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Abstract—This work proposes a new analytical model for the
dimensioning of OFDMA systems. It relies on a rough but easj
computable upper bound for the probability of lost communica-
tions by insufficient number of sub-channels on downlink. Tie
positions of receiving users in the system as well as the nureb
of sub-channels dedicated to each one are randomized. Users
are classified in different classes according to their throghput
requirements and traffic patterns. We use recent results of e _ A ; A
theory of point processes which reduce our calculations tohat Subcarrer alocation ' et ? oer 2 | veer®
of the first and second moments of the total required number of )
sub-channels. The upper bound probability leads to an acceapble
over dimensioning in terms of sub-channels.
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Fig. 1. OFDMA sub-carrier allocation principle
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OFDM (Orthogonal Frequency Division Multiplex) is a
Future wireless systems will widely rely on OFDMA (Or-multi carrier technique especially designed for high data
thogonal Frequency Division Multiple Access) multiple @8 rate services. It divides the spectrum in a large number of
technique. OFDMA can satisfy end user’s demands in termsfgéquency bands called sub-carriers that overlap partiall
throughput. It also fulfills operator’s requirements innmerof order to reduce spectrum occupation. Overlapping is made
capacity for high data rate services. Systems such as 892.p6ssible because the different sub-carriers are madeguttad

and 3G-LTE (Third Generation Long Term Evolution) alreadyb each other by choosing a sub-carrier spacing multipla@f t
use OFDMA on the downlink. For the uplink, 802.16e hagverse of the OFDM symbol duration.

also adopted OFDMA, while 3G-LTE uses SCFDMA (Single Each sub-carrier has a small bandwidth compared to the

Carrier Frequency Division Multiple Access). OFDMA carcoherence bandwidth of the channel in order to mitigate
also be possibly combined with multiple antenna technologdequency selective fading. User data is then transmitted i

to improve either quality or capacity of systems. parallel on each sub carrier.
~ Dimensioning of OFDMA systems is then of the up-most Systems such as ADSL (Asymmetric Digital Subscriber
importance for wireless telecommunications industry. Line), digital audio broadcasting (DAB) and digital video

The model introduced in this contribution takes into acdoubroadcasting (DVB-T) rely on OFDM modulation. Most re-
the randomness of user locations and user traffic. It prevideently, power line systems (Home Plug) and WiMedia (short
also an upper bound of loss probability in terms of sulvange communications) have also adopted OFDM.
channels. In OFDM systems, all available sub-carriers are affected to

The paper first provides a short introduction to OFDMA aipne user at a given time for transmission. OFDMA extends
interfaces, by providing some insights on sub-channeleptsc OFDM by making it possible to share dynamically the avail-
and OFDMA jargon (see section Il). Besides a review oable sub-carriers between different users (see figure Ihain
point Poisson Process theory and concentration ineceglitsense, it can then be seen as multiple access technique that
is provided in section Ill. The dimensioning analytical nebd both combines FDMA and TDMA features.
is first developed for a deterministic wireless channelingk In practical systems, such as WiMAX or 3G-LTE, the
only into account the path-loss effect (cf. section V). ®et sub-carriers are not allocated individually for implensgitn
V analyses a more realistic situation, where wireless chlanmeasons mainly inherent to the scheduler design and physica
also encompasses shadowing effects. Section V-B exterdsliyer signaling. Several sub-carriers are then groupedilin s
results to a multi class user traffic. The accuracy of anadyti channels according to different strategies specific to each
model is evaluated by comparing them with simulation. ~ system. The unit of resource allocation is the sub-channel.

For example, in WIMAX, there are three modes available

All authors are with TELECOM ParisTech/ CNRS UMR 5141, 46e ru fOF building sub-channels: FUSC (Fully Partial Usage of Sub

Barrault, Paris, FRANCE channels), PUSC (Partial Usage of Sub-Channels) and AMC



The notion of point process can be extended to configura-

é ‘ ‘ ‘ 4 A ‘ A tions inR* x X whereX is a subset oR™. A configuration
‘ is then typically of the forr{(z,, y»), n > 1} where for each
é A A A A A ? f ? ? A A n>1, r, € R*¥ andy, € X. We keep writing(z,, v,) as a
Il > couple, though it could be thought as an elemerR6f™, to
Subcarter A ochannel 1 ? Subchannel 2 A Subchannel 3 stress the asymmetry between the spatial coordinasnd the
to subchannels | so-called marky,,. For a marked point process, we denote by

® the set of locations, i.e®(w) = {X,,, n > 1} and by® the
set of both locations and marks, i.&(w) = {(X,, Y,), n >
Fig. 2. OFDMA sub-channel principle 1}. A marked point process with position dependent marking
is a marked point process for which the lawXf, the mark
associated to the atom located 4}, depends only onX,
(Adaptive modulation and coding). In FUSC, sub-channeds dhrough a kernek:
made of sub-carriers spread over all the frequency band. In ;
AMC, the sub-carriers of a sub-channel are adjacent insiad P(Y, € B|®) = K(Xy, B), forany B C X.
being uniformly distributed over the spectrum. FUSC preeid ;1 - is a probability kernel, i.e., itk (z, X) = 1 for any

an averaging effect on quality which makes it more suitable - ¥ then it is well known thath is a Poisson process of
for mobile application, while AMC is more adapted for ﬁxeqntensityK(a: dy)dA(z) onR* x R™. The Campbell formula

users. . _ is a well known and useful formula
The sub-channel concept makes it easier to schedule ra-

dio resources. However, it becomes more difficult to asseEgeorem 1. Let® be a marked Poisson process Bif x R™.
channel quality as it is composed by different sub-carriek€t A be the intensity of the underlying Poisson process and
that can possibly span over several timeslots. An extensiliethe kernel of the position dependent marking. For R” x
literature has addressed that problem, and we will assumeRfi" — R a measurable non-negative function, let

the following, that whatever the sub-channelization solem _
adopted, it is possible to consider an equivalent singlecéi F= /fd‘l’ = Z (X, Yn).
gain for all the sub-carriers making part of a sub-chanral (f n21

example the average of channel gain computed on some syhen,
carrier pilots). We also assume that subcarrier allocat@mn

different sub-channels is done slot by slot. E[F] = f(x, y) K(z, dy)dA(x).
RFxR™

Ill. POISSON POINT PROCESSES Definition 2. For F : I'yx — R, for anyz € R*, we define

For details on point processes, we refer to [1, 4, 5, 6]. A
configurationn in R* is a set{z,, n > 1} where for each DyF(w) = Flw U {z}) = F(w).

n>1, z, € R¥, 2, # z,, for n # m and each compact Note that for F — ffd‘b, D,F = f(z), for any = €

subset ofR* contains only a finite subset gf We denote by R”. We now quote from [3, 8] the main result on which our
I'r+ the set of configurations iR*. Equipped with the vague inequalities are based:

topology of discrete measureBg» is a complete, separable

metric space. A point process is a random variable with Theorem 2 (Concentration inequality)Assume thatb is a
values inT'rk, i.e., ®(w) = {X,(w), n > 1} € Trs. For Poisson process oR* of intensityA. Let f : R* — RT a
A C R*, we denote byb 4 the random variable which countsmeasurable non-negative function and let

the number of atoms ob(w) in A: Flw) /qu) Z )
w) = = n(w)).
(I)A(w) = Z ]-Xn(w)EA eNU {+OO} n>1
n>1

: . . . . Assume thatD, F(w)| < s for anyz € R. Let
Poisson point processes are particular instances of poiat p

cesses such that: mp = B[F] = /f(x) dA(z)
Definition 1. Let A be ac finite measure orR*. A point

process® is a Poisson process of intensity whenever the and

following two properties hold. ) )

1 - Forany compact subset € R*, @ 4 is a Poisson random vr = /'D””F(w” dA(z) :/f (z) dA(z).

variable of parameter\(A), i.e., Then, for anyt € R+,
A(A)*

P(®y=k)=e AL t
(®a )=e k! P(F—mFZt)Sexp<—v—Fg(—S>)

2
2 - For any disjoint subsetdl and B, the random variables N vF
® 4 and @ are independent. whereg(z) = (1 + z)In(l 4+ z) — «.
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Poup | 0.18] 0.1 ] 0.04 [ 0.02 [ 0.008 [ 0.003 |
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Assumption 1. The position of each user is independent of COMPARISONBETWEENPsup AND Pjos5 FOR DETERMINISTIC GAIN

the position of all other. The users are indistinguishalle,,

the positions are identically distributed.

IV. DETERMINISTIC GAIN

We state the following assumptions:

Assumption 2. The time between two consecutive demandgere N (z) is defined by

of users for service in the system (or inter arrival time) is

exponentially distributed. C
0

W log, (1 +

We definep(x) as the surface density of inter arrival time N(@) =

in s~'m~2, constant in time. Hence, for a regiédh C B, the

P.Kg > ’
mean inter arrival rate i& = [}, p(x)dz in s7'.

(I +n)l=)

whereg is the mean gain due to shadowirdg, the throughput
Assumption 3. The service time for every user is exponeriequested by users the interference generated by outer
tially distributed with mean /v. cells andn the noise. We will not take into account inter-

) o ] ] _ ference generated by outer cells, 5o= 0. Note that, with
Assumption 4. The cellC is circular, with radiusR and with respect toxr, N is increasing and piecewise constant. Let

the antenna in the center. Rj,j = 1,--+, N4 be the values such thaV(z) = j
Assumption 5. The channel gain depends only on the distand@" © € [R;j; R;j+1). We can easily determine them by
from the transmitting antenna. o < P,Kg >1/v
Assumption 6. The surface density of inter arrival time is ! n(2C0/GW) — 1)
constant. According to Theorem 1, it is then clear that

These assumptions are commonly done to simplify the o Nmao
mathematical treatment and are quite reasonable. If we show E {/Nd(b} = /NdA = — Z j(R? - Rf,l).
that the point process given by the location of the users is =

a Poisson process, then it is sufficient to have the two fifgje genote bymy the last quantity. Moreover,
moments in order to apply theorem 2 and then calculate

an upper boundP,,, for the probability P,.; of loosing /NQdA B ENznir SR
communications due to a lack of sub-channels. To do this, T = J o\ J=1/

we consider the following lemma:

o ) ~We denote by the last quantity. We takéV, of the form
Lemma 1. Considering assumptions 1, 2 and 3, the poiny,,, . so that according to Theorem 2:

process® of the active users positions is, in equilibrium, a
Poisson process with intensit\@r) = p(x)v~'dx P(/Nd(l) > amy) < Payp(a)

Proof: For a regionH, in virtue of assumptions 2 and

3, the number of receiving (i.e., active) customers is theesa
] . . UN (CY - 1)mNNmaw

as the number of customers in an MAd/queue with input Payp(a) = exp | — g )

where

N2

rate . and mean service time~!. It is known [7] that the max UN
distribution of the number of usefs$ in equilibrium is then It is then natural to verify how far this bound is from the
. exact value of the loss probability in simple situations vehe
PU =u) = (h/T) oV simulation is available. We used hese= 2.8, Cy = 200
u! kb/s, W = 250 kHz and P,K/(n) = 1 x 10°. For the surface

density of inter arrival time we usg = 0.0006 min~'m—2
and the service time i$/v = 1 min, so, the mean number of
users in the system isR?p/v = 18.85 users. If we consider
() the shadowing withr = /10 dB andy = 6 dB, we can use
A(H) =h/v Z/ —, d the mean gairy, giving g = 1/12. Thus, users in the cell
H boundary use 3 sub-channels, 8,,, = 3. For « varying
Condition 2 of definition 1 follows straightforwardly from from 1 to 2, which corresponds here to loss probabilities about
assumption 1. m 2% or0.01%, we computed = logyy Psup/Ploss-
Without loss of generality, we consider the céllhas its Though concentration inequalities are usually thought as

antenna located at the origin. We are looking at evaluating@/most optimal, the results shown in Table | seem at first
glance disappointing. Note though that the computatiomef t

bound is immediate whereas the simulation on a fast PC took
several hours to get a decent confidence interval. Note ladgo t

It follows that the first condition of definition 1 is satisfied
with intensity measuré\(H)

Ploss = P(/qu) > NO)7



the error is about the same order of magnitude as the ert@t 3, = oo andg; = 260/(W3) —1forj =1,---, Nyaz— 1.

made when using a usual trick which consists in replacidgprj =1, -+, Npee — 1, let
infinite buffers by finite ones in Jackson networks (see [2]).
The margin provided by the bounds may be viewed as a A, :/ Lgy|e|r <P, K /np;}Ps(y) dy dz
protection against errors in the modeling or in the estimate +
of the parameters. and Ay = 0.
V. RANDOM GAIN Lemma 2. For j =1, -+, Npyaz — 1,

A. Single class of user traffic

Let us determine now the upper bound probabikty,, for
Py,ss Without assumption 5 but holding all other assumptions

Ay = xR2Q(a; ~ ()
+ e/ CH206/CQ(CI R — 2/C — ay),

of the preceding section. Lemma 1 still holds, since it is Rhere
consequence of assumptions 1, 2 and 3. We also state two
i . 1 10

other natural assumptions: a; = —(10logyo (P /nB;) — 1) and ¢ = v

. - . ' o oln10
Assumption 7. The random gain is totally described by the _
log-normal shadowing, with meam and standard deviation Proof: We can write
o, both in dB.

A= /C P(S|z|" < f;) de

For a user at distanceé from the origin, the gain is7 =

1/S, whereS follows a log-normal distribution: ~ ] ] o
where; = P,K/n3;. Remind thatS is equal in distribution

) = — & exp _ (10log)py — p)® to exp(N'(u, 02)¢) with ¢ = In(10)/10. Thus after a few
' 2oy 202 ’ manipulations, we get

where¢ =10/ 1n10. R
Aj :277/ rQ(a; — (Inr)dr,
0

Assumption 8. A user is able to receive the signal only if the
signal-to-interference ratio is above some constant,.

where
This means, in particular, that the number of sub-carriers 1 ¥ u?
- . Qz) = — exp(— —) du.
needed by a transmitting user is surely bounded by Vo ) 2
Nypow = { Co w The final result follows by a tedious but straightforward
Wlogy(1+ Bmin) integration by parts. [

_The S|tuat|or_1 is slightly different from that o_f_Secuon lV’.Theorem 3. For any functiond : R — R,
since the functional depends on two aleas: positions antsgai
Consider now that our configurations are of the fofms)

wherex € R? is still a position ands € R is a gain. Since O(N(z, y))ps(y)dy dA(z)
gain and positions are independent, we then have a Poissor,
process orR? of intensity measur@A(z) ® ps(y)dy. Thus _ Z 0(5)(A; — Aj_1) + 0(Npao)(TR% — A _1).
we want to evaluate an upper bound of =
P(/ Nd® > Ny) Proof: Since N can take only a finite number of values,
N we have
where
[ o0¥, sty da)
CO N7na’1¢
N(z,y) = . _p e /
’ == J) L{(z,y), N(z,y)=j}Ps(y)dy du.
W log, (1+ PK ) ) ; W) ) o, Hew, Nep=pps
nyllz|”
According to Theorem 2, we must compute Now we see that
my = /N(:v, y)ps(y)dy dA(x) N(z, y) = j <= Bi1 <yllz||” < B,
and for j = 1,--+, Njpax — 1 @and N(z,y) = Npaz When
yllz||” > On,,..—1. The proof is thus complete. [ |
oN = sup/ | Dy F(w)|*ps(y)dy dA(z) We used the same set of values as for the simulation of

Section IV together with assumptions 8 and 7 with;, =
_ /NQ(I, y)ps(y)dy dA(z). 0.2. Results of Table_ll show that the the_oretlcal bound is
rather stable when gains become stochastic.
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Psup | 0.2] 011 0.05| 0.02] 0.01| 0.004
A 171 18] 2.1 2.3 2.4 2.6
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COMPARISON BETWEENPF sy p AND Pj,55 FOR RANDOM GAIN.

B. Multi class user traffic

1) Upper bound of loss probabilityWe consider in this
section, M classes of users. Clgsssers request a throughpu
of C;. The configurations associated to each class are of
form (x,y), wherex € R? is a positiony € R is a gain. Since

gain and positions are independent, we then have for eq

class of users a Poisson processR of intensity measure
Aj(z)dz @ ps(y)dy, whereA;(z) = p;(z)v; " andj is the
user class.

For the sake of computational simplicity, we assume
the following, thatp;(x) is constant with respect te but
the theory is still valid unaltered otherwise. Furthermosme

consider that the random gain is totally described by the lo

normal shadowing, with meap and standard deviatios,

both in dB. For a user at distandefrom the origin, the gain
is G =1/S, whereS follows a log-normal distribution as in
section V-A. We also assume that a user is able to receive
signal only if the signal-to-interference ratio is abovenso

constants,,;,. This means, in particular, that the number of

sub-channels needed by a transmitting user of glassurely
&

bounded by
’VWlOgQ(l + Bmzn)-‘ .

Without loss of generality, we consider the céll has its
antenna located at the origin. We are then looking at evialyat

max
N;

P(/ Nd® > Ny)

where
Cj
W log, <1 +

N(z, j, y) = K

ny|lz||”

)

and

M
0= [ Nlo w2 )ps(y)dedy,
j=1

Proof: Let A; be the intensity of the Poisson process
representing class customers and = 37| A;. Let ® be a
Poisson process dR? of intensityA. Consider the probability
kernel

vy Ay
Ezor a configuration = {z,,, n > 1}, there is thus a sequence
of marks {u,, n > 1}, u, € {1,---, M} for all n > 1,

c%rresponding to the position dependent marking according
Re kernelk. According to the properties of Poisson process,
the process?; = {z,,u, = j} is a Poisson process of
intensityA ;. Now add to each point b, an independent mark
Y corresponding to the random gain, distributed according
10 a log-normal distribution. Denote by this point process
which turns to be a Poisson process since the marks are
independent from the positions. From section 2, we know that
e process, the atoms of which ave= (z,,, un,yn), IS @
Poisson process of intensily ; K (x, {j})A(x)ps(y)dzdyd; :

n>1
M
= f(alv)
;/ 4,y

Aj(z)
M
- Z/f(ﬂf,jv y)A; (z)ps(y)drdy.

i(
A(x)

A(x)ps (y)dedy

We are thus in position to apply the Theorem 2 to the Poisson
processb. The difference operator defined in Definition 2, is
here equal to

Dy jyF(@0) = F(@U{z,j,y}) — F(®),

as it suffices to takée = 2+ 1+ 1 = 4. That is to say, we
look at the impact of adding a user at positionwith class
j and gainy. For F' = [ Nd®, we obtain

Dy jyF(@) = N(z, j, y) < Nj"**.

The functional depends on two aleas: positions and gains.TRUS. inequality (2) holds witls = max; N7,

has also an additional parameter that describes the cldks of

user.

Theorem 4. With the assumptions of this Section,

P(/qu) > ampy) < Poyp(a)

o

M
m = Z/N(w, g, y)Aj(2)ps (y)dady,
i=1

where

Paple) = exp - (0 = Vo

(%

v
N2

max

)

With Nper = max; N,

M
my = Z / N(z, j, ), (x)ps (y)dady,

and y
UN = Z/N(x’ 4> y)*Aj(2)ps (y)drdy.
j=1

[ |
Bothm andv can be computed taking advantage of the fact
that NV is piecewise constant (see section V-A). I&t= oo
and 3;, = 2¢/(Wk) — 1 for k = 1,---, N"** — 1. For
k=1, Nmw — 1, let

Ajy = / Liyllallr <P /noryPs (y) dy dz
CxR*



: a 16 1.65 17 1.75 18
and Ay = 0. It can proved from results of section V that for P 504451 0.0286 | 0.0180 T 0 0125 0.0068
k=1, N —1, No obtained with | 45.2 | 46.7 | 48 495 | 509
the analytical up-
A = 7R20(cs . — CIn R per bound
Jik m Q( Jik C2 ) Np obtained by 38 39 40.4 41.6 42.8
+ we?/< "‘QO‘j)k/CQ(( InR—2/¢— aj), simulation for the
i same loss prob-
where ability value as
P
1 10 Sup
ajk = —(10logyo (P K/nfjx) — p) and¢ = Uln’IO' TABLE Il
) . . DIFFERENCE IN TERMS OF SUBCHANNELS OBTAINED BY SIMULATION
We finally obtain the following formula. AND ANALYTICALLY
Theorem 5. For any functiond : R — R,
/9(N($a J y))ps(y)dy dA(z) upper bound probability of overloading the system by high
Nmar_q demand of sub-carriers, over path loss and shadow fading. To
7 do this we have found the first and second moment of the
= Z O()(Ar — A1) - - L
— marked Poisson point process of users. We conclude that it is

possible to find an upper bound for the overloading prokishili

even in a relatively complex system, which is analytically
2) Numerical application:In this section we will apply the computable in a very simple fashion. The method works for

upper bound calculated previously to the dimensioning bf suany functional of the configurations, possibly enriched by

channels in a OFDMA system. We consider here a cell, whararks, which depends only on the positions of each user.

two classes of users are competing to the access of availdbldoes not work for functionals involving relative distanc

sub-channels. More precisely we consider hkfe= 2. The between two or more users. Actually, for such a functiaral

capacities required by each class of user is fixe@'to= 200 there is no bound o, F(w) valid for all z andw.

kb/s andCy = 100kb/s respectively. The path-loss exponent

is fixed toy = 3.8 and the sub-channel bandwidth is equal REFERENCES

to W = 250 kHz. We also consideP, K /n = 1 x 10'2. For

the surface density of inter arrival time we use = 0.0006

min~'m~2 and p, = 0.0006 min—'m~2. The service times

+ H(ijam)(ﬂ'RQ - AN]marfl).

[1] D. J. Daley and D. Vere-JonesAn introduction to the
theory of point processes. Vol. |Probability and its
Applications (New York). Springer-Verlag, New York,

arel /vy =1 min andl/v, = 0.5 min, S0 the mean number  sqconq edition, 2003. ISBN 0-387-95541-0. Elementary
of users in the system i8R*p; /v = 18.85 for class 1 users theory and methods

and wh?ps/v; = 9.425 for class 2 users. We consider the [2] L. Decreusefond, H. Korezlioglu, and N. Van Dijk. An
shadowing witho = /10 dB andy = 6 dB. We have also error bound for infinite approximation s of queuing

considereddnin = 0.2 networks with large finite stations. In R.O. Onvural

We madeo varying from 1.6 to 1.8, by steps of0.05. o and |.F. Akyildiz, editorsQueuing Networks with finite
This corresponds here to an upper bound of loss probability capacity pages 239-252. North-Holland, 1993

varyi_ng be_tweetﬁ).OO(is and0.045_ As t_he analytical expression LB] C. Houdré and N. Privault. Concentration and deviation
obtained in the previous section, is an upper bound of the ™ ;. ajities in infinite dimensions via covariance repre-

real loss probability, applying it to dimension an OFDMAIcel o ia4i0ns Bernoulli, 8(6):697-720, 2002. ISSN 1350-
will lead to an over dimensioning in terms of sub-channels. 7265 ’ '

we have compute_d the number of sub-chanm\éiswnh_t_he [4] O. Kallenberg.Random MeasuresAcademic Press, 3rd

analytical expression of upper bound of loss probabilitg W edition, 1983.

have computed by simulation the number of sub-channeg]

required if the upper bound probability is used as the los

probability to dimension the system. 6]
Results of table Il show the over dimensioning is about[ volume 7 of Probability: Pure and Applied Marcel

20% in terms of sub-channels. At a first sight, this result Dekker Inc.. New York. second edition. 1991. ISBN

can seem disappointing. We should note nevertheless that  g547.g539.0. ’ '

the computation of the upper bound and associalgdis 7] P. Robert. Stochastic networks and queue®lume 52
immediate whereas the simulation on a fast PC is more tedious™ Applications of MathematicsSpringer-Verlag, Berlin

to get a decent confidence interval. The margin provided by French edition. 2003. ISBN 3-540-00657-5. Stochastic
the bounds may be viewed as a protection against errors in Modeling and ,’Applied Probability ’

the modeling or in the estimates of the parameters. [8] L. Wu. A new modified logarithmic Sobolev inequality
for Poisson point processes and several applications.

VI. CONCLUDING REMARKS Probability Theory and Related Field418(3):427—438,
Using the concentration and deviation inequalities and the 2gq0.

difference operator on Poisson space, we have calculaged th

Olav Kallenberg. Foundations of Modern Probability
Springer-Verlag, 1998.
A. F. Karr. Point processes and their statistical inference



