a)]^{\sharp} = [[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)]^{\sharp}$$

 $\mu \circ \sharp$ defines an *action* of A^* over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$

 \mathcal{D}_{s_1}

 \mathcal{A}_2

$$s_1 = |\mathcal{A}_1| = |\mathcal{A}_2|$$

 s_1

 \mathcal{D}_{S_1}

 \mathcal{D}_{S_1}

The global framework

The global framework

- ► The (trivial) finite case
- The field case
- The idempotent semiring case

Part III

The trivial finite case

The trivial finite case

$$\mathcal{A} = (I, \mu, T)$$
 $\mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$

Proposition (?) $\mathbb{K} \text{ finite} \Longrightarrow \widehat{\mathcal{A}} \text{ finite.}$

Example

 $\mathbb B$, $\mathbb Z/n\mathbb Z$, $\mathbb N/[n=n+k]$

The trivial finite case

$$\mathcal{A} = (I, \mu, T)$$
 $\mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$

A semiring \mathbb{K} is *locally finite* if every finitely generated subsemiring is finite.

Proposition (?) \mathbb{K} locally finite $\Longrightarrow \widehat{\mathcal{A}}$ finite.

Example

Fuzzy semirings: $\langle \mathbb{N}, \min, \max \rangle$, $\langle [0, 1], \min, \max \rangle$

The trivial finite case

 $\mathcal{A} = (I, \mu, T)$ $\mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$

A semiring \mathbb{K} is *locally finite* if every finitely generated subsemiring is finite.

Proposition (?) \mathbb{K} locally finite $\Longrightarrow \widehat{\mathcal{A}}$ finite.

Example

Fuzzy semirings: $\langle \mathbb{N}, \min, \max \rangle$, $\langle [0, 1], \min, \max \rangle$

Counting in a locally finite semiring is not really counting.

$Part \ IV$

$The \ field \ case$

The field case

$$\mathbb{K} = \mathbb{F} \quad \text{field}$$
$$\mathcal{A} = (I, \mu, T) \quad \mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$$
$$s = |\mathcal{A}| \quad \mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$$
$$r_s = \dim \langle \mathbf{Q}_s \rangle \quad r_s \text{ rank of } s$$

Theorem (Schützenberger 61) The s is recognisable iff r_s is finite

The field case

$$\mathbb{K} = \mathbb{F} \quad \text{field}$$
$$\mathcal{A} = (I, \mu, T) \quad \mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$$
$$s = |\mathcal{A}| \quad \mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$$
$$r_s = \dim \langle \mathbf{Q}_s \rangle \quad r_s \text{ rank of } s$$

Theorem (Schützenberger 61) The s is recognisable iff r_s is finite

Definition

 ${\cal A} \text{ is } \textit{reduced} \text{ if } \dim \left< R_{{\cal A}} \right> = \textit{r}_{s}$

Theorem (Schützenberger 61)

A reduced representation of s is computable from any $\mathcal A$ realising s

The field case

$$\mathbb{K} = \mathbb{F} \quad \text{field}$$
$$\mathcal{A} = (I, \mu, T) \quad \mathbf{R}_{\mathcal{A}} = \{I \cdot \mu(w) \mid w \in A^*\}$$
$$s = |\mathcal{A}| \quad \mathbf{Q}_s = \{u^{-1}s \mid u \in A^*\}$$
$$r_s = \dim \langle \mathbf{Q}_s \rangle \quad r_s \text{ rank of } s$$

Theorem (Schützenberger 61) The s is recognisable iff r_s is finite

Definition

 \mathcal{A} is *reduced* if dim $\langle \mathbf{R}_{\mathcal{A}} \rangle = r_s$ Theorem (Schützenberger 61)

A reduced representation of s is computable from any \mathcal{A} realising s

Theorem (Reutenauer, L–S 06) If A is reduced, then $\breve{A} = D_s$

Part V

The idempotent semiring case

Definition \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

- Tropical semirings
- Language semirings

Definition

 \mathbb{K} *idempotent* if k+k=k $\forall k \in \mathbb{K}$

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$
- Language semirings

Definition

 \mathbb{K} *idempotent* if k+k=k $\forall k \in \mathbb{K}$

- Tropical semirings $\langle \mathbb{N} \cup \{+\infty\}, \min, + \rangle$
- Language semirings

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$, $\langle \mathbb{Z}, \min, + \rangle$, $\langle \mathbb{Q}, \min, + \rangle$, ...
- Language semirings

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$, $\langle \mathbb{Z}, \min, + \rangle$, $\langle \mathbb{Q}, \min, + \rangle$, ...
- ▶ Language semirings $\langle \mathfrak{P}(B^*), \cup, \cdot \rangle$, $\langle \operatorname{Rat} B^*, \cup, \cdot \rangle$, ...

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

Example

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$, $\langle \mathbb{Z}, \min, + \rangle$, $\langle \mathbb{Q}, \min, + \rangle$, ...
- ▶ Language semirings $\langle \mathfrak{P}(B^*), \cup, \cdot \rangle$, $\langle \operatorname{Rat} B^*, \cup, \cdot \rangle$, ...

 $\mathfrak{P}(M) = \mathbb{B}\langle\!\langle M \rangle\!\rangle$

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

Example

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$, $\langle \mathbb{Z}, \min, + \rangle$, $\langle \mathbb{Q}, \min, + \rangle$, ...
- ▶ Language semirings $\langle \mathfrak{P}(B^*), \cup, \cdot \rangle$, $\langle \operatorname{Rat} B^*, \cup, \cdot \rangle$, ...

$$\mathfrak{P}(M) = \mathbb{B}\langle\!\langle M \rangle\!\rangle$$

Proposition

 $\mathbb{B}\langle\!\langle A^* \times B^* \rangle\!\rangle \quad \cong \quad [\mathbb{B}\langle\!\langle B^* \rangle\!\rangle] \langle\!\langle A^* \rangle\!\rangle$

Definition

 \mathbb{K} *idempotent* if k + k = k $\forall k \in \mathbb{K}$

Example

- Tropical semirings $\langle \mathbb{N}, \min, + \rangle$, $\langle \mathbb{Z}, \min, + \rangle$, $\langle \mathbb{Q}, \min, + \rangle$, ...
- ▶ Language semirings $\langle \mathfrak{P}(B^*), \cup, \cdot \rangle$, $\langle \operatorname{Rat} B^*, \cup, \cdot \rangle$, ...

$$\mathfrak{P}(M) = \mathbb{B}\langle\!\langle M
angle\!
angle$$

Proposition

$$\mathbb{B}\langle\!\langle A^* \times B^* \rangle\!\rangle \quad \cong \quad [\mathbb{B}\langle\!\langle B^* \rangle\!\rangle] \langle\!\langle A^* \rangle\!\rangle$$

Theorem (Kleene–Schützenberger) $\operatorname{Rat}(A^* \times B^*) \cong [\operatorname{Rat} B^*] \operatorname{Rat} A^* = [\operatorname{Rat} B^*] \operatorname{Rec} A^*$

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical semirings, $\mathfrak{P}(B^*)$ are very complex, weak and not well understood mathematical structures

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical semirings, $\mathfrak{P}(B^*)$ are very complex, weak and not well understood mathematical structures

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical semirings, $\mathfrak{P}(B^*)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)

Equivalence of transducers is undecidable

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical semirings, $\mathfrak{P}(B^*)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)

Equivalence of transducers is undecidable

Theorem (Krob 91)

Equivalence of tropical automata is undecidable

Tropical automata and transducers are the "" most sequentialised"" automata

Tropical semirings, $\mathfrak{P}(B^*)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)

Equivalence of transducers is undecidable

Theorem (Krob 91)

Equivalence of tropical automata is undecidable

 $\mathfrak{P}(B^*)$ does not even have gcd !

The transducers that are ""sequentialised"" are

the functional tranducers

The transducers that are ""sequentialised"" are the functional tranducers that is, transducers with values in $B^* \cup \{\emptyset\}$

The transducers that are "'sequentialised"" are the functional tranducers that is, transducers with values in $B^* \cup \{\emptyset\}$

First relief: $B^* \cup \{\emptyset\}$ has a gcd : the *longest common prefix*

The transducers that are ""sequentialised"" are the functional tranducers that is, transducers with values in $B^* \cup \{\emptyset\}$

First relief: $B^* \cup \{\emptyset\}$ has a gcd : the *longest common prefix* Second relief:

Theorem (Schützenberger 75) Functionality of transducers is decidable.

Consider for sequentialisation:

- the functional transducers
- the tropical automata

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar! They are so different!

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar! They are so different!

What make them different?

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar! They are so different!

What make them different? 1-valuedness

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar! They are so different!

What make them different? *1-valuedness*

Definition \mathcal{A} is 1-valued if every path labelled by a word whas the same weight.

Observation 1 Functional transducers are 1-valued, by definition

Observation 1 Functional transducers are 1-valued, by definition

Observation 2 Tropical automata are not necessarily 1-valued

Observation 1 Functional transducers are 1-valued, by definition

Observation 2 Tropical automata are not necessarily 1-valued

Observation 1 Functional transducers are 1-valued, by definition

Observation 2 Tropical automata are not necessarily 1-valued

 s_4 cannot be realised by a 1-valued automaton

Why is 1-valuedness so important ?

Theorem (Schützenberger 77) Every 1-valued (finite) automaton is equivalent to an unambiguous (finite) automaton

The twinning property

The twinning property

Congruent twin states

 $(r,s)^{\sharp} = (r\,k,s\,h)^{\sharp}$

Congruent twin states

 $(r,s)^{\sharp} = (r\,k,s\,h)^{\sharp}$

Definition

 ${\mathcal A}\,$ has the *twinning property* if all twin states are congruent

Definition

 ${\mathcal A}\,$ has the *twinning property* if all twin states are congruent

Theorem (Choffrut 77)

The twinning property is decidable.

Definition

 ${\mathcal A}\,$ has the *twinning property* if all twin states are congruent

Theorem (Choffrut 77)

The twinning property is decidable.

Theorem (WK 95, BCPS 00, BCW 98, AM 03) The twinning property is decidable in polynomial time.

Decision procedure

Proposition (Choffrut 77, Mohri 97) $\mathcal{A} \text{ has twinning } p. \Longrightarrow \breve{\mathcal{A}} \text{ finite.}$

Decision procedure

Proposition (Choffrut 77, Mohri 97) $\mathcal{A} \text{ has twinning } p. \Longrightarrow \check{\mathcal{A}} \text{ finite.}$

Proposition (Choffrut 77, Mohri 97) \mathcal{A} unambiguous and $|\mathcal{A}|$ sequential $\implies \mathcal{A}$ has twinning p.

Decision procedure

Proposition (Choffrut 77, Mohri 97) $\mathcal{A} \text{ has twinning } p. \Longrightarrow \breve{\mathcal{A}} \text{ finite.}$

Proposition (Choffrut 77, Mohri 97) \mathcal{A} unambiguous and $|\mathcal{A}|$ sequential $\implies \mathcal{A}$ has twinning p.

Corollary

Sequentiality is decidable

for transducers and 1-valued tropical automata.

Problem

Is sequentiality decidable for tropical recognisable series ?

Problem

Is sequentiality decidable for tropical recognisable series ?

Some answers in four special cases

Problem

Is sequentiality decidable for tropical recognisable series ?

Some answers in four special cases

- 1. Unary tropical series
- 2. Heap automata
- 3. Finitely ambiguous automata
- 4. Polynomialy ambiguous automata

Unary tropical series

Unary tropical series

Theorem (Gaubert 94, Lombardy 01)

Sequentiality is decidable for tropical recognisable series

A heap model...

A heap model...

... and its heap automaton

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

 $\begin{array}{l} \textit{Super-sequentialisation} \text{ of } \mathcal{A} \text{ based} \\ \text{ on } \textit{completion} \text{ of vectors of } \mathbb{K}^Q \text{ .} \end{array}$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

 $\begin{array}{l} \textit{Super-sequentialisation} \text{ of } \mathcal{A} \text{ based} \\ \text{ on } \textit{completion} \text{ of vectors of } \mathbb{K}^Q \text{ .} \end{array}$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

 $\begin{array}{l} \textit{Super-sequentialisation} \text{ of } \mathcal{A} \text{ based} \\ \text{ on } \textit{completion} \text{ of vectors of } \mathbb{K}^Q \text{ .} \end{array}$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

 $\begin{array}{l} \textit{Super-sequentialisation} \text{ of } \mathcal{A} \text{ based} \\ \text{ on } \textit{completion} \text{ of vectors of } \mathbb{K}^Q \text{ .} \end{array}$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in A^* \right\}$$

$$\mathbf{H}_{\mathcal{A}} = \left\{ \left[\overline{I \cdot \mu(w)} \right]^{\sharp} \mid w \in \mathcal{A}^* \right\}$$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in \mathcal{A}^* \right\}$$

$$\mathbf{H}_{\mathcal{A}} = \left\{ \left[\overline{I \cdot \mu(w)} \right]^{\sharp} \mid w \in A^* \right\}$$

Theorem (Gaubert and Mairesse 99) Let \mathcal{A} be a heap automaton. $\mathbf{H}_{\mathcal{A}}$ is the set of states of a sequential automaton $\overleftarrow{\mathcal{A}}$ that realizes $|\mathcal{A}|$

$$\mathcal{A} = (I, \mu, T) \qquad \mathbf{G}_{\mathcal{A}} = \left\{ [I \cdot \mu(w)]^{\sharp} \mid w \in \mathcal{A}^* \right\}$$

$$\mathbf{H}_{\mathcal{A}} = \left\{ \left[\overline{I \cdot \mu(w)} \right]^{\sharp} \mid w \in A^* \right\}$$

Theorem (Gaubert and Mairesse 99) Let \mathcal{A} be a heap automaton. $\mathbf{H}_{\mathcal{A}}$ is the set of states of a sequential automaton $\overleftarrow{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\breve{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\breve{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\breve{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\overleftarrow{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Problem

• Is finiteness of H_A decidable ?

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\overleftarrow{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Problem

- Is finiteness of H_A decidable ?
- Is $H_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\breve{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Problem

- Is finiteness of H_A decidable ?
- Is $\mathbf{H}_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Problem solved for the *two-piece* case

Theorem (Gaubert and Mairesse 99) $H_{\mathcal{A}}$ is the set of states of a sequential automaton $\breve{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Problem

- ▶ Is finiteness of **H**_A decidable ?
- Is $\mathbf{H}_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Problem solved for the two-piece case

Theorem (Mairesse and Vuillon 02)

[Besides trivial cases] A two-letter heap automaton \mathcal{A} is sequentialisable iff either $\alpha' = \beta' = 0$ or $\alpha/\beta \in \mathbb{Q}$

 ${\mathcal A}$ is finitely ambiguous if

the number of paths labeled by a word $\ensuremath{\boldsymbol{w}}$

is uniformely bounded.

 ${\mathcal A}$ is finitely ambiguous if

the number of paths labeled by a word w is uniformely bounded.

Proposition (Klimann Lombardy Mairesse Prieur 04) Sequentiality is decidable for finitely ambiguous tropical automata.

 \mathcal{A} is finitely ambiguous if

the number of paths labeled by a word w is uniformely bounded.

Proposition (Klimann Lombardy Mairesse Prieur 04) Sequentiality is decidable for finitely ambiguous tropical automata. Proposition (Klimann Lombardy Mairesse Prieur 04) It is decidable whether a finitely ambiguous tropical automata is equivalent to a 1-valued one.

 \mathcal{A} is finitely ambiguous if

the number of paths labeled by a word w is uniformely bounded.

Proposition (Klimann Lombardy Mairesse Prieur 04) Sequentiality is decidable for finitely ambiguous tropical automata. Proposition (Klimann Lombardy Mairesse Prieur 04) It is decidable whether a finitely ambiguous tropical automata is equivalent to a 1-valued one.

Proposition (Mandel Simon 77)

Finite ambiguity is decidable.

Proposition (Hashiguchi Ishiguro Jimbo 02) Equivalence is decidable for finitely ambiguous tropical automata.

Polynomially ambiguous tropical automata

 \mathcal{A} is polynomially ambiguous if

the number of paths labeled by a word w grows polynomially with the length of w.

Polynomially ambiguous tropical automata

 \mathcal{A} is polynomially ambiguous if

the number of paths labeled by a word w grows polynomially with the length of w.

Proposition (Kirsten Lombardy 09)

Sequentiality is decidable

for polynomially ambiguous tropical automata.

Proposition (Kirsten Lombardy 09)

It is decidable whether a polynomially ambiguous tropical automata is equivalent to a 1-valued one.

Polynomially ambiguous tropical automata

 \mathcal{A} is polynomially ambiguous if

the number of paths labeled by a word w grows polynomially with the length of w.

Proposition (Kirsten Lombardy 09)

Sequentiality is decidable

for polynomially ambiguous tropical automata.

Proposition (Kirsten Lombardy 09)

It is decidable whether a polynomially ambiguous tropical automata is equivalent to a 1-valued one.

Proposition (Weber Seidl 91)

Polynomial ambiguity is decidable.

Proposition (Krob 91)

Equivalence is not decidable

for polynomially ambiguous tropical automata.