New Optical Functional Devices

• 1 - Interest in All Optical Signal Processing
• 2 - Physics Phenomena
• 3 - Wavelength Conversion
• 4 - Nonlinear Mirror Demultiplexing
• 5 - 3R Regeneration
• 6 - Conclusion

1 - Interest in All Optical Signal Processing

• Bandwidth requirement
• OTDM versus (D)WDM
• From Optoelectronic to « All Optical » Signal Processing

Bandwidth requirement

• Bandwidth: 1nm at 1.55 µm = 125GHz @ 10THz
• Overall optical fiber bandwidth: few 10THz between 1.3 & 1.5µ
• Erbium amplifiers bandwidth: few THz between 1.55 & 1.5µ
• Today needs: 100 Gbit/s to 1 Tbit/s per fiber
• Electronic bandwidth: few 10GHz

• Up to now:
 - Optical transmissions
 - Commutation, Routing & Processing in electronic domain
 - O/E & E/O conversions: slow, expensive (packaging), noisy, scrambling of the optical phase, lack of transparency...

• How to increase the bandwidth?

OTDM versus (D)WDM

• Wavelength Division Multiplexing (WDM)

• Optical Time Domain Multiplexing (OTDM)
From Optoelectronic to « All Optical » Signal Processing

- Transmission
 - OTDM versus (D)WDM
 - Pulse generation & pulse shaping
 - Dispersion compensation...
- Routing
 - Wavelength Conversion
 - Fix and programmable Optical Add & Drops (OAD)
 - Restoration
 - Optical Cross Connect (OXC)...
- Optical signal processing
 - Optical Demultiplexing
 - Address label reading
 - Clock (phase) Recovery
 - Optical Regeneration : Re-amplification, Re-timing, Re-shaping (3R)...
- Supervision: "wave watcher"

2 - Physical Phenomena

- Semiconductors Inter-band Dynamics
- Semiconductors Intra-band Dynamics
- Non-linearities in optical fiber

Semiconductors Inter-band Dynamics

- Gain and refractive index dependent on the carrier density
 - Gain saturation
 \[G(N) = A(N - N_0) \]
 \(A \) : Differential gain
 \(G \) : Optical gain
 \(N_0 \) : Carrier density for transparency
 - Typical time constant from 0.1 to 1 ns determined by the effective carrier lifetime
 - Strong effect: power < 1 mw, interaction length ≈ few 100 \(\mu \)m
 - Phase-amplitude coupling : \(\alpha = \Delta n' \Delta n'' \) with \(n' = n'' = \Delta n' \)

Semiconductors Intra-band Dynamics

- A strong stimulated rate disturbs quasi-equilibrium
 \[G(N, P) = A(N - N_0)(1 - eP) \]
 - \(e \) : gain compression factor
 - \(P \) : photons density
 - \(ps \) time constant determined by intra-band thermalizations
 - Gain compression (or compression)
 - \(0 \%-10\% \) (heterostructure)
 - \(10\% \) (quantum wells)

Chirping in a SOA

- When the optical Power increases :
 - The carrier density decreases
 - The refractive index increases (plasma effect)
 - The optical frequency decreases

Cross Gain Modulation (XGM)

Two beams with intensity \(I_1 \) and \(I_2 \) in the same SOA

When \(I_1 \) saturates the gain, \(I_2 \) experiments also a reduced gain : XGM

\[E_1 = \sqrt{I_1} \exp i\varphi_1 \]
\[E_2 = \sqrt{I_2} \exp i\varphi_2 \]
with \(I_2 \ll I_1 \)
Nonlinear Index and Cross Phase modulation (XPM)

- Carrier heating
 - Large bandwidth (<10nm), asymmetrical
 - High nonlinear index (α near 1)
- Spectral hole burning
 - Low bandwidth (<10nm), symmetrical
 - Low nonlinear index (α near 0)

\[E_i = \sqrt{I_i} \exp j\varphi_i \]
\[E_2 = \sqrt{I_2} \exp j\varphi_2 \]

Four Wave Mixing (FWM) in Semiconductor Optical Amplifier (SOA)

- Physical origins:
 - Interband for low frequencies: carrier density modulation,
 - Intraband for high frequencies: nonlinear gain i.e. carrier heating, spectral hole-burning, 2 photon absorption, Kerr effect
- Application to Wavelength conversion, 3R regeneration, Spectrum inversion
- Spurious effect in WDM systems

FWM New Frequencies Generation in WDM Systems

Nonlinearities in optical fiber

- Optical Kerr effect
 - Polatization: \(P(E) = \chi^{(2)} E + \chi^{(3)} E^2 + \chi^{(4)} E^4 + \ldots \)
 - Index: \(n(E) = n_0 + \frac{j}{2} \chi^{(3)} I \)
- Self Phase Modulation (SPM) & Cross Phase Modulation (XPM)
- Low effect but transverse confinement and longitudinal integration

\[\varphi = \frac{2\pi}{\lambda_0} n_2 I L \]
\[\varphi = \frac{\pi}{2} \text{ for }PL = 1 \text{ W.km} \]
- Very fast effects but:
 - Walk off problems
 - Other concurrent nonlinear effects

Self Phase Modulation (SPM) & Cross Phase Modulation (XPM)

- Self Phase Modulation (SPM)

\[E = \sqrt{I} \exp j\varphi \]

- Cross Phase Modulation (XPM)

\[E_i = \sqrt{I_i} \exp j\varphi_i, \quad E_2 = \sqrt{I_2} \exp j\varphi_2, \quad \text{with } I_2 \ll I_1 \]

Nonlinear Propagation: Soliton

- Linear Propagation:

- Nonlinear Propagation:
3 - Wavelength Conversion

- Wavelength converter
- Cross Gain Modulation (XGM) in an SOA
- Cross Phase Modulation (XPM) in an SOA
- Gain Modulation in Semiconductor Laser (SCL)
- Wavelength conversion in bistable Laser Structure
- Four Wave Mixing (FWM) in a SOA

Wavelength Converter

- Wavelength routing
- Wavelength re-use
- WDM network reconfiguration
- Optical circuit & packet (ATM…IP) switching

Expected Properties

- All optical device:
 - Transparent to modulation format
 - Bit rate independent: 155Mb/s à 10 Gb/s…40Gb/s
- No clock recovery requirement
- Flexible implementation
 - Speed (10 Gb/s and more)
 - Wide conversion range
 - Up conversion & down conversion allowed
 - Polarization independent
 - Input wavelength rejection
- No BER penalty (cascability)
 - High extinction (on/off) ratio
 - No jitter
 - No chirp
 - Amplification of the signal level
 - Pulse reshaping...

All of them together?

Optoelectronic conversion vs. all optical conversion

- Optoelectronic conversion
 - No bit rate transparency
 - Bit rate bottleneck
 - Noise
 - Cost (packaging)
- All optical conversion
 - Bit rate transparency
 - High bit rate
 - Possible pulse regeneration
 - Integration low cost

Cross Gain Modulation (XGM) in an SOA

(TU Denmark)

The carrier depletion induced by \(\dot{\phi}_c \) modulated signal amplification reduces the available gain for the CW signal \(\dot{\phi}_c \) amplification.
Performances for XGM in an SOA

- Large conversion range:
 - Few GHz, i.e. few 1000GHz
 - Gain bandwidth limited
- Modulation bandwidth:
 - Few 10 GHz
 - Carrier lifetime limited
- Low chirp
- But:
 - Inverted modulation (even cell number required)
 - External output carrier generation
 - High driving signal level: 0 to -10 dBm
 - Low on/off ratio: 5 to 10 dB

Cross Phase Modulation (XPM) in an SOA Mach Zehnder Interferometer (MZI) Conversion

- Cross Phase Modulation (XPM)
- Low control power (only a phase shift π is required)
- Accurate control power
- Polarization independent
- Possible up conversion and down conversion
- Low chirp
- 40 GHz operation already demonstrated

Gain Modulation in Semiconductor Laser (SCL) Oscillator

- The carrier depletion induced by λ_1 signal injection reduce the available gain for the CW lasing λ_2 operation
- Gain and index changes result in simultaneous AM and FM (i.e. chirped) output
- Few 10 Gbit/s, On/Off Ratio > 10 dB, $P_{control} =$ few dBm

Wavelength Conversion in Bistable Laser Structure

- Saturable absorption
 - Non injected (i.e. unpumped) region
 - Vanish out under light injection
- Operation up to 40 Gbit/s demonstrated
- Possible re-timing operation by simultaneous optical or electrical clock modulation

Output Wavelength Tuning

- Mode hopping
- Progressive index saturation results in tuning efficiency (slope) reduction

Optical Bisability

The bistability improve the on/off ratio
Reshaping possibility
Low degradation (or small improvement!) of the BER allows large scale cascadability.

Four Wave Mixing (FWM) in a SOA

Applications:
- Wavelength conversion
- All-optical clock recovery
- Spectrum inversion
- Spurious effect:
 - Diaphotie in WDM systems

Applications:
- Interband for low frequencies: carrier density modulation,
- Interband for high frequencies: nonlinear gain i.e. carrier heating, spectral-hole-burning, 2 photon absorption, Kerr effect
- Takes benefit of built-in gain

4 - Optical Demultiplexing by Nonlinear Mirror

- Optical Linear Mirror Loop
- Optical Nonlinear Mirror Loop
- Nonlinearity realization
- SLALOM
- 4x10GBit/s Demultiplexing

Conversion efficiency

\[\eta = \frac{P_{\text{CONJUGATED}}}{P_{\text{IN}} \times P_{\text{PROBE}} \times P_{\text{SIGNAL}}} \]

\[P_{\text{SOA}} = -15.2 \text{ dBm/signal} \]

\[\text{Efficiency (dB)} \]

\[\text{Detuning (GHz)} \]

FWM Performances

- Transparency for the modulation format
- High bit rate
- Wide conversion range (65nm) by multiple conversion
- Polarization dependent

SOA Four Wave Mixing Efficiency

- Intra-band
- Inter-band

\[\text{Efficiency (dB)} \]

\[\text{Detuning (GHz)} \]

Simulation vs experiment

- Physical origins:
 - Interband for low frequencies: carrier density modulation,
 - Interband for high frequencies: nonlinear gain i.e. carrier heating, spectral-hole-burning, 2 photon absorption, Kerr effect
- Takes benefit of built-in gain
Functional Devices, P.G., ENST37

Optical Linear Mirror Loop (LOLM)

- Incident
- Reflected
- Transmitted

- Repartition coefficients for intensity: $A_i = (1 - \alpha)$ and $A_r = \alpha$
- Repartition coefficients for amplitude: $a_i = (1 - \alpha)\alpha^{-1/2}$ and $a_r = \alpha^{1/2} j \alpha^{1/2}$
- Transmitted reflected fields for $E_0 = 1$:
 \begin{align*}
 A_i &= (1 - \alpha) \quad \text{and} \quad A_r \times \alpha \\
 a_i &= (1 - \alpha)^{1/2} \quad \text{and} \quad a_r \times \alpha^{1/2} \cdot j \alpha^{1/2}
 \end{align*}
- In linear regime output port is the input port (mirror)

Nonlinear Optical Loop Mirror (NLOLM)

- Incident
- Reflected
- Transmitted

- Clockwise & unclockwise equal intensities: NL phase shift are identical
- Tuning for a nonlinear phase difference of phase equal to α
- Tradeoff between contrast ($\alpha \approx 1/2$) & sensitivity ($\alpha \neq 1/2$)
- High level signal (1) transmission (NL regime)
- Low level signal (0) reflection (NL effects are negligible)

Non linearity realization
Fiber or semiconductor amplifier

1. Cross phase Modulation (XPM) in a fiber (NOLM)
 - Very fast (>100GHz)
 - High optical driving signal level (10 to 30dBm)
 - Long length (1km)
2. Cross phase Modulation (XPM) in SC amplifier (SLALOM)
 - Very fast (>20GHz, inter-band & 100GHz inter-band)
 - Low optical driving signal level (<-10 to 10dBm)
 - Compact (<1mm)

- Utilizations:
 - Intensity Filter
 - Correlator
 - Demultiplexer...

SLALOM
Semiconductor Laser Amplifier in a Loop Optical Mirror

Control data (pump)

- Input data
- Output data

- 5 - 3R Regeneration

Re-amplification, Re-timing, Re-shaping (3R)

- Re-amplification
- Pulse reshaping by nonlinear filtering
- Re-timing (Re-synchronization)
- Clock (phase) recovery
- 3R Regeneration
- MZI all optical regeneration
- All optical regeneration using FWM in SOA
Re-amplification

- Re-amplification is limited by accumulated ASE and limited amplifier output power
- On/off ratio improvement by nonlinear response
- Different processing for weak (0) & strong (1) signals
- Act as digital electronics

Amplified Spontaneous Emission (ASE) Suppression (France Telecom)

Noise Suppression & Intensity Modulation
(Tokyo Institute of Technology)

- Intensity noise of a spectrum-sliced incoherent source
- Gain saturated SOA with current modulation
- Beat noise reduction
- Noise error floor observed with LiNbO3 linear modulation is removed

Pulse reshaping by nonlinear filtering

- Intensity noise of a spectrum-sliced incoherent source
- Gain saturated SOA with current modulation
- Beat noise reduction
- Noise error floor observed with LiNbO3 linear modulation is removed

Re-timing (Re-synchronization)

- Large wavelength deviation (13 nm)
- Low time jitter (11 ps)
- High bit-rate (3.8 GHz)

Clock (phase) recovery

- Mode-locked laser
- Self-Pulsating laser
Self Pulsating Laser

Self pulsation origins:
- Instabilities in longitudinal carrier or field distributions (Spatial-Hole Burning)
- Dispersive self Q-switching associated to the negative slope of the Bragg grating

\[T_{UP} = \frac{1}{f_{AP}} \]

Synchronization time (HHI)

- 10 Gbit/s
- 1 ns (10 “one” bits) locking time
- Synchronization resist to > 100 “zero” bits
- Compatible with IP packet switching

Jitter & Amplified Spontaneous Emission (ASE) Suppression (France Telecom)

3R Regeneration

- Amplification
- Power Control
- Clock Recovery
- Optical Gate
- Non-linear Filter
- Reshaping

MZI all optical regeneration - 1

- XPM is the key phenomena
- Up to 40Gbit/s operation demonstrated

MZI all optical regeneration - 2

- 2 cascaded MZI to improve nonlinear response
- 20 and 40 Gbit/s operation
- 1.2 dB penalty
- Polarization insensitivity and 10 dB power dynamic range
All optical regeneration using FWM in SOA (ENST)

- PUMP = SIGNAL
- PROBE = CLOCK
- The squaring improved the On/off ratio
- The pulse overlap is the correlation process between clock and signal

![Graph showing optical regeneration using FWM in SOA](image)

- $P_{BM} \propto P_{PUMP}^2 P_{PROBE}$
- $P_{PUMP} = P_{SIGNAL} P_{PROBE}$

<table>
<thead>
<tr>
<th>Input extinction ratio (dB)</th>
<th>Output extinction ratio (dB)</th>
<th>0 dB improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>20 dB</td>
<td>10 dB</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion - 1

Integration Possibility

- Nonlinear Fiber Devices
- Semiconductor Optical Devices (Intraband dynamics)
- Semiconductor Optical Devices (Interband dynamics)
- Fast Electronic Devices
- High Integration Electronic Devices

Conclusion - 2

- Nonlinearity allows light with light interaction
 - They are the key phenomena for all optical devices
- Nonlinearity is spurious in analog devices and systems
- Digital electronics takes benefit if it at each step
 - They are the key phenomena for optical regeneration
- The all-optical processing do not exist!
 - It is a user (system) point of view
 - Electrons play a key role in light-matter interaction
 - The speedy user have no time left to look at it
- Wide range of functional devices is today available
- Are these grapes too unripe? (Jean de La Fontaine)