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Lecture 1

The model of (finite) weighted automata



A touch of general system theory

Finite control
@ State

A nn

Paradigm of a machine for the computer scientists
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Getting back to computer science

B>k @ (u,v) € A*x B

R C A*x B*

The input belongs to a direct product of free monoids A* x B*
The output belongs to the Boolean semiring B

The function realised is a relation between words



The simplest Turing Machine

Finite control

@ State

diffaz2 |a3 ‘34‘ ............

— Direction of movement of the read head

The 1 way 1 tape Turing Machine (1W1TM)



The simplest Turing Machine is equivalent to finite automata
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The simplest Turing Machine is equivalent to finite automata

b a
— p > P > P > q —

b
—p—q—q— q—

L(B) = {w € A | w € A'BA*} = {w € A" |w|p > 1)



Rational (or regular) languages

Languages accepted (or recognized) by finite automata

Languages described by rational (or regular) expressions

Languages defined by MSO formulae



Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton (minimal deterministic automaton)



B1

Automata versus languages
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Automata versus languages

L(By) C A*

L(By) C A*



Automata versus languages

B1

L(B1) = L(By) = {w € A*| |w]p > 1}



Automata versus languages

B1

L(By) C A*

L(B1) = L(By) = {w € A*| |w|p > 1} = A*bA*



Ambiguity: a preliminary to multiplicity

Here, automaton stands for classical (Boolean) automaton.

Definition
A (trim) automaton A is unambiguous
if no word
is the label of more than one successful computation of A.
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Ambiguity: a preliminary to multiplicity

Here, automaton stands for classical (Boolean) automaton.

Definition
A (trim) automaton A is unambiguous
if no word
is the label of more than one successful computation of A.

Theorem
It is decidable whether an automaton is ambiguous or not.

Proof ?
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Ambiguity: a preliminary to multiplicity

B, L(By) = A*bA*

L(B,) = A*bA*

Counting the number of successful computations

Bi| 0w — |wlp Bl : w — 1
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A new automaton model

NS k —[ (5) ]; w e A

s:A* = N s € N(A*)

ss=b+ab+ ba+2bb+aab+---+2bba+3bbb+ ---

The input belongs to a free monoid A*
The output belongs to the integer semiring N
The function realised is a function from A* to N

we call it a series
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The weighted automaton model

1 b a b 1
— p—p—>p — q —

1 b 2a 2b 1
—p—q—q—q—

» Weight of a path c: product of the weights of transitions in ¢
» Weight of a word w: sum of the weights of paths with label w

bab +— 1+4=5 = (101),



The weighted automaton model

1 b a b 1
— p—p—>p — q —

1 b 2a 2b 1
—p—q—q—q—

» Weight of a path c: product of the weights of transitions in ¢
» Weight of a word w: sum of the weights of paths with label w

bab +— 1+4=5 |C4]: A* — N



The weighted automaton model

1 b a b 1
— p—p—>p — q —

1 b 2a 2b 1
—p—q—q—q—

» Weight of a path c: product of the weights of transitions in ¢
» Weight of a word w: sum of the weights of paths with label w

|Ci|=b+ab+2ba+3bb+aab+2aba+---+5bab+---



The weighted automaton model

K > k —[ (5) }WEA*

s: A" =K s € K{(A*)

The input belongs to a free monoid A*
The output belongs to a semiring K

The function realised is a function from A* to K: a series in K{(A*))
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Richness of the model of weighted automata

B ‘classic’ automata

N ‘usual’ counting

Z, Q, R numerical multiplicity

(Z U +o0, min, + ) Min-plus automata
(Z,min, max ) fuzzy automata

B (B*) =B(B*) transducers
N{(B*)) weighted transducers

B(F(B)) pushdown automata



Another example
Oa la
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Another example
Oa la
. |£1] € Zmin((A*))

Ly
lo

» Weight of a path c:
product, that is, the sum, of the weights of transitions in ¢

» Weight of a word w:
sum, that is, the min of the weights of paths with label w.



Another example
Oa la
0 |L1] € Zmin((A*)

O
lo

» Weight of a path c:
product, that is, the sum, of the weights of transitions in ¢

» Weight of a word w:
sum, that is, the min of the weights of paths with label w.

bab—— min(1+0+1,0+14+0)=1 |L1]: A — Zmin



Another example
Oa la
. |£1] € Zmin((A*))

Ly
lo

» Weight of a path c:
product, that is, the sum, of the weights of transitions in ¢

» Weight of a word w:
sum, that is, the min of the weights of paths with label w.

|C1]=014« + 0a+0b+1lab+1ba+0bb+---+1bab+---



Series play the role of languages

K({(A*) plays the role of 53 (A¥)



Weighted automata theory

is linear algebra

of computer science



The Turing Machine equivalent to finite transducers

Finite control

ki

— Direction of movement of the k read heads

The 1 way k tape Turing Machine (1WkTM)



Outline of the lectures

. Rationality
. Recognisability
. Reduction and equivalence

. Morphisms of automata



Lecture 11

Rationality
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Outline of Lecture Il

The set of series K((A*)) is a K-algebra.
Automata are (essentially) matrices: A= (/,E, T)

Computing the behaviour of an automaton boils down
to solving a linear system X =E-X+ T (s)

Solving the linear system (s) amounts to invert
the matrix (ld — E) (hence the name rational)

The inversion of Id — E is realised by
an infinite sum Id + E + E? + E3 + ... : the star of E

What can be computed by a finite automaton
is exactly what can be computed by the star operation
(together with the algebra operations)



The semiring K({(A*)

K semiring A* free monoid
s € K{(A*)) s: A" =K s:w— (s,w)
s = Z (s,w)w
wEA*
Point-wise addition (s+t,w)=(s,w)+ (t,w)
Cauchy product (st,w) = Z (s,u)(t,v)
{(u,v)| uv = w} finite == Cauchy product well-defined

K{A*)) is a semiring



The semiring K({(M))

K semiring M monoid
s € K(M)) s:M—K s:m— (s, m)
s= Z (s,w)w
meM
Point-wise addition (s+t,m)=(s,m)+ (t,m)
Cauchy product (st,m) = Z (s,x)(t,y)
Xy=m

Vm {(x,y)| xy = m} finite == Cauchy product well-defined



The semiring K({(M))

Conditions for {(x,y)| xy = m} finite for all m

Definition
M is graded if M equipped with a length function ¢

¢: M—=N p(mm’) = p(m) + p(m')

M f.g. and graded — K({(M)) is a semiring

Examples
M trace monoid, then K({(M)) is a semiring

K{A*x B*)) is a semiring
F(A) , the free group on A, is not graded



The algebra K{(M))

K semiring M f.g. graded monoid

s € K{(A*)) s: A" =K s:w— (s,w)

s = Z (s,w)w

wEA*
Point-wise addition (s+t,m)=(s,m)+ (t,m)

Cauchy product (st,m) = Z (s,x)(t,y)

Xy=m

External multiplication (ks,m) =k (s, m)

K{M) is an algebra



The star operation

tekK t*:Zt”

neN

How to define infinite sums 7

One possible solution
Topology on K

Definition of summable families and of their sum

t* defined if {t"} nen summable

Other possible solutions
axiomatic definition of star, equational definition of star



The star operation

tekK t*:Zt”

neN



The star operation

tekK t*:Ztn

neN

VK (Og)* = 1k

N Vx # 0 x* not defined.

N =NU {400} Vx#0 x*=o0.
Q

K
K
K

(3)* =2 with the natural topology,
* is undefined with the discrete topology.

N[=
N



The star operation

tekK t*:Zt”

neN
In any case

t* = 1g + tt*

Star has the same flavor as the inverse

If K isaring
t"(lx — t) = 1x

1k

=lg+t+t24- "4
lx — t




Star of series

s € K{(A*) When is s* = Zs” defined ?
neN
Topology on K yields topology on K{(A*)

s proper  sp=(s,1a+) =0k

S proper = s* defined



v

v

v

Rational series

K(A") € K{A")

subalgebra of polynomials

KRat A*  closure of  K(A*)  under

sum
product
exterior multiplication

and star

KRat A* C K{(A*)

subalgebra of rational series



Fundamental theorem of finite automata

Theorem
s € KRat A* = JAEWA(A*) s=|A|
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Fundamental theorem of finite automata

Theorem
s € KRat A* = JAEWA(A*) s=|A|

Kleene theorem ?

Theorem
M finitely generated graded monoid

s € KRat M = JAEWA(M) s=|A|



Automata are matrices

a+b b
/1,E1,T1>=<(1 0),< 0 aaton

)-()
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Automata are matrices
A=(1,E T) E = incidence matrix

Notation
wl(x) = weighted label of x
In our model, e transition = wl(e) =ka

E,q= Z {wl(e)| e transition from p to q}

Lemma

qu — Z {wl(c)| ¢ computation from p to q of length n}



Automata are matrices

A=(1,E T) E = incidence matrix

Epq= Z {wl(e)| e transition from p to q}



Automata are matrices

A=(1,E T) E = incidence matrix

Epq= Z {wl(e)| e transition from p to q}

E*:ZEn

neN

El,= Z {wl(c)| ¢ computation from p to q}



Automata are matrices

A=(1,E T) E = incidence matrix

Epq= Z {wl(e)| e transition from p to q}

E*:ZEn

neN

El,= Z {wl(c)| ¢ computation from p to q}

A= 1-E- T



Automata are matrices

K semiring M graded monoid
K({(M) @@ s isomorphic to ~ K¥?(M))

E € K{(M)Q E proper — E* defined



Automata are matrices

K semiring M graded monoid
K({(M) @@ s isomorphic to ~ K¥?(M))

E € K{(M)Q E proper — E* defined

Theorem
The entries of E* are

in the rational closure of the entries of E



Fundamental theorem of finite automata

K semiring M graded monoid
K({(M) @@ s isomorphic to ~ K¥?(M))

E € K{(M)Q E proper — E* defined

Theorem
The entries of E* are

in the rational closure of the entries of E

Theorem
The family of behaviours of weighted automata over M

with coefficients in K is rationally closed.



The collect theorem
K({(A*x B*)) is isomorphic to [K({(B*)] {(A*)

Theorem
Under the above isomorphism,

KRat A*x B* corresponds to [KRat B*] Rat A*



Lecture 111

Recognisability



Outline of Lecture Il

Representation and recognisable series.

Automata over free monoids are representations
The notion of action and deterministic automata
The reachability space and the control morphism
The notion of quotient and the minimal automaton
The observation morphism

The representation theorem



Recognisable series

K semiring A* free monoid
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K-representation
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s € K{(A*)) recognisable if s realised by a K-representation

KRec A* C K({(A*))  submodule of recognisable series



Recognisable series

K semiring A* free monoid

K-representation
Q finite p: A* — K@ morphism

(I, T) | € KM@ o A — K@ T e K&

(I,p, T)  realises (recognises) s € K{(A")
Vw € A* (s,w)y=1-pu(w) T

Example

I=(10), u(a)=<(1) (1)> Mb)z(é 1) T:<(1)>

(lLp,T) realises Z |w|pw € KRec A*
wEA*



Recognisable series

K semiring M monoid

K-representation
Q finite p: A* — K@ morphism

(I, T) | € KM@ o A — K@ T e K&

(I,p, T)  realises (recognises) s € K{(A")
Vw € A* (s,w)y=1-pu(w) T



Recognisable series

K semiring M monoid

K-representation
Q finite p: M — KR morphism

(I, T) | € KM@ w: M — K@ T e K&

(I,p, T)  realises (recognises) s € K{(A")
Vw € A* (s,w)y=1-pu(w) T



Recognisable series

K semiring M monoid

K-representation
Q finite p: M — KR morphism

(I, T) | € KM@ w: M — K@ T e K&

(I,p, T)  realises (recognises) s € K({(M))
Vme M (s,m)=1-pu(m)-T



Recognisable series

K semiring M monoid

K-representation
Q finite p: M — KR morphism

(I, T) | € KM@ w: M — K@ T e K&

(I,p, T)  realises (recognises) s € K({(M))
Vme M (s,m)=1-pu(m)-T

s € K{(M)) recognisable if s realised by a K-representation



Recognisable series

K semiring M monoid

K-representation
Q finite p: M — KR morphism
(I, T) | € KM@ w: M — K@ T e K&

(I,p, T)  realises (recognises) s € K({(M))
Vme M (s,m)=1-pu(m)-T

s € K{M)) recognisable if s realised by a K-representation

KRec M C K{M))  submodule of recognisable series
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The key lemma
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The key lemma

K semiring M monoid

o A — KR defined by {1(3)}aca



The key lemma

K semiring M monoid

i M — K@ defined by 7



The key lemma

K semiring A* free monoid

o A — KR defined by {1(3)}aca



The key lemma

K semiring A* free monoid
o A — KR defined by {1(3)}aca
Lemma
e A* — K9 X = Z,u(a)a
acA

Yw € A* (X*,w) = p(w)



Automata are matrices

a+b b
/1,E1,T1>=<(1 0),< 0 0at o

)-()



Automata over free monoids are representations

C1:</17E17T1>:<(1 0)7<345b 2ai2b>’<(1)>>.
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Automata over free monoids are representations

C1=</1751771>=<(1 0)7<345b 2ai2b>’<(1)>>'
(020 2)0

Ci=(h,pu1,T1) pa(a) = <(1) (2)> +m(b) = <(1) ;>



Automata over free monoids are representations

C1=</1751771>=<(1 0)7<345b 2ai2b>’<(1)>>'
(020 2)0
Ci=(h,pu1,T1) “1(‘3):<(1) (2)>’ Ml(b):<(1) ;>

ICi|=h-E* Ty = Z (h-pa(w)- T1)w
weA*



Automata over free monoids are representations

C1=</1751771>=<(1 0)7<345b 2ai2b>’<(1)>>'
(020 2)0
Ci=(h,pu1,T1) “1(‘3):<(1) (2)>’ Ml(b):<(1) ;>

Col=h-E* Ta=> (h-pa(w) T)w |C1] € KRec A*
wEA*



Automata over free monoids are representations

C1=</175177_1>=<(1 0)7<8J5b 2ai2b>’<(1)>>'
(020 2)0
Ci=(h,pu1,T1) /“(a):<(1) (2)>’ Ml(b):<(1) ;>

Conversely, representations are automata



The Kleene-Schiitzenberger Theorem

Fundamental Theorem of Finite Automata and Key Lemma

yield

Theorem
A finite = KRec A* = KRat A*



The reachability set

A=(lpT)
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The reachability set

A=(lpT)

Reachability set Reachability space

Ra={/ - p(w)| we A"} R4 C KO (Ra)

A* actson Ry:  (I-pu(w))-a=(-uw))- -uw@)="1-ulwa)



The reachability set
A=(lpT)

Reachability set Reachability space

Ra={/ - p(w)| we A"} R4 C KO (Ra)

A* actson Ry:  (I-pu(w))-a=(-uw))- -uw@)="1-ulwa)

This action turns

~

R4 into a deterministic automaton A
(possibly infinite)



~

C1

1 04
(10

a

b

The reachability set

Ci=(h,p1, T1)

D
7
b/’ 33\‘:'

(1) 6
N @

\ 5

2 2 If:

4

14

14

y



The reachability set
A=(lpT)
Reachability set Reachability space
Ra={/ - p(w)| we A"} R4 C KO (R)

~

R4 is turned into a deterministic automaton A



The reachability set

A=(lpuT)

Reachability set Reachability space

Ra={/ - p(w)| we A"} R4 C KO (Ra)

~

R4 is turned into a deterministic automaton A

If K=B, A is the (classical) determinisation of A



The reachability set

A=(lpuT)

Reachability set Reachability space
Ra= {1 u(w)| we A%} R C K9 (R)
R, is turned into a deterministic automaton A

If K=B, A is the (classical) determinisation of A

If K is locally finite, R4 and A are finite.



The reachability set

A=(lpuT)

Reachability set Reachability space

Ra={/ - p(w)| we A"} R4 C KO (Ra)

R, is turned into a deterministic automaton A

If K=B, A is the (classical) determinisation of A

If K is locally finite, R4 and A are finite.

Counting in a locally finite semiring is not really counting



The control morphism

A=(lpT)

Reachability set Reachability space

Ra={/ - p(w)| we A"} R4 C KO (Ra)



The control morphism
A=(lpT)
Reachability set Reachability space
Ra={/ - p(w)| we A"} R C K9 (R)

W4 K(AY) — K9 Yw e A* Wy(w) =1 pu(w)



The control morphism

A=(lpT)
Reachability set Reachability space
Ra={/ - p(w)| we A"} R4 C KO (R)
W4 K(AY) — K9 Yw e A* Wy(w) =1 pu(w)

R4 = W4(AY) ImW 4 =W 4(K(A")) = (Ra)



The control morphism

A=(lpT)

Reachability set Reachability space
Ra={/ - p(w)| we A"} R4 C KO (R)
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K(A*)
L
KQ

The control morphism



The control morphism

A=(lpT)

Reachability set Reachability space
Ra={/ - p(w)| we A"} R4 C KO (R)
W4 K(AY) — K9 Yw e A* Wy(w) =1 pu(w)
R = W4(AY) Im Wy = W4 (K(A")) = (Ra)

K(A*) w
¥ L
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The control morphism



The control morphism

A=(lpT)

Reachability set Reachability space
Ra={/ - p(w)| we A"} R4 C KO (R)
W4 K(AY) — K9 Yw e A* Wy(w) =1 pu(w)
R = W4(AY) Im Wy = W4 (K(A")) = (Ra)

A*
K(A*) =——= K(A*) Wh———~ wa
¥ L

KQ

x

The control morphism



The control morphism

A=(lpT)

Reachability set

Ra={/ - p(w)| we A"}

V4 K(AY) — K@

R4 = W4(AY)
A*
K(A*) =——= K(A*)
Wy Yy
A*

KQ —/—> K@

Reachability space

R4 CK? (Ra)
Vwe A" Wy(w) =1 pu(w)
ImW 4 = W 4(K(A")) = (Ra)

whkH——— wa

Yy V4

X F—— x - u(a)

The control morphism is a morphism of actions



A basic construct: the quotient of series

d1da2d3...4dp

s € K(A")

The input belongs to a free monoid A*
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ai dn2asz...dap

s € K(A")

The input belongs to a free monoid A*



A basic construct: the quotient of series
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A basic construct: the quotient of series

diaz

k= (s a3...a,) = (s,a1axas...a,)

s' = [ajax] s

The series s’ is the quotient of s by aja»
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A basic construct: the quotient of series

==
I
—~
U)\
<
~
I

(s,uv)



A basic construct: the quotient of series

The series s’ is the quotient of s by u
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The quotient operation

s € K({(A*)

veA* vils = Z(s,vw>w

wEA*
v K(AY) — K(A®) endomorphism of K-modules
A*
K((A*) =—— K{A") s————~ s

Quotient is a (right) action of A* on K({(A*))

(uv)ts=vi(uts)
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The minimal automaton

s € K({(A*)

R, = {v_ls‘ v E A*}

Quotient turns
R. into the minimal automaton A, of s
(possibly infinite)
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The observation morphism

A=(lLpT)

ba: K9 — K(A™) ®A(x) =106, T =D Gep(w) T)w
wEA*

s=|(1p, T )= () wrs = (1 p(w),m, T



The observation morphism

A=(lLpT)
®4: K9 — K(A") Sa(x) =[x, T =Y (xep(w)-T)w
WEA*
s=|(1,u, T)|=®all) wls =|(1 - p(w),p, T)|

w4 (x) = Ga(x - u(w))



The observation morphism

A=(lpT)

a1 KO — K(AY) O40) =|(xo, T = 32 (xep(w)-T)w
wEA*

WA 4(x) = D (- ()

K@ X

K{A") t



The observation morphism

A=(lpT)

a1 KO — K(AY) O40) =|(xo, T = 32 (xep(w)-T)w
wEA*

WA 4(x) = D (- ()

The observation morphism is a morphism of actions



The observation morphism

A=(lpT)
®4: KQ — K(A*) Sa(x) =%, T) = D (xep(w) T)w
weA*
w04(x) = D A(x - ju(w))
A*
K(A*) = K(A") W hb—— wa
Wy ‘ ‘ V4 Wy Yy
A*
K@ =— K¢ X F—— x - p(a)
P4 , P4y D4 ‘ P4
K{A*)) =—=> K({(A*) thb——————— a1t

The observation morphism is a morphism of actions
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The representation theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)
s € KRec A* = dU stable finitely generated s € U

A*
14 € K(A*) =—= K(A*)
Yy Yy
A*
[ €lmWy KQ > K@
by D4
A*

s €D (ImVy) K{A*)) =—= K(A")



The representation theorem

U C K{A™) submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)
s € KRec A* — dU stable finitely generated s € U

A*
V4 V4
A*
KQ > K@
d 4 b4
A*




Lecture IV

Reduction and morphisms
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Outline of Lecture IV

An appetizing theorem

Reduction of automata with weights in fields
The decidability of equivalence problem

The notion of conjugacy of automata

Out-morphisms and In-morphisms of automata
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An appetizing result

K semiring A* free monoid

Definition
The Hadamard product of s, t € K((A")) is
Vw e A* (sOt,w) = (s,w)(t,w)

Theorem
If K is commutative,
then KRec A* is closed under Hadamard product

|(/>:u7 T)Q(J>H>U)|:|(I®Jmu®’%> T®U)|



An appetizing result

2a

Co

Co =C10C




Reduced representation

A=(lpT)

A is reduced if its dimension is minimal

(among all equivalent representations)

We suppose now that K is a (skew) field

Proposition
A is reduced iff V4 is surjective and 4 injective

Theorem
A reduced representation of |A| is effectively computable
(with cubic complexity)

Corollary
Equivalence of KK-recognisable series is decidable



Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring B decidable
a subsemiring of a field decidable
(Z, min, +) undecidable
Rat B* undecidable

NRat B* decidable



Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring B
a subsemiring of a field
(Z, min, +)

Rat B*
NRat B*

Equivalence of transducers
transducers with multiplicity in N

functional transducers
finitely ambiguous (Z, min, +)

decidable
decidable
undecidable

undecidable
decidable

undecidable
decidable

decidable
decidable
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Definition
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Conjugacy of automata
Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.
A is conjugate to B if
34X K-matrix IX=J, EX=XF, and T=XU

This is denoted as A é> B.
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Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.
A is conjugate to B if
34X K-matrix IX=J, EX=XF, and T=XU

This is denoted as A é> B.
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Conjugacy of automata
Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.
A is conjugate to B if
34X K-matrix IX=J, EX=XF, and T=XU

This is denoted as A é> B.

e Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

° AZ B implies that A and B are equivalent.

IEET=IEEXU=IEXFU=IXFFU=JFFU



Conjugacy of automata
Definition
Let A=(/,E,T) and B=(J,F,U) be two K-automata.
A is conjugate to B if
34X K-matrix IX=J, EX=XF, and T=XU

This is denoted as A é> B.

e Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

° AZ B implies that A and B are equivalent.

IEET =IEEXU=IEXFU=IXFFU=JFFU
and then IE*T =JF*U



Morphisms of weighted automata

Definition
A map ¢: Q = R defines a (Q x R)-amalgamation matrix H,

w2: {j,r,s,ut = {i,q,t} defines H,, =

O O O
O = = O
— O O O
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Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ — R defines an In-morphism ¢: A — B

if A is conjugate to B by the matrix  H,, : A % B
IH, = J, EH,=H,F, T=H,U

B isa quotient of A
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Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ — R defines an In-morphism ¢: A — B
if B is conjugate to A by the matrix *H, : B é@ A
JH, =1, F *H, = *H, E, U="'H, T

B is a co-quotient of A

Directed notion Price to pay for the weight



Morphisms of weighted automata

O = = O
= O O O

O O O




Morphisms of weighted automata

O = = O
= O O O

O O O




Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ — R defines an Out-morphism ¢: A — B

if A is conjugate to B by the matrix  H,, : A % B
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Morphisms of weighted automata

Definition
A=(ILE,T) and B=(J,F,U) K-automata
of dimension @ and R.

A map ¢: Q@ - R defines an Out-morphism ¢: A — B
if A is conjugate to B by the matrix  H,, : A % B

B is a quotient of A

Theorem
Every K-automaton has a minimal quotient
that is effectively computable (by Moore algorithm).



Documents for these lectures

To be found at

http://www.telecom-paristech.fr/~jsaka/EWSCS2014/

In particular, a set of instructions for downloading
a —« release of a pre-experimental version of
the VAUCANSON 2 platform

implemented as a virtual machine interfaced with IPython



