The sequentialisation of automata and transducers

Jacques Sakarovitch
CNRS / Université Denis-Diderot and Telecom ParisTech

Joint work with Sylvain Lombardy, Université de Bordeaux

Survey Lecture at the International Workshop
Weighted Automata: Theory and Applications
Leipzig, 22 May 2018

Based on the results presented in the survey paper:

- Sequential ? Theoret. Computer Sci. 359 (2006) with S. Lombardy
and described in the general framework set up in:

Chapter III

Chapter 4

$$
s_{1}=\sum_{n \in \mathbb{N}} 2^{n} a^{n}
$$

Part I

Some views on the weighted automaton model

A touch of general system theory

Paradigm of a machine for the computer scientists

A touch of general system theory

Paradigm of a machine for the rest of the world

A touch of general system theory

Paradigm of a machine for the rest of the world

A touch of general system theory

$$
x \in \mathbb{R}^{n}, \quad y \in \mathbb{R}^{m}
$$

Paradigm of a machine for the rest of the world

A touch of general system theory

Getting back to computer science

A touch of general system theory

The input belongs to a free monoid A^{*}

Getting back to computer science

A touch of general system theory

yes or no

$$
y=\alpha(x)
$$

The input belongs to a free monoid A^{*}

Getting back to computer science

A touch of general system theory

The input belongs to a free monoid A^{*}
The output belongs to the Boolean semiring \mathbb{B}

Getting back to computer science

A touch of general system theory

$$
L \subseteq A^{*}
$$

The input belongs to a free monoid A^{*}
The output belongs to the Boolean semiring \mathbb{B}
The function realised is a language

Getting back to computer science

A touch of general system theory

The input belongs to a free monoid A^{*}
The output belongs to the Boolean semiring \mathbb{B}
The function realised is a language,
that is, the set of words that are accepted by the machine

Getting back to computer science

The simplest Turing machine

Direction of movement of the read head

The 1-way 1-tape Turing Machine (1W 1T TM)

Getting back to computer science

The simplest Turing machine is equivalent to finite automata

$$
L\left(\mathcal{B}_{1}\right)=\left\{w \in A^{*} \mid w \in A^{*} b A^{*}\right\}=\left\{\left.w \in A^{*}| | w\right|_{b} \geqslant 1\right\}
$$

Getting back to computer science

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language
(minimal deterministic automaton)

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton for a given language
(minimal deterministic automaton)

Based on
Theorem
Every finite automaton is equivalent to a deterministic one.

And what about the case of weighted finite automata?

The weighted automaton model

$\left|\mathcal{B}_{1}\right|: w \longmapsto|w|_{b} \quad\left|\mathcal{B}_{1}\right|: A^{*} \longrightarrow \mathbb{N}$
$\left|\mathcal{B}_{1}\right| \in \mathbb{N}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\left|\mathcal{B}_{1}\right|=b+a b+b a+2 b a+a a b+a b a+\cdots+2 b a b+\cdots$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

$$
\begin{aligned}
& \left|\mathcal{C}_{1}\right|: w \longmapsto\langle\bar{w}\rangle_{2} \quad\left|\mathcal{C}_{1}\right|: A^{*} \longrightarrow \mathbb{N} \quad\left|\mathcal{C}_{1}\right| \in \mathbb{N}\left\langle\left\langle A^{*}\right\rangle\right\rangle \\
& \left|\mathcal{C}_{1}\right|=b+a b+2 b a+3 b a+a a b+2 a b a+\cdots+5 b a b+\cdots
\end{aligned}
$$

The system theory view of weighted automata

The input belongs to a free monoid A^{*}
The output belongs to the semiring \mathbb{K}

The system theory view of weighted automata

The input belongs to a free monoid A^{*}
The output belongs to the semiring \mathbb{K}
The function realised is a function from A^{*} to \mathbb{K}

The system theory view of weighted automata

$$
\begin{aligned}
& \mathbb{K} \ni k \longleftarrow w \in A^{*} \\
& s: A^{*} \rightarrow \mathbb{K} \quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
\end{aligned}
$$

The input belongs to a free monoid A^{*}
The output belongs to the semiring \mathbb{K}
The function realised is a function from A^{*} to \mathbb{K}, that is, a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Series play the role of languages

 $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ plays the role of $\mathfrak{P}\left(A^{*}\right)$
Richness of the model of weighted automata

- \mathbb{B}
- \mathbb{N}
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- $\langle\mathbb{Z} \cup+\infty, \min ,+\rangle$
- $\langle\mathbb{Z}, \min , \max \rangle$
- $\mathfrak{P}\left(B^{*}\right)=\mathbb{B}\left\langle\left\langle B^{*}\right\rangle\right\rangle$
- $\mathbb{N}\left\langle\left\langle B^{*}\right\rangle\right\rangle$
- $\mathfrak{P}(F(B))$
- $\mathfrak{P}(M)$
'classic' automata
‘usual’ counting
numerical multiplicity
tropical automata
fuzzy automata
transducers
weighted transducers
pushdown automata
register automata, M-automata

Automata are matrices

$$
\begin{gathered}
\mathcal{C}_{1} \\
\mathcal{C}_{1}=\left\langle l_{1}, E_{1}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
a+b & b \\
0 & 2 a+2 b
\end{array}\right),\binom{0}{1}\right\rangle .
\end{gathered}
$$

Traversal of a graph corresponds to matrix multiplication

$$
E_{1}{ }^{*}=\sum_{n \in \mathbb{N}} E_{1}^{n}
$$

$$
\left|\mathcal{C}_{1}\right|=I_{1} \cdot E_{1}{ }^{*} \cdot T_{1} .
$$

Automata over free monoids are representations

$$
\begin{gathered}
\mathcal{C}_{1} \\
\mathcal{C}_{1}=\left\langle l_{1}, E_{1}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
a+b & b \\
0 & 2 a+2 b
\end{array}\right),\binom{0}{1}\right\rangle . \\
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) a+\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) b \\
\mu_{1}: A^{*} \rightarrow \mathbb{K}^{2 \times 2} \quad \mu_{1}(a)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad \mu_{1}(b)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

Automata over free monoids are representations

$$
\mathbb{K} \text { semiring } \quad A^{*} \text { free monoid }
$$

\mathbb{K}-representation

$$
\begin{gathered}
Q \text { finite } \quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad \text { morphism } \\
(I, \mu, T) \quad I \in \mathbb{K}^{1 \times Q} \quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad T \in \mathbb{K}^{Q \times 1}
\end{gathered}
$$

Automata over free monoids are representations

\mathbb{K} semiring $\quad A^{*}$ free monoid
\mathbb{K}-representation

$$
\begin{gathered}
Q \text { finite } \quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad \text { morphism } \\
(I, \mu, T) \quad I \in \mathbb{K}^{1 \times Q} \quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad T \in \mathbb{K}^{Q \times 1} \\
(I, \mu, T) \quad \text { realises (recognises) } \quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle \\
\forall w \in A^{*} \quad\langle s, w\rangle=I \cdot \mu(w) \cdot T
\end{gathered}
$$

Automata over free monoids are representations

\mathbb{K} semiring $\quad A^{*}$ free monoid
\mathbb{K}-representation
Q finite $\quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad$ orphism

$$
(I, \mu, T) \quad I \in \mathbb{K}^{1 \times Q} \quad \mu: A^{*} \rightarrow \mathbb{K}^{Q \times Q} \quad T \in \mathbb{K}^{Q \times 1}
$$

$$
(I, \mu, T) \quad \text { realises (recognises) } \quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

$$
\forall w \in A^{*} \quad\langle s, w\rangle=l \cdot \mu(w) \cdot T
$$

$$
E=\sum_{a \in A} \mu(a) a
$$

$$
\begin{aligned}
& \langle I, E, T\rangle \\
& \langle I, E, T\rangle \stackrel{\mathbb{K} W \mathrm{~A}\left(A^{*}\right)}{\rightleftarrows} \stackrel{{ }^{*} \in A}{ }(I, \mu, T)
\end{aligned}
$$

Definitions

A series over A^{*} is (\mathbb{K}-)rational or (\mathbb{K}-)recognisable if it is realised by
a finite (\mathbb{K}-)automaton or a (\mathbb{K}-)representation

Definitions

A series over A^{*} is (\mathbb{K}-)rational or (\mathbb{K}-)recognisable if it is realised by
a finite (\mathbb{K}-)automaton or a (\mathbb{K}-)representation

Definitions

A finite (\mathbb{K}-)automaton is sequential
if its support is a deterministic Boolean automaton

Definitions

A finite (\mathbb{K}-)automaton is sequential
if its support is a deterministic Boolean automaton

\mathcal{A}_{2}

Definitions

A finite (\mathbb{K}-)automaton is sequential
if its support is a deterministic Boolean automaton

A series over A^{*} is sequential
if it is realized by a finite sequential automaton
or by a row-monomial representation

The problem

Is it decidable whether a given rational series
is sequential or not ?

Is it decidable whether a given rational series

is sequential or not ?

$$
s_{1}=\sum_{n \in \mathbb{N}} 2^{n} a^{n}
$$

Is it decidable whether a given rational series is sequential or not ?

$$
s_{1}=\sum_{n \in \mathbb{N}} 2^{n} a^{n}
$$

\mathcal{A}_{2}

Is it decidable whether a given rational series

 is sequential or not ?$$
s_{1}=\sum_{n \in \mathbb{N}} 2^{n} a^{n}
$$

\mathcal{A}_{2}

A word on terminology

Most probably, what I call

sequential automaton

is what you call
deterministic automaton.

Part II

The common sequentialisation algorithm

First step: the general determinisation procedure

First step: the general determinisation procedure

$$
\begin{gathered}
I \cdot \mu(w) \cdot T \longleftarrow \sim \in A^{*} \\
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mathbb{K}^{1 \times Q} \text { state space } \quad l \text { initial state }
\end{gathered}
$$

First step: the general determinisation procedure

$$
\begin{array}{lr}
\mathcal{A}=(I, \mu, T) & \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mathbb{K}^{1 \times Q} \text { state space } & I \text { initial state }
\end{array}
$$

I $\cdot \mu(w)$ state after reading w

First step: the general determinisation procedure

$$
\begin{array}{lr}
\mathcal{A}=(I, \mu, T) & \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mathbb{K}^{1 \times Q} \text { state space } & I \text { initial state }
\end{array}
$$

I $\cdot \mu(w)$ state after reading w

$$
I \cdot \mu(w) \cdot T \text { output in state } I \cdot \mu(w)
$$

First step: the general determinisation procedure

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

First step: the general determinisation procedure

$$
\begin{array}{rr}
\mathcal{A}=(I, \mu, T) & \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mu \text { morphism } & \Longrightarrow \\
l \cdot \mu(w a)=(l \cdot \mu(w)) \cdot \mu(a)
\end{array}
$$

First step: the general determinisation procedure

$$
\begin{gathered}
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mu \text { morphism } \Longrightarrow \quad I \cdot \mu(w a)=(I \cdot \mu(w)) \cdot \mu(a) \\
\mu \text { defines an action of } A^{*} \text { over } \mathbb{K}^{1 \times Q}
\end{gathered}
$$

First step: the general determinisation procedure

$$
\begin{gathered}
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mu \text { morphism } \Longrightarrow \quad I \cdot \mu(w a)=(I \cdot \mu(w)) \cdot \mu(a) \\
\mu \text { defines an action of } A^{*} \text { over } \mathbb{K}^{1 \times Q}
\end{gathered}
$$

This action (with $/$ and T) defines an automaton: the determinisation $\widehat{\mathcal{A}}$ of \mathcal{A}

First step: the general determinisation procedure

$$
\begin{gathered}
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\mu \text { morphism } \Longrightarrow \quad l \cdot \mu(w a)=(I \cdot \mu(w)) \cdot \mu(a) \\
\mu \text { defines an action of } A^{*} \text { over } \mathbb{K}^{1 \times Q}
\end{gathered}
$$

This action (with $/$ and T) defines an automaton: the determinisation $\widehat{\mathcal{A}}$ of \mathcal{A}

$$
J=I \cdot \mu(u)
$$

First step: the general determinisation procedure

$$
\mathcal{A}_{1}=((1),(2),(1))
$$

$$
\widehat{\mathcal{A}_{1}} \quad \stackrel{1}{\rightarrow}{\underset{\downarrow}{1}}_{\stackrel{a \mid 1}{\longrightarrow}}^{\downarrow_{2}} \stackrel{a \mid 1}{\longrightarrow} \underbrace{4}_{4}
$$

First step: the general determinisation procedure

First step: the general determinisation procedure

First step: the general determinisation procedure

If $\mathbb{K}=\mathbb{B}, \quad$ determinisation $=$ subset construction

$$
J=I \cdot \mu(u)
$$

First step: the general determinisation procedure

If $\mathbb{K}=\mathbb{B}, \quad$ determinisation $=$ subset construction

Determinisation yields a deterministic automaton

$$
J=I \cdot \mu(u)
$$

First step: the general determinisation procedure

If $\mathbb{K}=\mathbb{B}, \quad$ determinisation $=$ subset construction

Determinisation yields a deterministic automaton and conversely

$$
J=I \cdot \mu(u)
$$

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

The input belongs to a free monoid A^{*}

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

The input belongs to a free monoid A^{*}

Second step: the universal minimisation process

The input belongs to a free monoid A^{*}

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

The input belongs to a free monoid A^{*}

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

The input belongs to a free monoid A^{*}

Second step: the universal minimisation process

The input belongs to a free monoid A^{*}
The output belongs to \mathbb{K}

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
a_{3} \ldots a_{n}
$$

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
s^{\prime} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
s^{\prime} \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

A basic construct: the quotient series

Second step: the universal minimisation process

$$
k=\left\langle s^{\prime}, a_{3} \ldots a_{n}\right\rangle=\left\langle s, a_{1} a_{2} a_{3} \ldots a_{n}\right\rangle
$$

$$
s^{\prime}=\left[a_{1} a_{2}\right]^{-1} s
$$

The series s^{\prime} is the quotient of s by $a_{1} a_{2}$

Second step: the universal minimisation process

$$
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

A basic construct: the quotient series

Second step: the universal minimisation process

$$
k=\left\langle s^{\prime}, v\right\rangle=\langle s, u v\rangle
$$

A basic construct: the quotient series

Second step: the universal minimisation process

$$
\begin{gathered}
k=\left\langle s^{\prime}, v\right\rangle=\langle s, u v\rangle \\
s^{\prime}=u^{-1} s
\end{gathered}
$$

The series s^{\prime} is the quotient of s by u

Second step: the universal minimisation process

$$
\mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \text { set of quotients of } s
$$

Second step: the universal minimisation process

$$
\begin{gathered}
\mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \text { set of quotients of } s \\
\mathbf{Q}_{s_{1}}=\left\{2^{\left.n_{s_{1}} \mid n \in \mathbb{N}\right\}}\right.
\end{gathered}
$$

Second step: the universal minimisation process

$$
\mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \text { set of quotients of } s
$$

Theorem (Schützenberger-Fliess-Jacob)
A series s is recognisable iff \mathbf{Q}_{s} is contained in a finitely generated stable submodule of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Second step: the universal minimisation process

$$
\mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \text { set of quotients of } s
$$

Theorem (Schützenberger-Fliess-Jacob)
A series s is recognisable iff \mathbf{Q}_{s} is contained in a finitely generated stable submodule of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Theorem (Myhill-Nerode)
A language L is recognisable iff \mathbf{Q}_{L} is finite

Second step: the universal minimisation process

Associativity in $A^{*} \quad \Longrightarrow \quad(u v)^{-1} s=v^{-1}\left[u^{-1} s\right]$

Second step: the universal minimisation process

Associativity in A^{*}
If $u^{-1} s$ written $s \circ u$,

$$
\begin{aligned}
& (u v)^{-1} s=v^{-1}\left[u^{-1} s\right] \\
& \text { then } s \circ(u v)=(s \circ u) \circ v
\end{aligned}
$$

Second step: the universal minimisation process

Associativity in $A^{*} \quad \Longrightarrow \quad(u v)^{-1} s=v^{-1}\left[u^{-1} s\right]$
If $u^{-1} s$ written $s \circ u$, then $s \circ(u v)=(s \circ u) \circ v$
The quotient defines an action of A^{*} over $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Second step: the universal minimisation process

Associativity in $A^{*} \quad \Longrightarrow \quad(u v)^{-1} s=v^{-1}\left[u^{-1} s\right]$
If $u^{-1} s$ written $s \circ u$, then $s \circ(u v)=(s \circ u) \circ v$
The quotient defines an action of A^{*} over $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
This action defines, for every s,
a deterministic automaton:
the minimal deterministic automaton \mathcal{A}_{S} of s

Second step: the universal minimisation process

Associativity in $A^{*} \quad \Longrightarrow \quad(u v)^{-1} s=v^{-1}\left[u^{-1} s\right]$
If $u^{-1} s$ written $s \circ u$, then $s \circ(u v)=(s \circ u) \circ v$
The quotient defines an action of A^{*} over $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
This action defines, for every s,
a deterministic automaton: the minimal deterministic automaton \mathcal{A}_{S} of s

Second step: the universal minimisation process

$$
\mathcal{A}_{1}=((1),(2),(1))
$$

Second step: the universal minimisation process

Second step: the universal minimisation process
$\mathcal{A}_{2} \xrightarrow[\rightarrow]{\text { (}} \overbrace{1}^{a \mid 1} \mathcal{A}_{2}=\left(\left(\begin{array}{ll}1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right),\binom{1}{1}\right)$

Second step: the universal minimisation process
$\mathcal{A}_{2} \xrightarrow[\rightarrow]{\text { (}} \overbrace{1}^{a \mid 1} \quad \mathcal{A}_{2}=\left(\left(\begin{array}{ll}1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right),\binom{1}{1}\right)$

Second step: the universal minimisation process

$$
\begin{aligned}
& \mu_{3}(a)=\left(\begin{array}{ll}
3 / 2 & 1 / 2 \\
1 / 2 & 3 / 2
\end{array}\right) \\
& \mu_{3}(b)=\left(\begin{array}{ll}
2 / 3 & 4 / 3 \\
4 / 3 & 2 / 3
\end{array}\right)
\end{aligned}
$$

Second step: the universal minimisation process

Second step: the universal minimisation process

\mathcal{A}_{3}
determinisation
$\widehat{\mathcal{A}_{3}}$
(\mathbb{K})-quotient
$\mathcal{A}_{S_{3}}$

Theorem (Schützenberger-Fliess-Jacob)
A series s is recognisable iff \mathbf{Q}_{s} is contained in a stable finitely generated submodule of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Theorem (Schützenberger-Fliess-Jacob)
A series s is recognisable iff \mathbf{Q}_{s} is contained in a stable finitely generated submodule of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition
$\ell \subseteq \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is a line if $\ell=\{k r \mid k \in \mathbb{K}\} \quad$ for a given $r \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Theorem (Schützenberger-Fliess-Jacob)
A series s is recognisable iff \mathbf{Q}_{s} is contained in a stable finitely generated submodule of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Definition
$\ell \subseteq \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ is a line if $\ell=\{k r \mid k \in \mathbb{K}\} \quad$ for a given $r \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Proposition
A series s is sequential iff \mathbf{Q}_{s} is contained in a stable finite set of lines of $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Examples

- $\mathbb{K}=\mathbb{N} \quad \operatorname{gcd}(4,6,12)=2$
- $\mathbb{K}=\mathbb{N} \min \quad \operatorname{gcd}(4,6,12)=\min \{4,6,12\}=4$
- $\mathbb{K}=\mathbb{Z} \min , \mathbb{K}=\mathbb{F} \quad$ need for a convention
- $\mathfrak{P}\left(B^{*}\right)$ has no gcd but
$\left\{B^{*} \cup \emptyset\right\} \quad$ has one: the longuest common prefix

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Notation let \mathbb{K} with gcd

- $\xi \in \mathbb{K}^{Q}$
$\stackrel{\circ}{\xi} \in \mathbb{K} \quad \stackrel{\circ}{\xi}=\operatorname{gcd}\left(\left\{\xi_{q} \mid q \in Q\right\}\right)$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\stackrel{\circ}{s} \in \mathbb{K} \quad \stackrel{\circ}{s}=\operatorname{gcd}\left(\left\{\langle s, w\rangle \mid w \in A^{*}\right\}\right)$
- $\xi^{\sharp} \in \mathbb{K}^{Q}$
$\xi^{\sharp}=\binom{\circ}{\xi}^{-1} \xi \quad$ i.e. $\quad \xi=\stackrel{\circ}{\xi} \xi^{\sharp}$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s^{\sharp}=\binom{0}{s}^{-1} s \quad$ i.e. $\quad s=\stackrel{\circ}{s} s^{\sharp}$

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Notation let \mathbb{K} with gcd

- $\xi \in \mathbb{K}^{Q}$
$\stackrel{\circ}{\xi} \in \mathbb{K} \quad \stackrel{\circ}{\xi}=\operatorname{gcd}\left(\left\{\xi_{q} \mid q \in Q\right\}\right)$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\stackrel{\circ}{s} \in \mathbb{K} \quad \stackrel{\circ}{s}=\operatorname{gcd}\left(\left\{\langle s, w\rangle \mid w \in A^{*}\right\}\right)$
- $\xi^{\sharp} \in \mathbb{K}^{Q}$
$\xi^{\sharp}=\binom{\circ}{\xi}^{-1} \xi \quad$ i.e. $\quad \xi=\stackrel{\circ}{\xi} \xi^{\sharp}$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s^{\sharp}=\binom{0}{s}^{-1} s \quad$ i.e. $\quad s=\stackrel{\circ}{s} s^{\sharp}$
Example

$$
s_{1}=1_{A^{*}}+2 a+4 a^{2}+8 a^{3}+\cdots+2^{n} a^{n}+\cdots
$$

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Notation let \mathbb{K} with gcd

- $\xi \in \mathbb{K}^{Q}$
$\stackrel{\circ}{\xi} \in \mathbb{K} \quad \stackrel{\circ}{\xi}=\operatorname{gcd}\left(\left\{\xi_{q} \mid q \in Q\right\}\right)$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\stackrel{\circ}{s} \in \mathbb{K} \quad \stackrel{\circ}{s}=\operatorname{gcd}\left(\left\{\langle s, w\rangle \mid w \in A^{*}\right\}\right)$
- $\xi^{\sharp} \in \mathbb{K}^{Q}$
$\xi^{\sharp}=\binom{\circ}{\xi}^{-1} \xi \quad$ i.e. $\quad \xi=\stackrel{\circ}{\xi} \xi^{\sharp}$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s^{\sharp}=\binom{0}{s}^{-1} s \quad$ i.e. $\quad s=\stackrel{\circ}{s} s^{\sharp}$
Example

$$
\begin{aligned}
& s_{1}=1_{A^{*}}+2 a+4 a^{2}+8 a^{3}+\cdots+2^{n} a^{n}+\cdots \\
& t=a^{-2} s_{1}=41_{A^{*}}+8 a+\cdots+2^{n+2} a^{n}+\cdots
\end{aligned}
$$

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Notation let \mathbb{K} with gcd

- $\xi \in \mathbb{K}^{Q}$
$\stackrel{\circ}{\xi} \in \mathbb{K} \quad \stackrel{\circ}{\xi}=\operatorname{gcd}\left(\left\{\xi_{q} \mid q \in Q\right\}\right)$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\stackrel{\circ}{s} \in \mathbb{K} \quad \stackrel{\circ}{s}=\operatorname{gcd}\left(\left\{\langle s, w\rangle \mid w \in A^{*}\right\}\right)$
- $\xi^{\sharp} \in \mathbb{K}^{Q}$

$$
\xi^{\sharp}=\binom{\circ}{\xi}^{-1} \xi \quad \text { i.e. } \quad \xi=\stackrel{\circ}{\xi} \xi^{\sharp}
$$

- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s^{\sharp}=\binom{\circ}{s}^{-1} s \quad$ i.e. $\quad s=\stackrel{\circ}{s} s^{\sharp}$
Example

$$
\begin{aligned}
& s_{1}=1_{A^{*}}+2 a+4 a^{2}+8 a^{3}+\cdots+2^{n} a^{n}+\cdots \\
& t=a^{-2} s_{1}=41_{A^{*}}+8 a+\cdots+2^{n+2} a^{n}+\cdots \quad \quad \circ \quad t=4
\end{aligned}
$$

Third step: characterisation of sequentiality

Further hypothesis
\mathbb{K} admits a greatest common divisor operation (gcd)
Notation let \mathbb{K} with gcd

- $\xi \in \mathbb{K}^{Q}$
$\stackrel{\circ}{\xi} \in \mathbb{K} \quad \stackrel{\circ}{\xi}=\operatorname{gcd}\left(\left\{\xi_{q} \mid q \in Q\right\}\right)$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\stackrel{\circ}{s} \in \mathbb{K} \quad \stackrel{\circ}{s}=\operatorname{gcd}\left(\left\{\langle s, w\rangle \mid w \in A^{*}\right\}\right)$
- $\xi^{\sharp} \in \mathbb{K}^{Q}$
$\xi^{\sharp}=\binom{\circ}{\xi}^{-1} \xi \quad$ i.e. $\quad \xi=\stackrel{\circ}{\xi} \xi^{\sharp}$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s^{\sharp}=\binom{0}{s}^{-1} s \quad$ i.e. $\quad s=\stackrel{\circ}{s} s^{\sharp}$
Convention $\quad \mathbb{K}=\mathbb{F}, \mathbb{Z}$ min
- $\xi \in \mathbb{K}^{Q}$
first entry of $\xi^{\sharp}=1_{\mathbb{K}}$
- $s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$\left\langle\xi^{\sharp}, 1_{A^{*}}\right\rangle=1_{\mathbb{K}}$

Definition

$$
\begin{array}{r}
s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\sharp} \text { translation of } s \text { by } u \\
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
\end{array}
$$

Third step: characterisation of sequentiality

Definition
$s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\sharp}$ translation of s by u

$$
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
$$

Translation is an action on \mathbf{G}_{s}
Translation defines a sequential \mathbb{K}-automaton of dimension \mathbf{G}_{s} : the minimal sequential automaton of s, \mathcal{D}_{S}

Third step: characterisation of sequentiality

Definition

$s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\sharp}$ translation of s by u

$$
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
$$

Translation is an action on \mathbf{G}_{s}
Translation defines a sequential \mathbb{K}-automaton of dimension \mathbf{G}_{s} : the minimal sequential automaton of s, \mathcal{D}_{S}

$$
t=\left[u^{-1} s\right]^{\sharp}=t^{\sharp}
$$

Third step: characterisation of sequentiality

Definition

$s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\#}$ translation of s by u

$$
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
$$

Translation is an action on \mathbf{G}_{s}
Translation defines a sequential \mathbb{K}-automaton of dimension \mathbf{G}_{s} : the minimal sequential automaton of s, \mathcal{D}_{S}

$$
t=\left[u^{-1} s\right]^{\sharp}=t^{\sharp}
$$

Third step: characterisation of sequentiality

Definition

$s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\sharp}$ translation of s by u

$$
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
$$

Translation is an action on \mathbf{G}_{s}
Translation defines a sequential \mathbb{K}-automaton of dimension \mathbf{G}_{s} : the minimal sequential automaton of s, \mathcal{D}_{S}

$$
t=\left[u^{-1} s\right]^{\sharp}=t^{\sharp}
$$

Third step: characterisation of sequentiality

Definition
$s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle, u \in A^{*} \quad\left[u^{-1} s\right]^{\sharp}$ translation of s by u

$$
\mathbf{G}_{s}=\left\{\left[u^{-1} s\right]^{\sharp} \mid u \in A^{*}\right\} \quad \text { set of translations of } s
$$

Translation is an action on \mathbf{G}_{s}
Translation defines a sequential \mathbb{K}-automaton of dimension \mathbf{G}_{s} : the minimal sequential automaton of s, \mathcal{D}_{S}

Theorem (Raney 58)
A series s is sequential iff \mathbf{G}_{s} is finite

Third step: characterisation of sequentiality

$$
s_{1}=\left|\mathcal{A}_{1}\right|
$$

Third step: characterisation of sequentiality

$$
s_{1}=\left|\mathcal{A}_{1}\right|
$$

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

Forth step: the sequentialisation algorithm

$$
\begin{gathered}
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q} \\
\text { Distributivity } \quad \Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\sharp}
\end{gathered}
$$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

$$
\text { Distributivity } \quad \Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\sharp}
$$

$\mu \circ \sharp$ defines an action of A^{*} over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

Distributivity $\Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\#}$
$\mu \circ \sharp$ defines an action of A^{*} over $\left[\mathbb{K}^{1 \times Q}\right]^{\sharp}$
$\mu \circ \sharp$ (with $/$ and T) defines a sequential automaton: the sequentialisation $\check{\mathcal{A}}$ of \mathcal{A}

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

Distributivity $\Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[l \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\#}$
$\mu \circ \sharp$ defines an action of A^{*} over $\left[\mathbb{K}^{1 \times Q}\right]^{\#}$
$\mu \circ \sharp$ (with I and T) defines a sequential automaton: the sequentialisation $\check{\mathcal{A}}$ of \mathcal{A}

$$
J=[I \cdot \mu(w)]^{\sharp}=J^{\sharp}
$$

$\widehat{\mathcal{A}}$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

Distributivity $\Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[l \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\#}$
$\mu \circ \sharp$ defines an action of A^{*} over $\left[\mathbb{K}^{1 \times Q}\right]^{\#}$
$\mu \circ \sharp$ (with I and T) defines a sequential automaton: the sequentialisation $\check{\mathcal{A}}$ of \mathcal{A}

$$
J=[I \cdot \mu(w)]^{\sharp}=J^{\sharp}
$$

$a \mid 1$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}=(I, \mu, T) \quad \mu: A^{*} \longrightarrow \mathbb{K}^{Q \times Q}
$$

Distributivity $\Longrightarrow \quad[I \cdot \mu(w a)]^{\sharp}=\left[[I \cdot \mu(w)]^{\sharp} \cdot \mu(a)\right]^{\#}$
$\mu \circ \sharp$ defines an action of A^{*} over $\left[\mathbb{K}^{1 \times Q}\right]^{\#}$
$\mu \circ \sharp$ (with I and T) defines a sequential automaton: the sequentialisation $\check{\mathcal{A}}$ of \mathcal{A}

$$
J=[I \cdot \mu(w)]^{\sharp}=J^{\sharp}
$$

Forth step: the sequentialisation algorithm

$$
\begin{aligned}
& \mathcal{A}_{1} \xrightarrow{1} \bigcap_{\infty}^{a \mid 2} \\
& s_{1}=\left|\mathcal{A}_{1}\right| \\
& \widehat{\mathcal{A}_{1}} \xrightarrow{1} \underbrace{1}_{\nabla_{1}} \xrightarrow{a \mid 1} \xrightarrow[\nabla_{2}]{a \mid 1} \xrightarrow{4} \rightarrow \cdots \\
& \mathcal{A}_{s_{1}} \xrightarrow{1} \underbrace{s_{1}}_{\nabla_{1}} \xrightarrow{a \mid 1} \underbrace{2 s_{1}}_{\nabla_{2}} \xrightarrow{a \mid 1} \underbrace{4 s_{1}}_{\downarrow_{4}} \rightarrow \cdots \\
& \mathcal{D}_{S_{1}}
\end{aligned}
$$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}_{1} \xrightarrow{\text { A }}
$$

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

$$
s_{1}=\left|\mathcal{A}_{1}\right|
$$

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

$$
s_{1}=\left|\mathcal{A}_{1}\right|
$$

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

$$
\mathcal{A}_{1} \xrightarrow{1} \mathcal{A}_{1}
$$

Forth step: the sequentialisation algorithm

$$
\widehat{A}_{1} \xrightarrow{\text { A }}
$$

Forth step: the sequentialisation algorithm

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

$$
\begin{aligned}
& \mathcal{A}_{2} \xrightarrow[(\rightarrow)]{\overbrace{1}^{a \mid 1}} s_{1}=\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{2}\right| \\
& \widehat{\mathcal{A}}_{2} \xrightarrow{1} \underbrace{\left(\begin{array}{ll}
1 & 0
\end{array}\right)}_{\downarrow_{1}} \xrightarrow{a \mid 1} \underbrace{(11}_{\downarrow_{2}} 1) \xrightarrow{a \mid 1} \underbrace{\left(\begin{array}{ll}
1 & 3
\end{array}\right)}_{\downarrow_{4}} \rightarrow \cdots \\
& \mathcal{A}_{s_{1}} \xrightarrow{1} \underbrace{s_{1}}_{\downarrow_{1}} \xrightarrow{a \mid 1} \underbrace{2 s_{1}}_{\downarrow_{2}} \stackrel{a \mid 1}{\rightarrow} \underbrace{4 s_{1}}_{\downarrow_{4}} \rightarrow \cdots \\
& \mathcal{D}_{S_{1}}
\end{aligned}
$$

Forth step: the sequentialisation algorithm

$\mathcal{D}_{S_{1}}$

Forth step: the sequentialisation algorithm

Forth step: the sequentialisation algorithm

$$
\begin{aligned}
& \mathcal{A}_{2} \xrightarrow[(\rightarrow)]{\overbrace{1}^{a \mid 1}} s_{1}=\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{2}\right|
\end{aligned}
$$

The global framework

The global framework

- The (trivial) finite case
- The field case
- The idempotent semiring case

Part III

The trivial finite case

The trivial finite case

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{R}_{\mathcal{A}}=\left\{I \cdot \mu(w) \mid w \in A^{*}\right\}
$$

Proposition (?)
\mathbb{K} finite $\Longrightarrow \widehat{\mathcal{A}}$ finite.
Example

$$
\mathbb{B}, \mathbb{Z} / n \mathbb{Z}, \mathbb{N} /[n=n+k]
$$

The trivial finite case

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{R}_{\mathcal{A}}=\left\{I \cdot \mu(w) \mid w \in A^{*}\right\}
$$

A semiring \mathbb{K} is locally finite if every finitely generated subsemiring is finite.

Proposition (?)
\mathbb{K} locally finite $\Longrightarrow \hat{\mathcal{A}}$ finite.
Example
Fuzzy semirings: $\langle\mathbb{N}, \min , \max \rangle,\langle[0,1]$, min, max \rangle

The trivial finite case

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{R}_{\mathcal{A}}=\left\{I \cdot \mu(w) \mid w \in A^{*}\right\}
$$

A semiring \mathbb{K} is locally finite
if every finitely generated subsemiring is finite.

Proposition (?)
\mathbb{K} locally finite $\Longrightarrow \widehat{\mathcal{A}}$ finite.
Example
Fuzzy semirings: $\langle\mathbb{N}, \min , \max \rangle,\langle[0,1], \min , \max \rangle$

Counting in a locally finite semiring is not really counting.

Part IV

The field case

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F} \quad \text { field } \\
& \mathcal{A}=(I, \mu, T) \quad \mathbf{R}_{\mathcal{A}}=\left\{l \cdot \mu(w) \mid w \in A^{*}\right\} \\
& s=|\mathcal{A}| \quad \mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \\
& r_{s}=\operatorname{dim}\left\langle\mathbf{Q}_{s}\right\rangle \quad r_{s} \text { rank of } s
\end{aligned}
$$

Theorem (Schützenberger 61)
The s is recognisable iff r_{s} is finite

The field case

$$
\begin{gathered}
\mathbb{K}=\mathbb{F} \quad \text { field } \\
\mathcal{A}=(I, \mu, T) \quad \mathbf{R}_{\mathcal{A}}=\left\{I \cdot \mu(w) \mid w \in A^{*}\right\} \\
s=|\mathcal{A}|
\end{gathered} \quad \mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\}, ~\left(r_{s} \text { rank of } s\right.
$$

Theorem (Schützenberger 61)
The s is recognisable iff r_{s} is finite
Definition
\mathcal{A} is reduced if $\operatorname{dim}\left\langle\mathbf{R}_{\mathcal{A}}\right\rangle=r_{s}$

Theorem (Schützenberger 61)
A reduced representation of s is computable from any \mathcal{A} realising s

The field case

$$
\begin{array}{cc}
\mathbb{K}=\mathbb{F} \quad \text { field } \\
\mathcal{A}=(I, \mu, T) & \mathbf{R}_{\mathcal{A}}=\left\{I \cdot \mu(w) \mid w \in A^{*}\right\} \\
s=|\mathcal{A}| & \mathbf{Q}_{s}=\left\{u^{-1} s \mid u \in A^{*}\right\} \\
r_{s}=\operatorname{dim}\left\langle\mathbf{Q}_{s}\right\rangle & r_{s} \text { rank of } s
\end{array}
$$

Theorem (Schützenberger 61)
The s is recognisable iff r_{s} is finite
Definition
\mathcal{A} is reduced if $\operatorname{dim}\left\langle\mathbf{R}_{\mathcal{A}}\right\rangle=r_{s}$

Theorem (Schützenberger 61)
A reduced representation of s is computable from any \mathcal{A} realising s
Theorem (Reutenauer, L-S 06)
If \mathcal{A} is reduced, then $\check{\mathcal{A}}=\mathcal{D}_{S}$

Part V

The idempotent semiring case

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$
Example

- Tropical semirings
- Language semirings

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$
Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle$
- Language semirings

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$
Example

- Tropical semirings $\langle\mathbb{N} \cup\{+\infty\}, \min ,+\rangle$
- Language semirings

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$
Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle,\langle\mathbb{Z}, \min ,+\rangle,\langle\mathbb{Q}, \min ,+\rangle, \ldots$
- Language semirings

Idempotent semirings

Definition
\mathbb{K} idempotent if $\quad k+k=k \quad \forall k \in \mathbb{K}$
Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle,\langle\mathbb{Z}, \min ,+\rangle,\langle\mathbb{Q}, \min ,+\rangle, \ldots$
- Language semirings $\left\langle\mathfrak{P}\left(B^{*}\right), \cup, \cdot\right\rangle,\left\langle\operatorname{Rat} B^{*}, \cup, \cdot\right\rangle, \ldots$

Idempotent semirings

Definition

$$
\mathbb{K} \text { idempotent if } \quad k+k=k \quad \forall k \in \mathbb{K}
$$

Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle,\langle\mathbb{Z}, \min ,+\rangle,\langle\mathbb{Q}, \min ,+\rangle, \ldots$
- Language semirings $\left\langle\mathfrak{P}\left(B^{*}\right), \cup, \cdot\right\rangle,\left\langle\operatorname{Rat} B^{*}, \cup, \cdot\right\rangle, \ldots$

$$
\mathfrak{P}(M)=\mathbb{B}\langle\langle M\rangle\rangle
$$

Idempotent semirings

Definition

$$
\mathbb{K} \text { idempotent if } \quad k+k=k \quad \forall k \in \mathbb{K}
$$

Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle,\langle\mathbb{Z}, \min ,+\rangle,\langle\mathbb{Q}, \min ,+\rangle, \ldots$
- Language semirings $\left\langle\mathfrak{P}\left(B^{*}\right), \cup, \cdot\right\rangle,\left\langle\operatorname{Rat} B^{*}, \cup, \cdot\right\rangle, \ldots$

$$
\mathfrak{P}(M)=\mathbb{B}\langle\langle M\rangle\rangle
$$

Proposition

$$
\mathbb{B}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle \quad \cong \quad\left[\mathbb{B}\left\langle\left\langle B^{*}\right\rangle\right\rangle\right]\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

Idempotent semirings

Definition

$$
\mathbb{K} \text { idempotent if } \quad k+k=k \quad \forall k \in \mathbb{K}
$$

Example

- Tropical semirings $\langle\mathbb{N}, \min ,+\rangle,\langle\mathbb{Z}, \min ,+\rangle,\langle\mathbb{Q}, \min ,+\rangle, \ldots$
- Language semirings $\left\langle\mathfrak{P}\left(B^{*}\right), \cup, \cdot\right\rangle,\left\langle\operatorname{Rat} B^{*}, \cup, \cdot\right\rangle, \ldots$

$$
\mathfrak{P}(M)=\mathbb{B}\langle\langle M\rangle\rangle
$$

Proposition

$$
\mathbb{B}\left\langle\left\langle A^{*} \times B^{*}\right\rangle\right\rangle \quad \cong \quad\left[\mathbb{B}\left\langle\left\langle B^{*}\right\rangle\right\rangle\right]\left\langle\left\langle A^{*}\right\rangle\right\rangle
$$

Theorem (Kleene-Schützenberger)

$$
\operatorname{Rat}\left(A^{*} \times B^{*}\right) \cong\left[\operatorname{Rat} B^{*}\right] \operatorname{Rat} A^{*}=\left[\operatorname{Rat} B^{*}\right] \operatorname{Rec} A^{*}
$$

A paradox

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

Tropical semirings, $\mathfrak{P}\left(B^{*}\right)$ are very complex, weak and not well understood mathematical structures

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

Tropical semirings, $\mathfrak{P}\left(B^{*}\right)$ are very complex, weak and not well understood mathematical structures

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

Tropical semirings, $\mathfrak{P}\left(B^{*}\right)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)
Equivalence of transducers is undecidable

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

Tropical semirings, $\mathfrak{P}\left(B^{*}\right)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)
Equivalence of transducers is undecidable

Theorem (Krob 91)
Equivalence of tropical automata is undecidable

A paradox

Tropical automata and transducers are the """ most sequentialised"" automata

Tropical semirings, $\mathfrak{P}\left(B^{*}\right)$ are very complex, weak and not well understood mathematical structures

Theorem (from Post 36)
Equivalence of transducers is undecidable

Theorem (Krob 91)
Equivalence of tropical automata is undecidable
$\mathfrak{P}\left(B^{*}\right)$ does not even have gcd !

An explanation?

An explanation?

The transducers that are ""sequentialised"" are the functional tranducers

An explanation?

The transducers that are ""sequentialised"" are
the functional tranducers
that is, transducers with values in $B^{*} \cup\{\emptyset\}$

An explanation ?

The transducers that are ""sequentialised"" are the functional tranducers that is, transducers with values in $B^{*} \cup\{\emptyset\}$

First relief: $B^{*} \cup\{\emptyset\}$ has a gcd : the longest common prefix

An explanation ?

The transducers that are ""sequentialised"" are the functional tranducers that is, transducers with values in $B^{*} \cup\{\emptyset\}$

First relief: $B^{*} \cup\{\emptyset\}$ has a gcd : the longest common prefix
Second relief:
Theorem (Schützenberger 75)
Functionality of transducers is decidable.

A quiproquo

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!
They are so different!

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!
They are so different!
What make them different?

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!
They are so different!
What make them different?
1-valuedness

A quiproquo

Consider for sequentialisation:

- the functional transducers
- the tropical automata

They look so similar!
They are so different!
What make them different? 1-valuedness

Definition
\mathcal{A} is 1 -valued if
every path labelled by a word w
has the same weight.

A quiproquo

Observation 1
Functional transducers are 1-valued, by definition

A quiproquo

Observation 1
Functional transducers are 1-valued, by definition

Observation 2
Tropical automata are not necessarily 1 -valued

A quiproquo

Observation 1
Functional transducers are 1-valued, by definition

Observation 2
Tropical automata are not necessarily 1-valued

realises $s_{4}, \quad\left\langle s_{4}, w\right\rangle=\min \left\{|w|_{a},|w|_{b}\right\}$

A quiproquo

Observation 1
Functional transducers are 1-valued, by definition

Observation 2
Tropical automata are not necessarily 1-valued

realises $s_{4}, \quad\left\langle s_{4}, w\right\rangle=\min \left\{|w|_{a},|w|_{b}\right\}$
s_{4} cannot be realised by a 1-valued automaton

Why is 1 -valuedness so important?

Theorem (Schützenberger 77)
Every 1-valued (finite) automaton is equivalent to
an unambiguous (finite) automaton

The twinning property

The twinning property

Twin states
f
WNONOP g
$\longrightarrow O N N W N$
$\rightarrow \mathrm{O} \mathrm{OMOMO}_{f}$ (9) $g 1$

The twinning property

Twin states $f \mid r$ WWNOP $\operatorname{PO} \mid k$

Congruent twin states

$$
(r, s)^{\#}=(r k, s h)^{\sharp}
$$

The twinning property

Twin states $f \mid r$ WWNOP $\operatorname{PO} \mid k$

Congruent twin states

$$
(r, s)^{\#}=(r k, s h)^{\sharp}
$$

The twinning property

Twin states
$f \mid r$ NWNOP P $g \mid k$

$$
(r, s)^{\sharp}=(r k, s h)^{\sharp}
$$

$\longrightarrow \mathrm{OrO}_{\mathrm{M}}$
Congruent twin states

$$
f \mid s
$$

Definition
\mathcal{A} has the twinning property if all twin states are congruent

The twinning property

Twin states $f \mid r$ NWNOP $g \mid k$

$$
(r, s)^{\sharp}=(r k, s h)^{\sharp}
$$

Congruent twin states

$$
g \mid h
$$

Definition
\mathcal{A} has the twinning property if all twin states are congruent
Theorem (Choffrut 77)
The twinning property is decidable.

The twinning property

Twin states
$f \mid r$ NWWOVPD $g \mid k$ Congruent twin states

$$
(r, s)^{\sharp}=(r k, s h)^{\sharp}
$$

$\rightarrow \mathrm{OHO}^{2}$

$f \mid s$
Definition
\mathcal{A} has the twinning property if all twin states are congruent
Theorem (Choffrut 77)
The twinning property is decidable.
Theorem (WK 95, BCPS 00, BCW 98, AM 03)
The twinning property is decidable in polynomial time.

Decision procedure

Proposition (Choffrut 77, Mohri 97)

\mathcal{A} has twinning $p . \Longrightarrow \overline{\mathcal{A}}$ finite.

Decision procedure

Proposition (Choffrut 77, Mohri 97)
\mathcal{A} has twinning $p . \Longrightarrow \overline{\mathcal{A}}$ finite.

Proposition (Choffrut 77, Mohri 97)
\mathcal{A} unambiguous and $|\mathcal{A}|$ sequential
$\Longrightarrow \mathcal{A}$ has twinning p.

Decision procedure

Proposition (Choffrut 77, Mohri 97)
\mathcal{A} has twinning $p . \Longrightarrow \overline{\mathcal{A}}$ finite.

Proposition (Choffrut 77, Mohri 97)
\mathcal{A} unambiguous and $|\mathcal{A}|$ sequential
$\Longrightarrow \mathcal{A}$ has twinning p.

Corollary
Sequentiality is decidable for transducers and 1-valued tropical automata.

Beyond 1-valuedness

Beyond 1-valuedness

Problem
Is sequentiality decidable for tropical recognisable series ?

Beyond 1-valuedness

Problem
Is sequentiality decidable for tropical recognisable series ?

Some answers in four special cases

Problem
Is sequentiality decidable for tropical recognisable series ?

Some answers in four special cases

1. Unary tropical series
2. Heap automata
3. Finitely ambiguous automata
4. Polynomialy ambiguous automata

Unary tropical series

Unary tropical series

Theorem (Gaubert 94, Lombardy 01)
Sequentiality is decidable for tropical recognisable series

Heap automata

A heap model...

Heap automata

A heap model...

... and its heap automaton

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

Completion of a height vector

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

Completion of a height vector

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

Completion of a height vector

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

Completion of a height vector

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[l \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

$$
\mathbf{H}_{\mathcal{A}}=\left\{[\overline{l \cdot \mu(w)}]^{\sharp} \mid w \in A^{*}\right\}
$$

Completion of a height vector

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

$$
\mathbf{H}_{\mathcal{A}}=\left\{[\overline{I \cdot \mu(w)}]^{\sharp} \mid w \in A^{*}\right\}
$$

Theorem (Gaubert and Mairesse 99)

Let \mathcal{A} be a heap automaton.
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$

Heap automata

$$
\mathcal{A}=(I, \mu, T) \quad \mathbf{G}_{\mathcal{A}}=\left\{[I \cdot \mu(w)]^{\sharp} \mid w \in A^{*}\right\}
$$

Super-sequentialisation of \mathcal{A} based on completion of vectors of \mathbb{K}^{Q}.

$$
\mathbf{H}_{\mathcal{A}}=\left\{[\overline{I \cdot \mu(w)}]^{\sharp} \mid w \in A^{*}\right\}
$$

Theorem (Gaubert and Mairesse 99)
Let \mathcal{A} be a heap automaton.
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$

Heap automata

Theorem (Gaubert and Mairesse 99)
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\overline{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Heap automata

Theorem (Gaubert and Mairesse 99)
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\overline{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Heap automata

Theorem (Gaubert and Mairesse 99)
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\overline{\mathcal{A}}$ that realizes $|\mathcal{A}|$

Heap automata

Theorem (Gaubert and Mairesse 99)
$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$
Problem

- Is finiteness of $\mathbf{H}_{\mathcal{A}}$ decidable?

Heap automata

Theorem (Gaubert and Mairesse 99)

$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$

Problem

- Is finiteness of $\mathbf{H}_{\mathcal{A}}$ decidable?
- Is $\mathrm{H}_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Heap automata

Theorem (Gaubert and Mairesse 99)

$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$

Problem

- Is finiteness of $\mathbf{H}_{\mathcal{A}}$ decidable?
- Is $\mathrm{H}_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Problem solved for the two-piece case

Heap automata

Theorem (Gaubert and Mairesse 99)

$\mathbf{H}_{\mathcal{A}}$ is the set of states of
a sequential automaton $\check{\overline{\mathcal{A}}}$ that realizes $|\mathcal{A}|$

Problem

- Is finiteness of $\mathbf{H}_{\mathcal{A}}$ decidable?
- Is $\mathbf{H}_{\mathcal{A}}$ finite when $|\mathcal{A}|$ is sequential ?

Problem solved for the two-piece case
Theorem (Mairesse and Vuillon 02)
[Besides trivial cases]
A two-letter heap automaton \mathcal{A} is sequentialisable
 iff either $\alpha^{\prime}=\beta^{\prime}=0$ or $\alpha / \beta \in \mathbb{Q}$

Finitely ambiguous tropical automata

\mathcal{A} is finitely ambiguous if
the number of paths labeled by a word w
is uniformely bounded.

Finitely ambiguous tropical automata

\mathcal{A} is finitely ambiguous if
the number of paths labeled by a word w
is uniformely bounded.
Proposition (Klimann Lombardy Mairesse Prieur 04)
Sequentiality is decidable for finitely ambiguous tropical automata.

Finitely ambiguous tropical automata

\mathcal{A} is finitely ambiguous if
the number of paths labeled by a word w
is uniformely bounded.
Proposition (Klimann Lombardy Mairesse Prieur 04)
Sequentiality is decidable for finitely ambiguous tropical automata.
Proposition (Klimann Lombardy Mairesse Prieur 04)
It is decidable whether a finitely ambiguous tropical automata is equivalent to a 1-valued one.

Finitely ambiguous tropical automata

\mathcal{A} is finitely ambiguous if
the number of paths labeled by a word w
is uniformely bounded.
Proposition (Klimann Lombardy Mairesse Prieur 04)
Sequentiality is decidable for finitely ambiguous tropical automata.
Proposition (Klimann Lombardy Mairesse Prieur 04)
It is decidable whether a finitely ambiguous tropical automata is equivalent to a 1-valued one.

Proposition (Mandel Simon 77)

Finite ambiguity is decidable.
Proposition (Hashiguchi Ishiguro Jimbo 02)
Equivalence is decidable for finitely ambiguous tropical automata.

Polynomially ambiguous tropical automata
\mathcal{A} is polynomially ambiguous if
the number of paths labeled by a word w grows polynomially with the length of w.

Polynomially ambiguous tropical automata
\mathcal{A} is polynomially ambiguous if the number of paths labeled by a word w grows polynomially with the length of w.

Proposition (Kirsten Lombardy 09)
Sequentiality is decidable
for polynomially ambiguous tropical automata.
Proposition (Kirsten Lombardy 09)
It is decidable whether a polynomially ambiguous tropical automata is equivalent to a 1 -valued one.

Polynomially ambiguous tropical automata
\mathcal{A} is polynomially ambiguous if the number of paths labeled by a word w grows polynomially with the length of w.

Proposition (Kirsten Lombardy 09)
Sequentiality is decidable
for polynomially ambiguous tropical automata.
Proposition (Kirsten Lombardy 09)
It is decidable whether a polynomially ambiguous tropical automata is equivalent to a 1 -valued one.

Proposition (Weber Seidl 91)
Polynomial ambiguity is decidable.
Proposition (Krob 91)
Equivalence is not decidable for polynomially ambiguous tropical automata.

