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An exact analytical expression for the time—bandwidth product AtAf of chirped sech? pulses is derived. The
relation can be expressed by AtAf = 0.1786 arcosh(cosh ma + 2) as a function of the laser’s phase—amplitude

coupling factor a.

It is well known that gain-switched semiconductor
laser pulses suffer from power spectrum broaden-
ing as a result of chirp included within the pulse.!
This spectral broadening is due to the fact that the
phase—amplitude-coupling factor a of semiconductor
lasers is different from zero and usually lies in the
region o = 2—8.2 A simple analytical expression for
a Gaussian pulse shape was shown to be® AtAf =
0.44/1 + a2, where AtAf is the time—bandwidth prod-
uct (TBP) and At and Af are the FWHM of the optical
pulse intensity and of its power spectrum, respec-
tively. Because of its simplicity this has been the
only formula used for estimation of the a factor from
AtAf measurements of gain-switched laser pulses.
However, it gave systematically higher values for «
than did other measurement methods.'? Moreover,
experimental evidence suggests that pulses from gain-
switched semiconductor lasers have sech? rather than
Gaussian shapes.*® In this Letter a new formula is
derived that, unlike other expressions proposed,® is
exact for the chirped sech? pulse and gives better esti-
mates of the laser’s a factor in the large-signal regime
than the Gaussian approximation gives.

The Gaussian and sech? pulse shapes look much
alike, as can be seen from Fig. 1, apart from their
decay rate (which is faster for the Gaussian pulses).
However small this difference may seem, it results
in a different TBP. In the case of unchirped pulses
this product is 0.441 for the Gaussian and 0.315 for
the sech? pulse. When the pulses are chirped, as is
the case with gain-switching pulses, the instantaneous
frequency changes with time, resulting in a broadened
spectrum. The phase equation for the laser pulse is
given by?

’ (D

where P(t) is the pulse intensity. In Fig. 2 the vari-
ation of instantaneous frequency as a function of time
is shown, assuming an « factor of 5. It can be seen
that the chirped Gaussian pulse presents a linear fre-
quency deviation with decreasing frequency as a func-
tion of time, which is referred to as downchirp. On the
other hand, the chirped sech? pulse presents a nonlin-
ear frequency deviation, of a hyperbolic tangent vari-
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An experimental measurement of the « factor that relies on this formula is discussed.

ation, which is only approximately linear near the
origin and saturates at the tails of the pulse. This
nonlinearity results in an even broader spectrum for
usual values of a, as will be demonstrated. An out-
line of the derivation is given below. The pulse shape
in the time domain is

P(t) = |[E@®)]” = sech®(t/7), (2)
where P(¢) is the output photon density, E(¢) is the nor-
malized output electrical field, and 7 is a time-scaling

parameter. From the above formula it is straightfor-
ward to calculate the FWHM A¢, which is given by

At = 2 arcosh(v/2)r = 1.763r, 3)
where arcosh(x) = In(x + +/x2 — 1) is the inverse hy-
perbolic cosine function. The spectrum of the pulse is
derived by use of the Fourier transform (FT) of sech?,
where p = 1 + ja is a complex exponent® represent-
ing the chirped nature of the pulse. The spectrum is
obtained in terms of gamma functions of a complex ar-
gument as’

E(w) = FT[sech?(¢/7)]

2l [ p+ jor p— jot\
(o) (=)

Then, using the well-known gamma function proper-
ties, we obtain the remarkably simple expression for
the normalized power spectrum of the chirped pulse in
terms of the product of two hyperbolic secants as

sech[ % (wr + a)}sech{ % (w7 — a)]

sech?(wa/2)

|E(w)? _

|E©0)?

(5)

When the pulse is unchirped, i.e., « = 0, we obtain
the familiar sech? power spectrum. In Fig. 3 one can
notice the difference between the spectra of the chirped
Gaussian and sech? pulses. We traced both curves by
assuming an « factor of 5. Formula (5) is used for the
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Fig. 1. Normalized intensity of (1) a sech? and (2) a Gauss-

ian pulse having the same FWHM time duration. Time is

normalized relative to the FWHM.
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Fig. 2. Instantaneous frequency deviation for the chirped

(1) sech? and (2) Gaussian pulses versus normalized time.

chirped sech? spectrum, the corresponding formula for
the chirped Gaussian pulse is

E()l? w7
EOF exp<_ L+ a) ©

and 7; = 1.067, so the sech? and the Gaussian {P(¢) =
exp[—(¢/71)?]} pulses have the same FWHM time
duration.

It is interesting to note that the spectrum is it-
self Gaussian even for a chirped pulse. Although nei-
ther of the curves presents rabbit ears and the curves
are perfectly symmetric, the sech? curve seems to be
more realistic, fitting experimental and numerical re-
sults better in that it falls off more rapidly than
the Gaussian curve and that it presents an extended
plateau region. From formula (5) the FWHM Af is
calculated and multiplied by Eq. (3) to yield finally

ks

AtAf = [MLSZ}I(\/E)}arcosh(cosh ma +2), (7)

which is our main result. In Fig. 4 the TBP of
chirped Gaussian and sech? pulses is plotted as
a function of the laser’s a factor. An interesting
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feature of this graph is that, although the sech? pulse
starts with an initially lower TBP value of 0.315
instead of 0.441 for the Gaussian, it soon ends up
with higher AtAf values for the usual a factors,
i.e., « = 2. This behavior was actually predicted in
Ref. 6 by numerical simulation, and then the authors
of Ref. 6 tried a curve fit to explain the calculated
results. Formula (7) gives the correct TBP value
for transform-limited (unchirped) pulses, i.e., 0.315.
On the other hand, neglecting 2 in comparison to
cosh 7a yields the excellent asymptotic approximation
AtAf = 0.56a, which is very accurate for « = 2. This
is a useful result, as « varies between 2 and 4 for
strained quantum-well lasers and between 5 and 8 for
bulk lasers, meaning that this approximate formula
is always valid. The corresponding asymptotic
result for the chirped Gaussian pulse is easily seen to
be 0.44«, so the value of « is overestimated when the
Gaussian approximation is used in cases in which the
pulse shape is closer to sech?. The overestimation
error asymptotically reaches 27%. In Table 1 the
a factor estimations for the two approximations are
shown to be significantly different, and this explains
the observation in Ref. 1 that the Gaussian formula
overestimates « by approximately 20% compared with

1 7

Normalized /
power J
Spectrum /

0.5

0

-10 -5 0 5 10
Normalized Frequency (wr)

Fig. 3. Normalized power spectrum of the chirped (1)

sech? and (2) Gaussian pulses as a function of normalized
frequency.
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Fig. 4. Time—bandwidth product of the chirped (1) sech?
and (2) Gaussian pulses as a function of the laser’s
phase—amplitude-coupling factor.
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Table 1. Comparison of
Phase-Amplitude-Coupling Factor a Values
Estimated by the Gaussian and the Soliton sech?
Approximations from A¢tAf Measurement Data

a (G) a (sech?) Difference (%) AtAf
3 2.5 20 1.39
5 4.0 25 2.25
8 6.3 27 3.56

other measurement methods. However, one should
always bear in mind that, strictly speaking, the above
analytical results hold only in the case of perfectly
symmetric Gaussian and sech? pulses and therefore
symmetric power spectra. So care must be taken in
applying these results in the case of very large modu-
lation amplitudes for gain switching, where pulses
develop long tails and power spectra become
asymmetrical, presenting rabbit ears of different
amplitudes. This condition being satisfied,
experiment shows that the pulse shape and the
power spectrum bear a closer similitude to the sech?
form than to the Gaussian form. Theoretically,
this is explained by the fact that the laser’s rate
equations support an exponential rise and fall for the
pulse rather than the exp(—¢2) Gaussian evolution.
The latter is confirmed by numerical solution
of the rate equations.® Our numerical experi-
ments with the rate equations gave us excellent agree-
ment between the a factor used in the simulations
and the one estimated by o = AtAf/0.56 for o = 2, as
long as the laser’s driving conditions were moderate,
such as to give rise to almost symmetric pulses.

In conclusion, an exact analytical expression is de-
rived for the TBP of sech? chirped pulses as a function
of the laser’s « factor. It can be used to determine
the pulse spectrum broadening and hence the devi-
ation from ideal soliton propagation requirements, i.e.,
transform-limited pulses, that is due to nonzero laser
a factors. On the other hand, the exact as well as
the approximate formulas can be used as means to
estimate the laser’s @ by TBP measurements in the
gain-switching regime. In the latter case this leads
to the simple estimation formula « = AtAf/0.56 that
is valid for AtAf = 1.

This research was partially supported by the Cen-
tre National d’Etudes des Télécommunications. The
authors thank J.-C. Bouley, C. Kazmierski, and P.
Vandamme for helpful discussions during this work.

References

1. M. Osinski, D. F. G. Gallagher, and I. H. White, Electron.
Lett. 21, 981 (1985).

2. M. Osinski and J. Buus, IEEE J. Quantum Electron. QE-
23, 9 (1987).

3. T. L. Koch and J. E. Bowers, Electron. Lett. 20, 1038
(1984).

4. H. F. Liu, Y. Ogawa, and S. Oshiba, Appl. Phys. Lett.
59, 1284 (1991).

5. H. F. Liu, S. Oshiba, Y. Ogawa, and Y. Kawai, Opt. Lett.
17, 64 (1992).

6. K. Wada and Y. Cho, Opt. Lett. 19, 1633 (1994).

7. 1. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series,
and Products (Academic, New York, 1980), Eq. (3.985.1),
p. 506.



