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ABSTRACT

Lyrics-to-audio alignment methods have recently reported
impressive results, opening the door to practical applica-
tions such as karaoke and within song navigation. How-
ever, most studies focus on a single language - usually En-
glish - for which annotated data are abundant. The ques-
tion of their ability to generalize to other languages, es-
pecially in low (or even zero) training resource scenarios
has been so far left unexplored. In this paper, we address
the lyrics-to-audio alignment task in a generalized multi-
lingual setup. More precisely, this investigation presents
the first (to the best of our knowledge) attempt to cre-
ate a language-independent lyrics-to-audio alignment sys-
tem. Building on a Recurrent Neural Network (RNN)
model trained with a Connectionist Temporal Classifica-
tion (CTC) algorithm, we study the relevance of different
intermediate representations, either character or phoneme,
along with several strategies to design a training set. The
evaluation is conducted on multiple languages with a vary-
ing amount of data available, from plenty to zero. Results
show that learning from diverse data and using a univer-
sal phoneme set as an intermediate representation yield the
best generalization performances.

1. INTRODUCTION

Lyrics-to-audio alignment aims at synchronizing lyrics text
units such as paragraphs, lines or words to the timed posi-
tion of their appearance in the audio signal. Tools dedi-
cated to this task have many practical applications: they
can be applied to generate new annotated data to train
more robust singing voice recognizers [1]; or be used as
building blocks in specific applications such as karaoke
[2], navigation within songs [3] or explicit lyrics removal
[4]. Lyrics alignment methods are typically inspired from
text-to-speech methods. Although text-to-speech align-
ment is a mature [5] and widely studied task [6], lyrics-to-
audio alignment remains a challenging problem with spe-
cific limitations. First, the musical accompaniment acts as
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a loud background "noise", potentially highly correlated
with the signal of interest since vocalists usually sing in
harmony and rhythm with instruments. A singing voice
separation algorithm pre-processing step is often used to
partially overcome this problem [7]. Second, singing voice
exhibits more variety than speech with potentially large
phonemes pronunciation variations between songs and ex-
tended tessitura. Recent studies have proposed efficient
alignment methods for singing voice [8,9], but only for the
English language, for which annotated data is abundant.
The question of their ability to generalize to other lan-
guages, especially in low (or even zero) training resource
scenarios, has not been properly addressed.

Arguably a monolingual evaluation is unrepresenta-
tive of the variety of music recordings available in large
scale collections. Commercial streaming services com-
monly serve content in hundreds of languages and a non-
negligible number of popular songs even have multilingual
lyrics [10]. However, annotated data on this type of con-
tent are scarce. A source of inspiration comes from the re-
lated field of multilingual speech recognition [11]. Trans-
fer learning methods [12] have been shown to improve
performance on language with few to zero training data.
However, this improvement on low-resource languages can
sometimes be detrimental to performances on languages
with more resources [11].

The goal of this paper is to evaluate and extend state
of the art lyrics-to-audio alignment methods to a language-
independent setup. First, we review the fitness of these
systems to the multilingual framework. Then, we focus on
one architecture and study two key features likely to al-
low generalization to several languages: 1) the intermedi-
ate representation space (character versus phoneme) and 2)
the design of the training dataset. Evaluation is performed
on multiple languages with various amounts of data avail-
able, from plenty to zero. The paper is organised as fol-
lows: related works are presented in Section 2. We then
describe the proposed method in Section 3. The experi-
mental setup and results are described respectively in Sec-
tion 4 and Section 5. Finally, conclusions are drawn in
Section 6 and future works are discussed.

2. RELATED WORKS

Singing voice alignment methods are typically inspired
from text-to-speech alignment systems. Classically, an
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acoustic model is trained and used to force text to audio
alignment using a Viterbi algorithm [5]. These models are
usually trained using alignment annotations, at the frame
level, between audio and text. However, the availability
of such annotations is very limited for polyphonic mu-
sic where they are traditionally generated by employing
an intermediate model [1], leading to suboptimal perfor-
mances [8]. More generally, the development of such ap-
proaches for singing voice was slowed down by the lack
of publicly available annotated dataset at word or even line
level. Some models were trained on speech and adapted
to singing using speaker adaptation technique and a small
singing dataset. For instance, in [13], a monophone Hidden
Markov Model (HMM) is trained on speech and adapted
on a small corpus of manually annotated a cappella songs
with Maximum Likelihood Linear Regression (MLLR).
The alignment is then performed on polyphonic songs af-
ter extracting the singing voice with a melody transcription
and a sinusoidal modeling technique. Other models were
trained with "low quality" automatic annotations generated
with forced alignment using an Automatic Speech Recog-
nition (ASR) system. In [1], a speech recognizer is used to
generate a large amount of singing annotations by aligning
a large corpus of a cappella singing to their corresponding
lyrics. Annotations are then used to train a new acoustic
model. This new model is used to align 19 vocal tracks
from English language pop songs: the phoneme sequence
is estimated for each track and its Levenshtein distance to
the ground truth sequence from the lyrics is computed to
find the alignment path. To help alignment, multiple ap-
proaches tried extending speech recognizers with external
information such as chords [14], score [15] or note on-
sets [16].

The recent release of the DALI dataset [17] has led
to significant progress in lyrics-to-audio alignment. This
dataset is the first publicly annotated singing voice dataset
available. It contains 5358 audio tracks with time-aligned
lyrics at paragraph, line and word levels. These annota-
tions are created from manual annotations and are consid-
ered to be very good. It is composed of varied western
genres (e.g. rock, rap and electronic) in several languages.
Novel singing voice separation algorithms displayed im-
pressive results [18] and were also shown to improve sig-
nificantly lyrics-to-audio alignment systems performances
[7]. State-of-the-art approaches for lyrics alignment were
compared in the MIREX 2019 challenge 1 . Two submit-
ted systems showed particularly strong performances. The
first one was SDE2, described in [8]. It is based on an
end-to-end audio-to-character architecture, more precisely
a wave-U-net. A preprocessing step of singing voice sep-
aration is performed, during training and inference, us-
ing a U-net convolutional network. The acoustic model is
trained on a private English dataset of 40000 songs using
a CTC algorithm. The second one was GYL1, described
in [9], which obtained the best results on the challenge. It
is based on a Time Delay Neural Network (TDNN) which

1 https://www.music-ir.org/mirex/wiki/2019:
Automatic_Lyrics-to-Audio_Alignment

is trained on the English subpart of the DALI dataset. It
uses an extended lexicon to cope with long vowels dura-
tion in singing and genre labelling information (phoneme
units are annotated with genres) but does not rely on a pre-
processing step of singing voice separation.

Although it achieved the best performances in the
MIREX challenge, GYL1 can not be straightforwardly
used in a multilingual setup: it is composed of multiple
parts, some of them, such as the pronunciation dictionary
and the language model, being specific to English. To be
able to use it on a new language, it would require to mod-
ify, or retrain, these parts. In comparison, SDE2 is based
on an end-to-end acoustic model, trained with CTC algo-
rithm, that directly outputs characters. It is more suitable
to perform multilingual lyrics-to-audio alignment as it can
be theoretically applied to any languages being based on
the same script (writing system) as the training language.

Employing characters may not be optimal for multi-
lingual lyrics-to-audio alignment: [8] suggest that using
phoneme as an intermediate representation could be more
relevant for aligning song in other languages. They argue
that, for phoneme based systems, only the pronunciation
dictionary has to be replaced for a new language, while
a character based system is limited by the set of charac-
ters that the acoustic model outputs. For instance, SDE2
can only be used to align songs in Latin script languages.
The output of the acoustic model could be extended with
characters from scripts of new languages, as in [19], but
it would require retraining the acoustic model each time a
new script is added in the language pool. Using phoneme
as an intermediate representation, any language can be the-
oretically aligned for any trained model if a pronunciation
dictionary is available. In this work, we study a system
inspired from [8] using either a character or a phoneme in-
termediate representation.

3. PROPOSED METHOD

A general overview of the proposed system is described in
Figure 1. It is composed of three parts: a singing voice
separation model, an acoustic model and a lyrics-to-audio
alignment procedure. It takes as input a song x, its corre-
sponding lyrics y and output the synchronized lyrics ŷ. Vo-
cals are extracted from the song using a singing voice sep-
aration module. The acoustic model processes features ex-
tracted from the isolated vocal signal. The acoustic model
consists in an RNN trained with a CTC algorithm. The set
of outputs of the acoustic model is either characters of the
Latin alphabet or phonemes of an universal phoneme set.
Lyrics-to-audio alignment is performed on outputs of the
acoustic model by a CTC-based alignment decoding func-
tion.

3.1 Acoustic model

The acoustic model of our system is a RNN trained with
a CTC algorithm. CTC-based acoustic models were suc-
cessfully used for multilingual speech recognition [19,20].
The RNN part is composed of bi-directional Long Short-
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Figure 1. Overview of the lyrics-to-audio alignment sys-
tem. Our study focuses on the training of the acoustic
model (section 3.1) and the design of intermediate posteri-
ogram representation spaces (section 3.2). The alignment
block is described in section 3.3

Term Memory (LSTM) layers. Authors in [21] argue that
such models can give reliable alignments given that out-
puts at each frame depend on the entire input sequence. In
contrast, uni-directional CTC acoustic model suffers from
alignment delay [22].

CTC makes it possible to directly train RNN models
using weakly aligned annotations, e.g. at word or line
level. To do that, the CTC algorithm introduces a new
symbol called "blank" (noted ε) which represent a non-
emission token. The total probability of the output label
sequence is then marginalized over all possible alignment
for a given input. In our case, the output label sequence is
a sequence of character or phoneme. Since the objective
function is differentiable, the network can be trained with
standard back-propagation through time. The CTC algo-
rithm is more extensively described in [23].

3.2 Character vs Phoneme

We consider two different intermediate representations for
our architecture. The first one is a character set, here the
Latin alphabet. This representation does not need any kind
of expert linguistic knowledge as the acoustic model di-
rectly outputs characters probability. However, such a rep-
resentation is not suitable to perform alignments of songs
in a language with a different script. To process those, the
acoustic model would need to be retrained with new data
on the given script. Moreover, even for languages sharing
the same script, a character-based representation is sub-
optimal for transferring knowledge between languages, as
characters pronunciation can significantly differ from one
language to another. Our approach relies on the following
remarks: all languages share some common phonemes and
phonemes are considered to be language independent [24],
i.e. to be pronounced the same way across languages.
Therefore, using a universal phoneme set as an intermedi-
ate representation makes it possible to leverage similarity
between sounds across languages. The idea is to use con-
sistent phonemes across languages used for training and
that most phonemes from an unseen language appear in
the languages used for training.

It can be achieved using international phonetic alpha-
bet (IPA) symbols. The IPA is a set of phonetic nota-
tions which is a standardized representation of sounds of
all spoken language. IPA Pronunciations of words from all
languages can be obtained using Grapheme-To-Phoneme
(GTP) tools. Such tools are available for most common

languages. The universal phoneme set is created by con-
catenating and merging the union of phoneme sets of all
languages based on their IPA symbols.

3.3 Lyrics to audio alignment

In order to align a song to its corresponding lyrics y, the
audio is sliced into segments of 5 seconds with a step size
of 2.5 seconds. A posteriogram is generated by the trained
acoustic model for each segment. To obtain the final pos-
teriogram, all segments posteriograms are concatenated,
cropped to half of their duration centered in their middle.
We obtain a posteriogram P ∈ [0, 1]|C|×T , C being the set
of symbols supported by our acoustic model, either char-
acters of phonemes, and T the number of temporal frames
of the song. This matrix provides an estimation of the pos-
terior probabilities of each symbol through time. Align-
ment annotations are then predicted, using the generated
posteriogram P and lyrics y, with a CTC-based alignment
function inspired from the CTC-based decoding function
presented in [25] and is akin to a Viterbi forced align-
ment [26]. Viterbi forced alignment is a simpler version
of Viterbi decoding where the possible paths are limited to
the lyrics symbol sequence. To allow the use of ε during
decoding, y is extended to z by adding a ε at the beginning,
end, and between every unit. A decoding network of size
|z| × T is then constructed from z. The goal of the decod-
ing function is to find the path in the network that give the
most probable alignment ŷ of y given the posteriogram P .
More precisely:

ŷ = argmax
B(ŷ)=y

T∏
j=1

P (ŷj , j) (1)

whereB is an operator that removes blanks and repetitions
from a sequence ŷ. To do that, network’s node αs,j is de-
fined as the probability of the best alignment of the sub-
sequence z1:s after j frames. αs,j scores can be calculated
efficiently using a forward-backward algorithm, by merg-
ing together paths that reach the same node. αs,j is then
computed recursively from the values of α in the previous
frame. Only transitions between blank and non-blank char-
acters, and between pairs of distinct non-blank characters
are allowed. ε at the beginning and end of the sequence
being optional, there are two valid starting nodes and two
final nodes. The coefficients α are initialized such as:

αs,1 = P (zs, 1) for s ∈ {1, 2} and αs,1 = 0,∀s > 2 (2)

Recursion is given by:

αs,j = max
τ∈{0,1}

(αs−τ,j−1)P (zs, j), if zs ∈ {ε, zs−2}

ζs,j = argmax
τ∈{0,1}

(αs−τ,j−1)

αs,j = max
τ∈{0,1,2}

(αs−τ,j−1)P (zs, j), otherwise

ζs,j = argmax
τ∈{0,1,2}

(αs−τ,j−1)

(3)
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Then, the probability of the best alignment is given by:

P (ŷ) = max
τ∈{0,1}

(α|z|−τ,T ) (4)

Alignment ŷ can finally be computed with an inverse re-
cursion. The initial unit is initialized such as:

ŷT = |z| − argmax
τ∈{0,1}

(α|z|−τ,T ) (5)

Inverse recursion is given by:

ŷj−1 = ŷj − ζŷj ,j (6)

Calculations are performed in log-space using the log-sum-
exp trick [27] to avoid numerical instabilities. As some
phonemes from target languages can be unseen in the train-
ing languages, the acoustic model will be unable to pre-
dict them, resulting in all alignment having a probability
of zero. To get rid of this problem, a small amount of
uniformly distributed noise is added to all entries of the
posteriogram, as suggested in [8].

4. EXPERIMENTAL SETUP

4.1 Dataset

For this study, we consider several language subsets of
the DALI dataset. They are described in Table 1. Experi-
ments are conducted using 5 source languages for the ini-
tial multilingual system development. These source lan-
guages are: English, German, French, Spanish and Ital-
ian. English is considered as a high-resource language.
The 4 others languages are considered as low-resource
languages in this study. The split between train, vali-
dation and test datasets for the first five languages is an
artist aware split [28]. We also consider 4 additional tar-
get zero-resource languages: Portuguese, Polish, Finnish
and Dutch. Data from these languages are only used
for evaluation. The split of the different language data,
i.e. dali ids belonging to each dataset, are made pub-
licly available at https://github.com/deezer/
MultilingualLyricsToAudioAlignment. One
dataset, that we named 5lang, is created for multilingual
training. The training and validation sets of this dataset are
generated by simply concatenating respectively the train-
ing and validation sets of the 5 source languages. This
dataset is largely unbalanced, English data dominating
the corpus. Balancing the dataset with oversampling was
tested without modification on performances of the mul-
tilingual model on low-resource and zero-resource lan-
guages. Similar results were also found for speech [29].
Worse, it significantly degrades results for the English lan-
guage. These results were expected as the quantity of En-
glish data being far superior in comparison to other lan-
guages in the multilingual dataset, diminishing their im-
portance could only degrade results for the multilingual
model when tested on English dataset. Results of multi-
lingual models trained with balanced dataset are displayed
in supplementary materials.

Language # Phonemes Train (h) Test (h)

English (en) 44 (5) 192.7 31.5
German (de) 44 (1) 17.4 2.3
French (fr) 42 (0) 8.9 0.9

Spanish (es) 35 (3) 8.4 1.1
Italian (it) 33 (0) 8.5 1.2

Portuguese (pt) 37 (0) X 1.8
Polish (pl) 31 (2) X 4.2
Finnish (fi) 25 (0) X 3.1
Dutch (nl) 41 (2) X 3.1

Table 1. Description of DALI language subset datasets and
corresponding phoneme dictionary sizes. In parenthesis
are displayed the number of phonemes only occurring in
the given language and its equivalent ISO 639.1 code

The procedure to generate training samples and corre-
sponding labels for the acoustic model is similar to the
one described in [25]. To recall, Spleeter [18] is used
to isolate vocals from each song. Training samples are
then computed by segmenting extracted vocals. The char-
acter sequence associated with a segment is created from
word level annotations of DALI by concatenating all words
whose start position is within the segment. An instrumen-
tal token is generated if no words are present in the seg-
ment. For phoneme models, the phoneme sequence asso-
ciated with a segment is generated from his corresponding
character sequence using Phonemizer 2 . Phonemizer in-
cludes GPT tools for most common languages. It decom-
poses each word into a sequence of IPA symbol. To create
the phoneme dictionary of one given language, we collect
all IPA phonemes present in the corresponding dataset. For
simplicity, we did not consider IPA symbols others than
vowels and consonants. Sizes of dictionaries of phoneme
of each language are given in Table 1. After concatenat-
ing and merging all dictionaries, we obtain a universal
phoneme set of 62 phonemes. The language sharing fac-
tor [24] for the nine languages we used in this study is
5.35. It means that, on average, one unit of the universal
phoneme set is shared by 5 to 6 languages of the language
pool which supports the fact that IPA phonemes are rather
consistent across languages that we consider in this study.

4.2 Parameters of acoustic models

We use the same architecture for all acoustic models. Sev-
eral sets of regularisation and architecture’s size param-
eters were tested without a clear impact on performances.
Parameters of architecture are similar to those used in [25].
The model has 3 layers of bidirectional LSTM and a dense
layer. It takes as input mel-scale log filterbanks coefficients
and energy plus deltas and double-deltas. The acous-
tic model output is the probabilities of characters or IPA
phonemes. In the first case, the set of outputs is the con-
catenation of the Latin alphabet, the apostrophe, the instru-
mental token, the space token and the CTC blank symbol

2 https://github.com/bootphon/phonemizer
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ε. A set of size 30 is obtained. In the second case, it is con-
stituted of the universal phoneme set, plus the instrumental
token, the space token and the CTC blank symbol ε. A set
of size 65 is obtained. Parameters of training are the same
as those used in [25].

4.3 Evaluation

To evaluate our system, we use the Average Absolute Er-
ror (AAE) [13]. For its calculation, the absolute differ-
ence between the actual start of the word timestamp and
its estimation for each word is calculated. The final error
score for a song is obtained by averaging over all word-
level errors. A known issue of this metric is its perceptive
dependence on tempo. In fact, one absolute error will not
be perceived the same if the tempo is fast or slow. The
Percentage of correct onsets (PCO) [14] was proposed to
mitigate this effect. It is computed as the percentage of
start of the word timestamps whose estimation are below
a certain distance from the ground truth. This metric con-
siders that errors bellow a certain threshold fall within hu-
man listeners perceptive tolerance. We use 0.3 seconds
as the tolerance window. Both metrics are classic metrics
of MIREX lyrics-to-audio alignment challenge. They are
computed using the same evaluation script as the one used
for the challenge [30] 3 .

5. RESULTS AND DISCUSSION

5.1 State of the art comparison

To validate our implementation, We first compare our sys-
tem with two state-of-the-art ones. Results are collected
from the 2019 MIREX lyrics-to-audio alignment chal-
lenge. For this comparison, we use characters as inter-
mediate representation space and only English for train-
ing. We use three standard evaluation datasets for lyrics-
to-audio task. Hansen [31] and Mauch [14] are constituted
of respectively 9 and 20 English pop music songs. Ja-
mendo [8] is made of 20 English music songs of several
western genres. All three datasets are annotated with start-
of-word timestamps. Results are summarized in Table 2.

Our system performances are close to those of GYL1,
with no significant differences for PCO metric on the
three evaluation datasets. Although we use an architecture
somewhat similar to SDE2 (i.e. a CTC based approach
with a pre-step of singing voice separation), we report
significantly better performances. It is worth noting that
GYL1 and our system both use the English part of DALI
as training dataset, while SDE2 uses a private dataset of
unknown quality. We can postulate that the DALI dataset
annotation quality is higher, which would explain the bet-
ter performances reached by our implementation despite
using a much smaller train set than SDE2.

3 https://github.com/georgid/
AlignmentEvaluation

Dataset System Mean AAE (s) Mean PCO (%)

Hansen SDE2 [8] 0.39 (0.12) 88 (3)
GYL1 [9] 0.10 (0.03) 97 (1)

Ours 0.18 (0.05) 95 (2)

Mauch SDE2 [8] 0.26 (0.04) 87 (2)
GYL1 [9] 0.19 (0.03) 91 (2)

Ours 0.22 (0.03) 91 (1)

Jamendo SDE2 [8] 0.38 (0.11) 87 (3)
GYL1 [9] 0.22 (0.06) 94 (2)

Ours 0.37 (0.05) 92 (2)

Table 2. Comparison between our character based archi-
tecture trained with the English part of DALI and state-of-
the-art systems on standard lyrics-to-audio alignment eval-
uation datasets. Mean AAE is better if smaller, mean PCO
is better if larger. Standard errors over tested songs are
given in parenthesis

5.2 Multilingual generalization

Results of multilingual generalization experiments are dis-
played in Figure 2. Precise numerical values are reported
in supplementary materials. Several conclusions can be
drawn:

- Using a multilingual training set helps For both
character and phoneme based architectures, the model ex-
hibiting the best multilingual generalization is trained with
multilingual dataset. In fact, this model significantly out-
performs the ones trained on English on low-resource and
zero-resource languages without degrading performances
on English. With phoneme as intermediate representa-
tion, it even improves results on English. On low-resource
languages, multilingual trained model obtains results on
par with models trained only on the target language (e.g.
French trained model on French dataset). It is worth notic-
ing that the multilingual training dataset is only marginally
larger than the English one. Performances differences are
to be attributed to the additional information the model was
able to extract from the diversity of languages seen during
training.

- Use phonemes over characters as an intermediate
representation has better performances Performances
of phoneme based architectures are almost always better
than those of their character based counterparts in all our
experimental setups. The gap is bigger for models trained
on the multilingual dataset than for those trained on mono-
lingual ones. The only models that are not improved are
the ones trained and tested on the same languages. Such re-
sults show that the use of phoneme as an intermediate rep-
resentation enables transfer knowledge between language
better than character representation.

- Training on multilingual data and a phoneme inter-
nal representation yields the best results in all consid-
ered cases Training the acoustic model on multilingual
data and use a universal phoneme set is a relevant way
for improving the generalization capacity of the consid-
ered lyrics-to-audio alignment architecture even to zero-
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Figure 2. Lyrics-to-audio evaluation on DALI language subset datasets for phoneme and character based architectures.
Several training set design strategies are considered. Languages are given by their ISO 639.1 code. Here "source" refers to
data language used to train the given model and "target" refers to data language used to evaluate the trained model. When
source is equal to target, architectures are trained and tested on the same language. Mean AAE is better if smaller, mean
PCO is better if larger. Mean values are displayed using squares

resource scenarios.

6. CONCLUSION

In this paper, we investigated extending state-of-the-art
methods in the multilingual context. Focusing on one ar-
chitecture that seemed fit for generalization, we demon-
strated that design choices regarding the training dataset
and the acoustic representation space are salient factors.
We have shown that using many languages to train the
acoustic model and a universal phoneme set improves the
multilingual generalization of such architecture. In this
work, we have built a dataset using the language distribu-
tion found in DALI, which resulted in a largely unbalanced
dataset. For comparison, we also conducted experiments
with a balanced dataset, in which all 5 languages were
equally present. The performance was similar, except for
English, when it was significantly degraded. This raises the
issue of how to design training sets in a setting where sev-
eral high-resource languages are available. Although there
are no publicly available datasets exhibiting such charac-
teristics, future work should investigate this case. Exist-
ing works on multilingual speech processing [11] point
towards increasing model complexity to circumvent this.
Also, only a small set of languages were considered in this
study. Additional experiments on a wider, more diverse
set of songs remain to be conducted. Finally, future works
should consider the specific case of songs with multilin-
gual lyrics. This problem, known as code-switching, has
been studied for speech [21] but never for music. Such
a phenomenon is however not uncommon in popular mu-
sic [10], thus it should be addressed too.
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518



[30] G. Dzhambazov, “Knowledge-Based Probabilistic
Modeling For Tracking Lyrics In Music Audio
Signals,” Ph.D. dissertation, Universitat Pompeu
Fabra Barcelona, 2017. [Online]. Available: http:
//www.tdx.cat/bitstream/handle/10803/404681/tgd.
pdf?sequence=1{%}0Ahttp://mtg.upf.edu/node/3751

[31] J. K. Hansen, “Recognition of Phonemes in A-cappella
Recordings using Temporal Patterns and Mel Fre-
quency Cepstral Coefficients,” in Proc. 9th Sound and
Music Computing Conference (SMC), 2012, pp. 494–
499.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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