
Introduction to
weighted automata theory

Lectures given at

the 19th Estonian Winter School in Computer Science

Jacques Sakarovitch

CNRS / Telecom ParisTech

Based on

Chapter III Chapter 4

The presentation is very much inspired by a joint work with

Marie-Pierre Béal (Univ. Paris-Est)

and

Sylvain Lombardy (Univ. Bordeaux)

entitled

On the equivalence and conjugacy of weighted automata,

a first version of which has been published in Proc. of CSR 2006

and whose final complete version is still in preparation.

Lecture I

The model of (finite) weighted automata

A touch of general system theory

p State

Finite control

a1 a2 a3 a4 an $

k1 k2 k3 k4 kl $

Paradigm of a machine for the computer scientists

A touch of general system theory

inputoutput

Paradigm of a machine for the rest of the world

A touch of general system theory

α(·)y x

y = α(x)

Paradigm of a machine for the rest of the world

A touch of general system theory

α(·)y x

y = α(x)

x ∈ Rn , y ∈ Rm

Paradigm of a machine for the rest of the world

Getting back to computer science

α(·) xy

Getting back to computer science

α(·) w ∈ A∗y

The input belongs to a free monoid A∗

Getting back to computer science

α(·) w ∈ A∗B � k

The input belongs to a free monoid A∗

The output belongs to the Boolean semiring B

Getting back to computer science

w ∈ A∗B � k L

L ⊆ A∗

The input belongs to a free monoid A∗

The output belongs to the Boolean semiring B

The function realised is a language

Getting back to computer science

α(·) (u, v) ∈ A∗×B∗B � k

The input belongs to a direct product of free monoids A∗×B∗

The output belongs to the Boolean semiring B

Getting back to computer science

(u, v) ∈ A∗×B∗B � k R

R ⊆ A∗×B∗

The input belongs to a direct product of free monoids A∗×B∗

The output belongs to the Boolean semiring B

The function realised is a relation between words

The simplest Turing Machine

p State

Finite control

a1 a2 a3 a4 an $

Direction of movement of the read head

The 1 way 1 tape Turing Machine (1W1TM)

The simplest Turing Machine is equivalent to finite automata

p q
b

a

b

a

b

B1

The simplest Turing Machine is equivalent to finite automata

p q
b

a

b

a

b

B1

bab ∈ A∗

The simplest Turing Machine is equivalent to finite automata

p q
b

a

b

a

b

B1

bab ∈ A∗

−→ p
b−−→p

a−→ p
b−−→ q −→

−→ p
b−−→q

a−→ q
b−−→ q −→

The simplest Turing Machine is equivalent to finite automata

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

bab ∈ A∗

−→ p
b−−→p

a−→ p
b−−→ q −→

−→ p
b−−→q

a−→ q
b−−→ q −→

L(B1) = {w ∈ A∗ | w ∈ A∗bA∗} = {w ∈ A∗ | |w |b � 1}

Rational (or regular) languages

Languages accepted (or recognized) by finite automata

=

Languages described by rational (or regular) expressions

=

Languages defined by MSO formulae

Remarkable features of the finite automaton model

Decidable equivalence (decidable inclusion)

Closure under complement

Canonical automaton (minimal deterministic automaton)

Automata versus languages

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

Automata versus languages

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

p q
b

a a

b

B′
1

L(B′
1) ⊆ A∗

Automata versus languages

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

p q
b

a a

b

B′
1

L(B′
1) ⊆ A∗

L(B1) = L(B′
1) =

{
w ∈ A∗ ∣∣ |w |b � 1

}

Automata versus languages

p q
b

a

b

a

b

B1
L(B1) ⊆ A∗

p q
b

a a

b

B′
1

L(B′
1) ⊆ A∗

L(B1) = L(B′
1) =

{
w ∈ A∗ ∣∣ |w |b � 1

}
= A∗bA∗

Ambiguity: a preliminary to multiplicity

Here, automaton stands for classical (Boolean) automaton.

Definition
A (trim) automaton A is unambiguous

if no word
is the label of more than one successful computation of A.

Ambiguity: a preliminary to multiplicity

Here, automaton stands for classical (Boolean) automaton.

Definition
A (trim) automaton A is unambiguous

if no word
is the label of more than one successful computation of A.

Theorem
It is decidable whether an automaton is ambiguous or not.

Ambiguity: a preliminary to multiplicity

Here, automaton stands for classical (Boolean) automaton.

Definition
A (trim) automaton A is unambiguous

if no word
is the label of more than one successful computation of A.

Theorem
It is decidable whether an automaton is ambiguous or not.

Proof ?

Ambiguity: a preliminary to multiplicity

p q
b

a

b

a

b

B1
L(B1) = A∗bA∗

Ambiguity: a preliminary to multiplicity

p q
b

a

b

a

b

B1
L(B1) = A∗bA∗

p q
b

a a

b

B′
1

L(B′
1) = A∗bA∗

Ambiguity: a preliminary to multiplicity

p q
b

a

b

a

b

B1
L(B1) = A∗bA∗

p q
b

a a

b

B′
1

L(B′
1) = A∗bA∗

Counting the number of successful computations

B1 : bab �−→ 2 B′
1 : bab �−→ 1

Ambiguity: a preliminary to multiplicity

p q
b

a

b

a

b

B1
L(B1) = A∗bA∗

p q
b

a a

b

B′
1

L(B′
1) = A∗bA∗

Counting the number of successful computations

B1 : w �−→ |w |b B′
1 : w �−→ 1

A new automaton model

w ∈ A∗N � k α(·)

The input belongs to a free monoid A∗

The output belongs to the integer semiring N

A new automaton model

w ∈ A∗N � k s

s : A∗ → N

The input belongs to a free monoid A∗

The output belongs to the integer semiring N

The function realised is a function from A∗ to N

A new automaton model

w ∈ A∗N � k s

s : A∗ → N s ∈ N〈〈A∗〉〉

The input belongs to a free monoid A∗

The output belongs to the integer semiring N

The function realised is a function from A∗ to N

we call it a series

A new automaton model

w ∈ A∗N � k s

s : A∗ → N s ∈ N〈〈A∗〉〉

s1 = b + ab + b a + 2b b + aab + · · ·+ 2b b a + 3b b b + · · ·

The input belongs to a free monoid A∗

The output belongs to the integer semiring N

The function realised is a function from A∗ to N

we call it a series

The weighted automaton model

p q
b

a

b

a

b

B1

The weighted automaton model

p q
b

a

b

2a

2b

C1

The weighted automaton model

p q
b

a

b

2a

2b

C1

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

The weighted automaton model

p q
b

a

b

2a

2b

C1

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

The weighted automaton model

p q
b

a

b

2a

2b

C1

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

b ab �−→ 1 + 4 = 5

The weighted automaton model

p q
b

a

b

2a

2b

C1

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

b ab �−→ 1 + 4 = 5 = 〈101〉2

The weighted automaton model

p q
b

a

b

2a

2b

C1 C1 ∈ N〈〈A∗〉〉

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

b ab �−→ 1 + 4 = 5 C1 : A∗ −→ N

The weighted automaton model

p q
b

a

b

2a

2b

C1 C1 ∈ N〈〈A∗〉〉

1−−→ p
b−−→p

a−−→ p
b−−→ q

1−−→
1−−→ p

b−−→q
2 a−−−→ q

2 b−−−→ q
1−−→

� Weight of a path c : product of the weights of transitions in c

� Weight of a word w : sum of the weights of paths with label w.

C1 = b + ab + 2b a + 3b b + aab + 2ab a + · · ·+ 5b ab + · · ·

The weighted automaton model

w ∈ A∗K � k s

s : A∗ → K s ∈ K〈〈A∗〉〉

The input belongs to a free monoid A∗

The output belongs to a semiring K

The function realised is a function from A∗ to K: a series in K〈〈A∗〉〉

Richness of the model of weighted automata

� B ‘classic’ automata

� N ‘usual’ counting

� Z , Q , R numerical multiplicity

� 〈Z ∪ +∞,min,+ 〉 Min-plus automata

� 〈Z,min,max 〉 fuzzy automata

� P (B∗) = B〈〈B∗〉〉 transducers

� N〈〈B∗〉〉 weighted transducers

� P (F (B)) pushdown automata

Another example

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

Another example

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

Another example

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

� Weight of a path c :
product, that is, the sum, of the weights of transitions in c

� Weight of a word w :
sum, that is, the min of the weights of paths with label w .

Another example

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

� Weight of a path c :
product, that is, the sum, of the weights of transitions in c

� Weight of a word w :
sum, that is, the min of the weights of paths with label w .

b ab �−→ min(1 + 0 + 1, 0 + 1 + 0) = 1 L1 : A
∗ −→ Zmin

Another example

p q
0 0

0a

1b

1a

0b

L1
L1 ∈ Zmin〈〈A∗〉〉

0−−→ p
1 b−−−→p

0 a−−−→ p
1 b−−−→ p

0−−→
0−−→ q

0 b−−−→q
1 a−−−→ q

0b−−−→ q
0−−→

� Weight of a path c :
product, that is, the sum, of the weights of transitions in c

� Weight of a word w :
sum, that is, the min of the weights of paths with label w .

C1 = 01A∗ + 0a + 0b + 1ab + 1b a + 0b b + · · · + 1b ab + · · ·

Series play the role of languages

K〈〈A∗〉〉 plays the role of P (A∗)

Weighted automata theory

is linear algebra

of computer science

The Turing Machine equivalent to finite transducers

p State

Finite control

a1 a2 a3 a4 an $

k1 k2 k3 k4 kl $

Direction of movement of the k read heads

The 1 way k tape Turing Machine (1WkTM)

Outline of the lectures

1. Rationality

2. Recognisability

3. Reduction and equivalence

4. Morphisms of automata

Lecture II

Rationality

Outline of Lecture II

� The set of series K〈〈A∗〉〉 is a K-algebra.

� Automata are (essentially) matrices: A = 〈 I ,E ,T 〉
� Computing the behaviour of an automaton boils down

to solving a linear system X = E · X + T (s)

� Solving the linear system (s) amounts to invert
the matrix (Id − E) (hence the name rational)

� The inversion of Id − E is realised by
an infinite sum Id + E + E 2 + E 3 + · · · : the star of E

� What can be computed by a finite automaton
is exactly what can be computed by the star operation

(together with the algebra operations)

The semiring K〈〈A∗〉〉

K semiring A∗ free monoid

s ∈ K〈〈A∗〉〉 s : A∗ → K s : w �−→ 〈s,w 〉

s =
∑
w∈A∗

〈s,w 〉w

Point-wise addition 〈s + t,w 〉 = 〈s,w 〉+ 〈t,w 〉
Cauchy product 〈s t,w 〉 =

∑
u v=w

〈s, u〉 〈t, v 〉

{(u, v) | u v = w} finite =⇒ Cauchy product well-defined

K〈〈A∗〉〉 is a semiring

The semiring K〈〈M〉〉

K semiring M monoid

s ∈ K〈〈M〉〉 s : M → K s : m �−→ 〈s,m〉

s =
∑
m∈M

〈s,w 〉w

Point-wise addition 〈s + t,m〉 = 〈s,m〉+ 〈t,m〉
Cauchy product 〈s t,m〉 =

∑
x y=m

〈s, x 〉 〈t, y 〉

∀m {(x , y) | x y = m} finite =⇒ Cauchy product well-defined

The semiring K〈〈M〉〉

Conditions for {(x , y) | x y = m} finite for all m

Definition
M is graded if M equipped with a length function ϕ

ϕ : M → N ϕ(mm′) = ϕ(m) + ϕ(m′)

M f.g. and graded =⇒ K〈〈M〉〉 is a semiring

Examples

M trace monoid, then K〈〈M〉〉 is a semiring

K〈〈A∗×B∗〉〉 is a semiring

F (A) , the free group on A , is not graded

The algebra K〈〈M〉〉

K semiring M f.g. graded monoid

s ∈ K〈〈A∗〉〉 s : A∗ → K s : w �−→ 〈s,w 〉

s =
∑
w∈A∗

〈s,w 〉w

Point-wise addition 〈s + t,m〉 = 〈s,m〉+ 〈t,m〉
Cauchy product 〈s t,m〉 =

∑
x y=m

〈s, x 〉 〈t, y 〉

External multiplication 〈k s,m〉 = k 〈s,m〉

K〈〈M〉〉 is an algebra

The star operation

t ∈ K t∗ =
∑
n∈N

tn

How to define infinite sums ?

One possible solution

Topology on K

Definition of summable families and of their sum

t∗ defined if {tn}n∈N summable

Other possible solutions

axiomatic definition of star, equational definition of star

The star operation

t ∈ K t∗ =
∑
n∈N

tn

The star operation

t ∈ K t∗ =
∑
n∈N

tn

� ∀K (0K)
∗ = 1K

� K = N ∀x �= 0 x∗ not defined.

� K = N = N ∪ {+∞} ∀x �= 0 x∗ = ∞ .

� K = Q (12)
∗ = 2 with the natural topology,

(12)
∗ is undefined with the discrete topology.

The star operation

t ∈ K t∗ =
∑
n∈N

tn

In any case

t∗ = 1K + t t∗

Star has the same flavor as the inverse

If K is a ring

t∗ (1K − t) = 1K

1K
1K − t

= 1K + t + t2 + · · ·+ tn + · · ·

Star of series

s ∈ K〈〈A∗〉〉 When is s∗ =
∑
n∈N

sn defined ?

Topology on K yields topology on K〈〈A∗〉〉

s proper s0 = 〈s, 1A∗ 〉 = 0K

s proper =⇒ s∗ defined

Rational series

K〈A∗〉 ⊆ K〈〈A∗〉〉 subalgebra of polynomials

KRatA∗ closure of K〈A∗〉 under

� sum

� product

� exterior multiplication

� and star

KRatA∗ ⊆ K〈〈A∗〉〉 subalgebra of rational series

Fundamental theorem of finite automata

Theorem

s ∈ KRatA∗ ⇐⇒ ∃A ∈ WA(A∗) s = |||A|||

Fundamental theorem of finite automata

Theorem

s ∈ KRatA∗ ⇐⇒ ∃A ∈ WA(A∗) s = |||A|||

Kleene theorem ?

Fundamental theorem of finite automata

Theorem

s ∈ KRatA∗ ⇐⇒ ∃A ∈ WA(A∗) s = |||A|||

Kleene theorem ?

Theorem

M finitely generated graded monoid

s ∈ KRatM ⇐⇒ ∃A ∈ WA(M) s = |||A|||

Automata are matrices

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Notation

wl(x) = weighted label of x

In our model, e transition ⇒ wl(e) = k a

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Notation

wl(x) = weighted label of x

In our model, e transition ⇒ wl(e) = k a

Ep,q =
∑

{wl(e) | e transition from p to q}

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Notation

wl(x) = weighted label of x

In our model, e transition ⇒ wl(e) = k a

Ep,q =
∑

{wl(e) | e transition from p to q}

Lemma

Enp,q =
∑

{wl(c) | c computation from p to q of length n}

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Ep,q =
∑

{wl(e) | e transition from p to q}

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Ep,q =
∑

{wl(e) | e transition from p to q}

E ∗ =
∑
n∈N

E n

E ∗
p,q =

∑
{wl(c) | c computation from p to q}

Automata are matrices

A = 〈 I ,E ,T 〉 E = incidence matrix

Ep,q =
∑

{wl(e) | e transition from p to q}

E ∗ =
∑
n∈N

E n

E ∗
p,q =

∑
{wl(c) | c computation from p to q}

A = I · E ∗ · T

Automata are matrices

K semiring M graded monoid

K〈〈M〉〉Q×Q is isomorphic to KQ×Q〈〈M〉〉

E ∈ K〈〈M〉〉Q×Q E proper =⇒ E ∗ defined

Automata are matrices

K semiring M graded monoid

K〈〈M〉〉Q×Q is isomorphic to KQ×Q〈〈M〉〉

E ∈ K〈〈M〉〉Q×Q E proper =⇒ E ∗ defined

Theorem
The entries of E ∗ are

in the rational closure of the entries of E

Fundamental theorem of finite automata

K semiring M graded monoid

K〈〈M〉〉Q×Q is isomorphic to KQ×Q〈〈M〉〉

E ∈ K〈〈M〉〉Q×Q E proper =⇒ E ∗ defined

Theorem
The entries of E ∗ are

in the rational closure of the entries of E

Theorem
The family of behaviours of weighted automata over M

with coefficients in K is rationally closed.

The collect theorem

K〈〈A∗×B∗〉〉 is isomorphic to [K〈〈B∗〉〉] 〈〈A∗〉〉

Theorem

Under the above isomorphism,

KRatA∗×B∗ corresponds to [KRatB∗]RatA∗

Lecture III

Recognisability

Outline of Lecture III

� Representation and recognisable series.

� Automata over free monoids are representations

� The notion of action and deterministic automata

� The reachability space and the control morphism

� The notion of quotient and the minimal automaton

� The observation morphism

� The representation theorem

Recognisable series

K semiring A∗ free monoid

Recognisable series

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

Recognisable series

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

Recognisable series

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

s ∈ K〈〈A∗〉〉 recognisable if s realised by a K-representation

Recognisable series

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

s ∈ K〈〈A∗〉〉 recognisable if s realised by a K-representation

KRecA∗ ⊆ K〈〈A∗〉〉 submodule of recognisable series

Recognisable series

K semiring A∗ free monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

Example

I =
(
1 0

)
, µ(a) =

(
1 0
0 1

)
, µ(b) =

(
1 1
0 1

)
, T =

(
0
1

)

(I , µ,T) realises
∑
w∈A∗

|w |bw ∈ KRecA∗

Recognisable series

K semiring M monoid

K-representation

Q finite µ : A∗ → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : A∗ → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

Recognisable series

K semiring M monoid

K-representation

Q finite µ : M → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : M → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈A∗〉〉
∀w ∈ A∗ 〈s,w 〉 = I · µ(w) · T

Recognisable series

K semiring M monoid

K-representation

Q finite µ : M → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : M → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈M〉〉
∀m ∈ M 〈s,m〉 = I · µ(m) · T

Recognisable series

K semiring M monoid

K-representation

Q finite µ : M → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : M → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈M〉〉
∀m ∈ M 〈s,m〉 = I · µ(m) · T

s ∈ K〈〈M〉〉 recognisable if s realised by a K-representation

Recognisable series

K semiring M monoid

K-representation

Q finite µ : M → KQ×Q morphism

(I , µ,T) I ∈ K1×Q µ : M → KQ×Q T ∈ KQ×1

(I , µ,T) realises (recognises) s ∈ K〈〈M〉〉
∀m ∈ M 〈s,m〉 = I · µ(m) · T

s ∈ K〈〈M〉〉 recognisable if s realised by a K-representation

KRecM ⊆ K〈〈M〉〉 submodule of recognisable series

The key lemma

K semiring A∗ free monoid

The key lemma

K semiring A∗ free monoid

µ : A∗ → KQ×Q defined by {µ(a)}a∈A

The key lemma

K semiring M monoid

µ : A∗ → KQ×Q defined by {µ(a)}a∈A

The key lemma

K semiring M monoid

µ : M → KQ×Q defined by ?

The key lemma

K semiring A∗ free monoid

µ : A∗ → KQ×Q defined by {µ(a)}a∈A

The key lemma

K semiring A∗ free monoid

µ : A∗ → KQ×Q defined by {µ(a)}a∈A

Lemma
µ : A∗ → KQ×Q X =

∑
a∈A

µ(a)a

∀w ∈ A∗ 〈X ∗,w 〉 = µ(w)

Automata are matrices

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

Automata over free monoids are representations

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

Automata over free monoids are representations

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

C1 = (I1, µ1,T1) µ1(a) =

(
1 0
0 2

)
, µ1(b) =

(
1 1
0 2

)

Automata over free monoids are representations

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

C1 = (I1, µ1,T1) µ1(a) =

(
1 0
0 2

)
, µ1(b) =

(
1 1
0 2

)

C1 = I1 · E1
∗ · T1 =

∑
w∈A∗

(I1 · µ1(w) · T1)w

Automata over free monoids are representations

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

C1 = (I1, µ1,T1) µ1(a) =

(
1 0
0 2

)
, µ1(b) =

(
1 1
0 2

)

C1 = I1 · E1
∗ · T1 =

∑
w∈A∗

(I1 · µ1(w) · T1)w C1 ∈ KRecA∗

Automata over free monoids are representations

p q
b

a

b

2a

2b

C1

C1 = 〈 I1,E1,T1 〉 =
〈(

1 0
)
,

(
a+ b b
0 2a + 2b

)
,

(
0
1

)〉
.

E1 =

(
1 0
0 2

)
a+

(
1 1
0 2

)
b

C1 = (I1, µ1,T1) µ1(a) =

(
1 0
0 2

)
, µ1(b) =

(
1 1
0 2

)

Conversely, representations are automata

The Kleene-Schützenberger Theorem

Fundamental Theorem of Finite Automata and Key Lemma

yield

Theorem
A finite ⇒ KRecA∗ = KRatA∗

The reachability set

A = (I , µ,T)

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

A∗ acts on RA : (I · µ(w)) · a = (I · µ(w)) · µ(a) = I · µ(w a)

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

A∗ acts on RA : (I · µ(w)) · a = (I · µ(w)) · µ(a) = I · µ(w a)

This action turns

RA into a deterministic automaton Â
(possibly infinite)

The reachability set

C1 = (I1, µ1,T1)

(
1 0

)
(
1 1

)

(
1 3

)
(
1 7

)

(
1 6

)

(
1 2

)
(
1 5

)

(
1 4

)

1
0

1

2

3

4

5

6

7

a

b

a

b

a

b

a

b
Ĉ1

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

RA is turned into a deterministic automaton Â

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

RA is turned into a deterministic automaton Â

If K = B , Â is the (classical) determinisation of A

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

RA is turned into a deterministic automaton Â

If K = B , Â is the (classical) determinisation of A

If K is locally finite, RA and Â are finite.

The reachability set

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

RA is turned into a deterministic automaton Â

If K = B , Â is the (classical) determinisation of A

If K is locally finite, RA and Â are finite.

Counting in a locally finite semiring is not really counting

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

RA = ΨA(A∗) ImΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

RA = ΨA(A∗) ImΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉

K〈A∗〉

KQ

ΨA

The control morphism

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

RA = ΨA(A∗) ImΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉

K〈A∗〉

KQ

ΨA

w

x

ΨA

The control morphism

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

RA = ΨA(A∗) ImΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉

K〈A∗〉 K〈A∗〉

KQ

ΨA

A∗
w w a

x

ΨA

The control morphism

The control morphism

A = (I , µ,T)

Reachability set Reachability space

RA = {I · µ(w) | w ∈ A∗} RA ⊆ KQ 〈〈〈RA 〉〉〉

ΨA : K〈A∗〉 −→ KQ ∀w ∈ A∗ ΨA(w) = I · µ(w)

RA = ΨA(A∗) ImΨA = ΨA(K〈A∗〉) = 〈〈〈RA 〉〉〉

K〈A∗〉 K〈A∗〉

KQ KQ

ΨA ΨA

A∗

A∗

w w a

x x · µ(a)

ΨA ΨA

The control morphism is a morphism of actions

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2a3 . . . an

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1 a2a3 . . . an

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2 a3 . . . an

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2 . . . an

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s

s ∈ K〈〈A∗〉〉

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

〈s, a1 . . . an 〉 = k

The input belongs to a free monoid A∗

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2 a3 . . . an

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2

a3 . . . an

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

a1a2

a3 . . . an

A basic construct: the quotient of series

s

s ∈ K〈〈A∗〉〉

a1a2

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

〈s, a1 . . . an 〉 = k

A basic construct: the quotient of series

s ′ ∈ K〈〈A∗〉〉

a1a2

a3 . . . an

A basic construct: the quotient of series

s ′

s ′ ∈ K〈〈A∗〉〉

a1a2

A basic construct: the quotient of series

k = 〈s ′, a3 . . . an 〉 = 〈s, a1a2a3 . . . an 〉

a1a2

k

A basic construct: the quotient of series

k = 〈s ′, a3 . . . an 〉 = 〈s, a1a2a3 . . . an 〉
s ′ = [a1a2]

−1s

a1a2

k

The series s ′ is the quotient of s by a1a2

A basic construct: the quotient of series

s ∈ K〈〈A∗〉〉

u v

A basic construct: the quotient of series

u

v

A basic construct: the quotient of series

k = 〈s ′, v 〉 = 〈s, u v 〉

A basic construct: the quotient of series

k = 〈s ′, v 〉 = 〈s, u v 〉
s ′ = u−1s

The series s ′ is the quotient of s by u

The quotient operation

s ∈ K〈〈A∗〉〉

v ∈ A∗ v−1 s =
∑
w∈A∗

〈s, v w 〉w

The quotient operation

s ∈ K〈〈A∗〉〉

v ∈ A∗ v−1 s =
∑
w∈A∗

〈s, v w 〉w

v−1 : K〈〈A∗〉〉 −→ K〈〈A∗〉〉 endomorphism of K-modules

The quotient operation

s ∈ K〈〈A∗〉〉

v ∈ A∗ v−1 s =
∑
w∈A∗

〈s, v w 〉w

v−1 : K〈〈A∗〉〉 −→ K〈〈A∗〉〉 endomorphism of K-modules

v−1 (s + t) = v−1 s + v−1 t v−1 (k s) = k (v−1 s)

The quotient operation

s ∈ K〈〈A∗〉〉

v ∈ A∗ v−1 s =
∑
w∈A∗

〈s, v w 〉w

v−1 : K〈〈A∗〉〉 −→ K〈〈A∗〉〉 endomorphism of K-modules

K〈〈A∗〉〉 K〈〈A∗〉〉
A∗

s v−1s

Quotient is a (right) action of A∗ on K〈〈A∗〉〉

The quotient operation

s ∈ K〈〈A∗〉〉

v ∈ A∗ v−1 s =
∑
w∈A∗

〈s, v w 〉w

v−1 : K〈〈A∗〉〉 −→ K〈〈A∗〉〉 endomorphism of K-modules

K〈〈A∗〉〉 K〈〈A∗〉〉
A∗

s v−1s

Quotient is a (right) action of A∗ on K〈〈A∗〉〉

(u v)−1 s = v−1 (u−1 s)

The minimal automaton

s ∈ K〈〈A∗〉〉

Rs =
{
v−1 s

∣∣ v ∈ A∗}

The minimal automaton

s ∈ K〈〈A∗〉〉

Rs =
{
v−1 s

∣∣ v ∈ A∗}

Quotient turns

Rs into the minimal automaton As of s

(possibly infinite)

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

s = (I , µ,T) = ΦA(I) w−1s = (I · µ(w), µ,T)

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

s = (I , µ,T) = ΦA(I) w−1s = (I · µ(w), µ,T)

w−1ΦA(x) = ΦA(x · µ(w))

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

w−1ΦA(x) = ΦA(x · µ(w))

KQ

K〈〈A∗〉〉

ΦA

x

t

ΦA

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

w−1ΦA(x) = ΦA(x · µ(w))

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΦA ΦA

A∗

A∗

x x · µ(a)

t a−1t

ΦA ΦA

The observation morphism is a morphism of actions

The observation morphism

A = (I , µ,T)

ΦA : KQ −→ K〈〈A∗〉〉 ΦA(x) = (x , µ,T) =
∑
w∈A∗

(x ·µ(w)·T)w

w−1ΦA(x) = ΦA(x · µ(w))

K〈A∗〉 K〈A∗〉

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΨA

ΦA

ΨA

ΦA

A∗

A∗

A∗

w w a

x x · µ(a)

t a−1t

ΨA

ΦA

ΨA

ΦA

The observation morphism is a morphism of actions

The representation theorem

U ⊆ K〈〈A∗〉〉 submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)

s ∈ KRecA∗ ⇐⇒ ∃U stable finitely generated s ∈ U

The representation theorem

U ⊆ K〈〈A∗〉〉 submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)

s ∈ KRecA∗ ⇐⇒ ∃U stable finitely generated s ∈ U

K〈A∗〉 K〈A∗〉

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΨA

ΦA

ΨA

ΦA

A∗

A∗

A∗

The representation theorem

U ⊆ K〈〈A∗〉〉 submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)

s ∈ KRecA∗ =⇒ ∃U stable finitely generated s ∈ U

1A∗ ∈ K〈A∗〉 K〈A∗〉

I ∈ ImΨA KQ KQ

s ∈ ΦA(ImΨA) K〈〈A∗〉〉 K〈〈A∗〉〉

ΨA

ΦA

ΨA

ΦA

A∗

A∗

A∗

The representation theorem

U ⊆ K〈〈A∗〉〉 submodule U stable (by quotient)

Theorem (Fliess 71, Jacob 74)

s ∈ KRecA∗ ⇐= ∃U stable finitely generated s ∈ U

K〈A∗〉 K〈A∗〉

KQ KQ

K〈〈A∗〉〉 K〈〈A∗〉〉

ΨA

ΦA

ΨA

ΦA

A∗

A∗

A∗

Lecture IV

Reduction and morphisms

Outline of Lecture IV

� An appetizing theorem

� Reduction of automata with weights in fields

� The decidability of equivalence problem

� The notion of conjugacy of automata

� Out-morphisms and In-morphisms of automata

An appetizing result

K semiring A∗ free monoid

Definition
The Hadamard product of s, t ∈ K〈〈A∗〉〉 is

∀w ∈ A∗ 〈s � t,w 〉 = 〈s,w 〉 〈t,w 〉

An appetizing result

K semiring A∗ free monoid

Definition
The Hadamard product of s, t ∈ K〈〈A∗〉〉 is

∀w ∈ A∗ 〈s � t,w 〉 = 〈s,w 〉 〈t,w 〉

Theorem
If K is commutative,

then KRecA∗ is closed under Hadamard product

An appetizing result

K semiring A∗ free monoid

Definition
The Hadamard product of s, t ∈ K〈〈A∗〉〉 is

∀w ∈ A∗ 〈s � t,w 〉 = 〈s,w 〉 〈t,w 〉

Theorem
If K is commutative,

then KRecA∗ is closed under Hadamard product

(I , µ,T)� (J, κ,U) = (I⊗J, µ⊗κ,T⊗U)

An appetizing result

p q
b

a

b

2a

2b

C1

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

C2 = C1⊗C1

Reduced representation

A = (I , µ,T)

A is reduced if its dimension is minimal

(among all equivalent representations)

We suppose now that K is a (skew) field

Proposition

A is reduced iff ΨA is surjective and ΦA injective

Theorem
A reduced representation of A is effectively computable

(with cubic complexity)

Corollary

Equivalence of K-recognisable series is decidable

Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring B decidable
a subsemiring of a field decidable

(Z,min,+) undecidable

RatB∗ undecidable
NRatB∗ decidable

Equivalence of weighted automata

Equivalence of weighted automata with weights in

the Boolean semiring B decidable
a subsemiring of a field decidable

(Z,min,+) undecidable

RatB∗ undecidable
NRatB∗ decidable

Equivalence of transducers undecidable
transducers with multiplicity in N decidable

functional transducers decidable
finitely ambiguous (Z,min,+) decidable

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

Conjugacy of automata

A′ 1z

2z


1 0
0 1
0 2




⇐= C′21z 1z

2z

C′ =
〈(

1 0 0
)
,


0 z 0
0 0 z
0 0 2z


,


0
1
2



〉

A′ =
〈(

1 0
)
,
(
0 z
0 2z

)
,
(
0
1

)〉

(
1 0 0

) ·

1 0
0 1
0 2


 =

(
1 0

)
,


0 z 0
0 0 z
0 0 2z


 ·


1 0
0 1
0 2


 =


1 0
0 1
0 2


 ·

(
0 z
0 2z

)
,


0
1
2


 =


1 0
0 1
0 2


 ·

(
0
1

)

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U = I E X F U

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U = I E X F U = I X F F U

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U = I E X F U = I X F F U = J F F U

Conjugacy of automata

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B if

∃X K-matrix I X = J, E X = X F , and T = X U

This is denoted as A X
=⇒ B .

• Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

• A X
=⇒ B implies that A and B are equivalent.

I E E T = I E E X U = I E X F U = I X F F U = J F F U

and then I E ∗T = J F ∗U

Morphisms of weighted automata

Definition
A map ϕ : Q → R defines a (Q×R)-amalgamation matrix Hϕ

ϕ2 : {j , r , s, u} → {i , q, t} defines Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B

I Hϕ = J, E Hϕ = Hϕ F , T = HϕU

B is a quotient of A

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B

I Hϕ = J, E Hϕ = Hϕ F , T = HϕU

B is a quotient of A

Directed notion

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B

I Hϕ = J, E Hϕ = Hϕ F , T = HϕU

B is a quotient of A

Directed notion Price to pay for the weight

Morphisms of weighted automata

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V2

2b 2b

b
a

b

2a

2b

4a

4b

C2
Hϕ2=⇒ V2

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B

I Hϕ = J, E Hϕ = Hϕ F , T = HϕU

B is a quotient of A

Directed notion Price to pay for the weight

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an In-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B

I Hϕ = J, E Hϕ = Hϕ F , T = HϕU

B is a quotient of A

Directed notion Price to pay for the weight

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an In-morphism ϕ : A → B
if B is conjugate to A by the matrix tHϕ : B

tHϕ
=⇒ A

J tHϕ = I , F tHϕ = tHϕ E , U = tHϕ T

B is a co-quotient of A

Directed notion Price to pay for the weight

Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V ′
2

b 4b

b
a

b

2a

2b

4a

4b

V ′
2

tHϕ2=⇒ C2

Morphisms of weighted automata

ϕ2 : {j , r , s, u} → {i , q, t}

j r

s u

C2 b

a

b

2a

2b

2b

2a

2b

4a

4b

b 2b

b

Hϕ2 =



1 0 0
0 1 0
0 1 0
0 0 1




i q t

V2

2b 2b

b
a

b

2a

2b

4a

4b

i q t

V ′
2

b 4b

b
a

b

2a

2b

4a

4b

C2
Hϕ2=⇒ V2 V ′

2

tHϕ2=⇒ C2

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B
B is a quotient of A

Morphisms of weighted automata

Definition
A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 K-automata

of dimension Q and R .

A map ϕ : Q → R defines an Out-morphism ϕ : A → B
if A is conjugate to B by the matrix Hϕ : A Hϕ

=⇒ B
B is a quotient of A

Theorem
Every K-automaton has a minimal quotient

that is effectively computable (by Moore algorithm).

Documents for these lectures

To be found at

http://www.telecom-paristech.fr/∼jsaka/EWSCS2014/

In particular, a set of instructions for downloading

a −α release of a pre-experimental version of

the Vaucanson 2 platform

implemented as a virtual machine interfaced with IPython

