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Abstract—Due to significant advances in transmission tech-
nology and to the corresponding increase of link rates, traffic
sampling is becoming a normal way of operation in traffic
monitoring. Given this trend, in this paper we aim to assess
the impact of the sampling on a wide range of tasks which are
typical of an operational network. We follow an experimental
approach, exploiting passive analysis of network traffic flows,
taking into account different sampling policies (e.g., systematic,
uniform and stratified) and different sampling rates. To quantify
the amount of degradation and bias that sampling introduces with
respect to the unsampled traffic we use well-known statistical
measures (i.e., Hellinger Distance, Fleiss Chi-Square). Unlike
previous work, we consider a very large set of “features” (i.e.,
any kind of properties characterizing traffic flows, from packet
size and inter-arrival time, to Round Trip Time, TCP congestion
window size, number of out-of-order packets, etc.) which are
typically exploited by a rather wide class of applications, such as
traffic monitoring, analysis, accounting, and classification. Using
three real traffic traces, representative of different operational
networks, we find that (i) a significant degradation affects a
wide number of features; (ii) the set of features less degraded is
consistent across the three datasets; (iii) at the same time, some
artifacts may arise, resulting in lower distortion scores at higher
sampling rates, which are tied to both the specific metric, as well
as the way in which the feature is computed (e.g., binning); (iv)
no significant reduction of the estimation bias can be obtained
by merely tweaking the sampling policy – which partly contrasts
earlier observations concerning the better quality achievable with
stratified sampling.

I. I NTRODUCTION AND MOTIVATIONS

Due to ever growing line speed and Internet traffic amount,
measurement of network traffic generates a massive volume
of data introducing scalability issues in both storage and
processing. Althoughdata aggregationis a core technique in
current Internet, as the widespread use of Simple Network
Management Protocol (SNMP) testifies, nevertheless there are
many operations (such as billing, management, SLA compli-
ance verification, classification, etc.) that require information
pertaining to individual flows, rather than to flow aggregates.
As such, sampling has become an integral part of passive
network measurements, and much work has already been done
in this field: a number of studies focus on the design of
sampling policies and on their impact, typically considering
a few metrics only [1]–[9], whereas other works concentrate
on a single application of sampling [10]–[15].

In this paper we aim at quantifying the robustness of a
large number of properties characterizing the traffic flows (i.e.
“features”) under different sampling strategies. We believe that
this wider perspective can be instrumental to a number of ap-
plications (e.g., monitoring, classification, anomaly detection,
etc.), without being bound to a single one in particular. The
robustness of the features is evaluated in terms of statistical
indexes (i.e. “metrics”), such as theHellinger Distanceand
the Fleiss Chi-Squareof sampled versus unsampled data.
The proposed methodology is based on a popular flow-level
analyzer, Tstat [16], which operates on packet level traffic
producing a wealth of statistical features, and which we
instrumented with different sampling policies. By performing
offline analysis of passive traces, we are able to compare the
results gathered from sampled traffic with the corresponding

results of unsampled traffic, so as to assess the level of
degradation introduced by sampling.

We perform experiments on three real traffic traces, some of
which are publicly available, so that our investigation is repre-
sentative of rather heterogeneous scenarios. Our results show
that a substantial degradation affects the majority of features
already for low levels of sampling. Yet our analysis highlights
that the distortion may vary for features pertaining to different
protocol layers: indeed, properties whose estimation relies on
the inspection of a single packet (e.g., IP or UDP properties)
are generally less distorted than properties depending on
multiple packets (e.g., inter-arrival, RTT, etc.). At the same
time, we also find the TCP case to be more complex, as
single-segment properties often requirespecificsegments to
be sampled (e.g., those negotiating specific options), and are
as a result severely affected already at low sampling rates.

Moreover, we are able to individuate a set of features
“robust” to sampling (i.e., minimally distorted), which is
furthermore consistent across all the datasets. By focusing on
such a reduced subset of features, we perform a thorough
sensitivity analysis and find that no sampling policy is able
to reduce the distortion induced by sampling. This is an
interesting finding, that partially counters earlier observations
(focusing on a narrower set of features, i.e., mainly traffic
volume) concerning the better quality achievable with stratified
sampling, and which we believe to be tied to the level of
statistical multiplexing already present in the traces.

Incidentally, we also point out some unexpected behavior
of some features, whose distortion apparently decreases when
the sampling rate increases. Digging further, we find the root
cause of this phenomenon to be the joint effect of the type of
traffic, the distortion metric used and the features estimation
procedure. This suggest that extra care must be taken when
dealing with sampled traffic, as otherwise uncorrelated factors
may combine together and yield misleading conclusions.

The reminder of this paper is organized as follows. In Sec. II
we overview the most relevant work, highlighting the relations
with our study and describing the main contributions of this
work. We describe the followed methodology in Sec. III,
detailing the tools used, the dataset to which we apply them,
and the metrics that we use for the quantitative assessment.
Results of our experimental campaign are reported in Sec. IV.
Finally, conclusive remarks and future directions are discussed
in Sec. V.

II. RELATED WORK

Due to the crucial role of packet sampling, several works
have already been published on this topic. While it is out
of scope to provide a throughout survey of these studies, for
which we refer the reader to [17], we nevertheless need to
better position our paper with respect to that work.

In [2] researchers have started agreeing on a categorization
of packet sampling techniques, which has since then evolved
until recently becoming an IETF standard document [18].
Basically, sampling techniques can be categorized depending
on the selection scheme, which can bedeterministic (or
systematic),randomor possiblycontent-dependent, with some
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further subcategories exhaustively presented in [18]. More-
over, the selection trigger can be either based on the amountof
timeelapsed or on the number ofpacketstransmitted between
two consecutive samples. Initially, researchers investigated
and compared different random selection schemes (possibly
including stratification) and triggers [4], proposing thenmore
sophisticated techniques based on hash functions [19], sample
and hold [20], and hash-based sketches [7]. Other works
focused instead on making the sampling rateadaptive[3], [10],
[21], for instance to the traffic load.

Major results can be summarized from the above works.
First, authors of [4] showed that sampling triggers based on
the count of packets are more robust than time-based triggers,
which cope badly with the bursty nature of data traffic. They
also point out the advantages of random sampling, due both to
its intrinsic statistical robustness and to its higher resilience to
evasion/attacks. The inherent robustness ofrandom sampling
(and especially of stratified sampling [17]) has been also
pointed out in [4], [22], although more recent results [9]
suggest that the statistical multiplexing of traffic can have
the same effect of a random selection process. In fact, [9]
shows that volume information (e.g., packets, bytes) obtained
through deterministic 1-out-of-k packet sampling is equivalent
to random packet sampling with ratep = 1/k.

Researcher have also highlighted that specific sampling
techniques may be more effective for different tasks or features
– such as trajectory sampling for spatial properties [19],
sketches for [7] flow-size and so on. Moreover, most work
to date focuses on specific metrics, essentially accounting
for traffic volumes under sampling [5]–[9]. More recently
researchers have started investigating the impact that sampling
may have on a wider range of applications, such as network
management [10], SLA verification [11], traffic classifica-
tion [12], [23] or anomaly detection [13]–[15]. This shift in the
application focus also implies a shift on the quantities that have
to be measured – e.g., from simple volumes of traffic [5]–
[9] to other properties, or “features”. However these works
consider the effect of sampling only on the performance of
a specific application (e.g., precision and recall of anomaly
detection or traffic classification, SLA compliance). While this
is a very useful effort, nevertheless results may be bound tothe
specific technique used for that task, thus measuring the joint
effect of sampling on the metrics and on the discriminative
power of the considered underlying machine learning tool.

In this work we adopt a complementary approach, focusing
on the impact of sampling on the measure of relevant traffic
features, irrespectively of their actual usage. Under this light,
[24] is a work closer to ours, even if not directly related to
sampling, as it investigates the relative stability of different
metrics across different datasets (although [24] focuses again
on a specific application, namely traffic classification). In[23]
another closer contribution to ours is proposed: mainly, ob-
tained results indicate that the accuracy of standard classifica-
tion tools degrades drastically with sampling. In our work,by
considering different features over different traces, we quantify
instead the amount of “distortion” that different sampling
policies and rates introduce on the measurement process.

To highlight the significance of the contributions of this

work we underline that, to the best of our knowledge, it
extends the results present in literature in that: (i) it is one
of the first attempt to study the impact of sampling on a
very broad set of traffic features (see Tab. I); (ii) we found a
very limited number of features can be safely estimated under
sampling; (iii) we found the way packet sampling is performed
has a very limited impact on the estimation accuracy when a
large set of features is considered.

III. M ETHODOLOGY

First, we elaborate on thefeatures(Sec. III-B) we focus
on. We then describe thesampling policies(Sec. III-B) we
take into account, as well as the different statisticalmetrics
(Sec. III-C) used to evaluate the distortion induced by sam-
pling. Finally, we briefly describe thedatasets(Sec. III-D)
used throughout this work.

A. Features

Tstat [16] logs several traffic features, which are in part
per-flow metrics and in part aggregated indexes. Moreover,
for certain properties Tstat is able to distinguish the traffic
directionality of the measurement (e.g., incoming versus out-
going versus local, and client-2-server versus server-2-client).
A summary of such properties is reported in Tab. I, divided
according to (i) the corresponding layer as well as (ii) the
number of packets needed to perform the measure, as some
features can be directly derived from a single packet (e.g.,
packet length), while others require multiple packets to be
evaluated (e.g., packet inter-arrival). It is important tonotice
that there is a good match with the about 240 features listed
in [27], which contains the most relevant features for traffic
classification. Yet, we point out that our work uses these
features with a different semantic from [27], as we consider
the feature distortion mostly in itsaggregatedform, whereas
traffic classification needs measures at anindividual flow level
– an interesting aspect we leave for future work.

B. Sampling Policies

We implement different sampling policies as defined [18].
For the time being, we have implemented “unbiased” sampling
techniques, leaving biased techniques as a future work. In
more details, we consider:

• Systematic sampling: packets are sampled in a deter-
ministic fashion, with 1-out-of-k packets selected;

• Random sampling: packets are sampled at random, each
packet is sampled independently at a ratep = 1/k;

• Stratified sampling: k consecutive packets are grouped
in a window, in which a single packet is randomly
sampled.

C. Metrics

In order to quantify the distortion introduced by the sam-
pling procedures, we consider different statistical indexes.
Denote byP an unsampled feature, which is described by
the probability density functionp(x) measured over the traffic
aggregate. Denote byQ the same feature as measured under a
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TABLE I
L IST OF CONSIDERED FEATURES. STAR SIGN (⋆) DENOTES FEATURES

MEASURED FOR INCOMING VS. OUTGOING VS. LOCAL DIRECTIONS.

ip tos⋆ TOS field
IP ip ttl⋆ TTL field

(single ip len⋆ Packet length [byte]
datagram) ip bitrate⋆ Bitrate [kbit/s]

ip protocol⋆ Protocol type

udp port flow dst Destination port per flow
UDP udp port dst⋆ Destination port per segment

(single udp tot time Flow lifetime [ms]
segment) udp cl b l⋆ Flow length [byte], coarse granularity

udp cl b s⋆ Flow length [byte], fine granularity
udp cl p⋆ Flow length [packet]

tcp mss used Negotiated MSS
tcp mss b MSS declared by Server
tcp mss a MSS declared by Client

TCP tcp opts TS Timestamp option
(single tcp opts WS WindowScale option

segment) tcp opts SACK SACK option
tcp bitrate⋆ Application bitrate
tcp port syndst⋆ Destination port (SYN segments only)
tcp port synsrc⋆ Source port (SYN segments only)
tcp port dst⋆ Destination port (all segments)
tcp port src⋆ Source port (all segments)

tcp interrupted Early interrupted flows [25]
tcp thru ⋆ Application throughput [Kbps]
tcp tot time Flow lifetime
tcp rtt cnt RTT: number of samples
tcp rtt stdev RTT: standard deviation [ms]
tcp rtt max RTT: maximum RTT [ms]

TCP tcp rtt avg RTT: average RTT [ms]
(mutliple tcp rtt min RTT: minimum RTT [ms]
segments) tcp cl b l Flow length, coarse granularity [byte]

tcp cl b s Flow length, fine granularity [byte]
tcp cl p Flow length [packet]
tcp cwnd TCP in-flight-size [byte]
tcp win max TCP max RWND [byte]
tcp win avg TCP average RWND [byte]
tcp win ini TCP initial RWND [byte]
tcp anomalies⋆ TCP anomalies as defined in [26]

rtcp bt⋆ Average bitrate [bit/s]
rtcp mm bt⋆ Associated MM flow bitrate[kbit/s]
rtcp mm cl b⋆ Associated MM flow length [bytes]
rtcp mm cl p⋆ Associated MM flow length [packets]
rtcp t lost⋆ Lost packets per flow

RTCP rtcp f lost⋆ Prob. of lost packets
(mutliple rtcp dup⋆ Duplicated packets
segments) rtcp lost⋆ Lost packets

rtcp avg inter⋆ Average inter-packet gap (IPG)
rtcp jitter⋆ Average jitter
rtcp rtt⋆ RTCP Round trip time [ms]
rtcp cl b⋆ RTCP flow length [bytes]
rtcp cl p⋆ RTCP flow length [packets]

mm burst loss⋆ Burst length of lost packets [packet]
mm p late⋆ Prob. of late packets
mm p lost⋆ Prob. of lost packets
mm p dup⋆ Prob. of duplicate packets
mm p oos⋆ Prob. of out-of-sequence packets
mm n oos⋆ Length of out-of-sequence burst
mm oos p⋆ Total out-of-sequence packets
mm reord p n⋆ Total reordered packets

RTP mm reord delay⋆ Delay of reordered packets
multimedia mm avg jitter⋆ Average jitter [ms]
(mutliple mm avg ipg⋆ Average IPG [ms]
segments) mm avg bitrate⋆ Stream bitrate [kbit/s]

mm cl b⋆ Long stream flow length [bytes]
mm cl p⋆ Long stream flow length [packet]
mm cl b s⋆ Short stream flow length [bytes]
mm cl p s⋆ Short stream flow length [packet]
mm tot time s⋆ Short stream flow lifetime [ms]
mm tot time⋆ Stream flow lifetime [s]
mm rtp pt⋆ RTP payload type
mm uni multi⋆ Unicast/multicast flows
mm type⋆ Stream type

sampling process, which is then described by the probability
density functionq(x) measured over the sampled traffic. To
express the distance betweenp(x) and q(x) we consider the
following standard metrics:

• Fleiss Chi-Square (φ)

φ(p, q) =

√

∑

x∈X
[q(x)− p(x)]2/p(x)

∑

x∈X
[q(x) + p(x)]

(1)

• Hellinger Distance (HD)

HD(p, q) =

√

1−
∑

x∈X

√

p(x)q(x) (2)

To provide backward compatibility with [4], we consider the
φ metric, which is a normalized version of the standard Chi-
Square widely used also, e.g., for classification purposes [28].
As the Chi-Square statistic is sensitive to the size of the data
set, this makes it difficult to compare samples of varying sizes:
thus, it cannot quantify significant trends when varying the
sampling fraction. Fleiss’ definition ofφ directly derives from
Chi-Square but overcomes this limitation, being independent
from the sample size [4].

The Hellinger Distance (HD) is typically used as a score
of similarity between metrics, and it has been used in [29]
to assist the context of classification as well. HD values are
confined in the range[0, 1], with lower values corresponding to
higher similarity between the distribution under comparison.
An extended set of results is available in [30], which also con-
sider other metrics, such as Kullback-Leibler, used e.g., in [31]
to reduce the data set size in an approach complementary to
sampling.

D. Dataset

In order to gather results that are representative of a
wide range of network environments and epochs, we use
several traces, whose main features are summarized in Tab. II.
Namely, the top portion of the table reports the capture year
and the number of packets, flows and different IP hosts
observed in the traces. In more details, the traces refer to:

• Campus is a 2-hours long trace captured during 2008
from our network, representative of a typical data con-
nection to the Internet. LAN users can be administrative,
faculty members and students. Most of the traffic is due
to TCP data flows carrying Web, email and bulk traffic,
since a firewall blocks all P2P file sharing applications.

• ISP is a 1-hour long trace collected during 2006 from
one of the major European ISP, which we cannot cite due
to NDA, offering triple-play services (Voice, Video/TV,
Data) over broadband access. ISP is representative of a
very heterogeneous scenario, in which no traffic restric-
tion are applied to customers.

• Auckland-VI is continuous 4.5-days long trace captured
during 2001 at the Internet egress router of the University
of Auckland, publicly available at [32].

To preliminarily assess the amount of traffic to which our
investigation refers to, we investigate theFlow-Recall (FR)and
Byte-Recall (BR)induced by sampling. Specifically, we define
FR as the percentage of flows whose packets are selected by
sampling, andBR as the correspondent percentage of bytes
carried by flows which are selected by sampling (note that
this metric takes into account all packets of those flows of
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TABLE II
SUMMARY OF DATASET USED IN THIS WORK.

Trace ISP Campus Auckland-VI
Year 2006 2008 2001
Packets 44,396,297 17,246,459 291,052,998
Flows 219,481 422,928 11,128,910
Packets/flow 202.27 40.77 26.15
IPs 61,959 81,687 410,059

FR (k = 2) 1.125 0.938 1.130
BR (k = 2) 0.992 0.934 0.999
FR (k = 128) 0.197 0.138 0.136
BR (k = 128) 0.943 0.727 0.687

which at least one packet has been sampled). As an example,
bottom portion of Tab. II reportsFRandBRresults considering
two different sampling rates (k = {2, 128}) for the uniform
sampling policy for all dataset. As it can be seen, at low
sampling stepk = 2, the number of flows artificially inflates
for the ISP and Auckland traces: as already observed in [5],
long flows can be split if the time between sampled packets
exceeds the flow timeout (which defaults to 200 seconds in
Tstat), possibly resulting in an over-estimation of the actual
number of flows. This is especially visible fork = 2, since for
k = 128 the effect of short flows under-sampling has a greater
impact, overall reducing the ratio of seen flows. On the other
hand, we observe that the byte recall is always very high,
meaning that results reported in this paper are representative
of the bulk of traffic. Clearly, theBR metric is tied to the
average number of packets constituting a flow (reported in top
portion of Tab. II), as the longer the flows, the higher the byte
recall.

IV. EXPERIMENTAL RESULTS
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Fig. 1. Aggregate level of Campus trace: CDF of IP packet size (a) and
number of packets per destination TCP port (b). Plots report the CDF gathered
from the unsampled vs sampled traffic aggregate, along with thestatistical
indexes of distortion.

In this section, we first analyze therange of the variation
of the selected metrics and features (Sec. IV-A). Then, we
analyze the behavior ofall features grouped by protocol
layer under increasing sampling rates but focusing mainly
on uniform sampling (Sec. IV-B). This analysis allows us to
select a set ofrobust features(i.e. less distorted across all
datasets), on which we conduct a thoroughsensitivity analysis
by applying a wider range of sampling policies and rates
(Sec. IV-C).
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A. Playing with Distortion Scores

To have a first idea of the scale of the distortion scores
defined so far we provide a preliminary example of some
relevant features. With reference to Campus trace Fig. 1-(a)
and Fig. 1-(b) report the CDF of two features, respectively
counting the IP packet size in bytes and the number of
packets directed to a given TCP port. CDFs are reported
for both original unsampled traffic, as well as for uniformly
sampled traffic withk = 128. Values of different distortion
metrics are reported in the picture. The CDF of the packet-
wise destination port shows a moderate distortion, with a
corresponding degradation ofHD = 0.219 and φ = 0.498:
in this case, differences in the CDF, although modest, can be
seen with naked-eyes from the plot. Conversely, IP packet size
shows a degradation score of about one order of magnitude
smaller for both metricsHD = 0.024 andφ = 0.051: in this
case, no remarkable difference appears from the plot.

To better understand the distortion score, let us dig further
in this example, considering the more robust features between
the two shown in Fig. 1, i.e., IP packet length. As previously
stated, some tasks (e.g., monitoring, accounting, etc.) need to
consider features at a traffic aggregate level, whereas other
tasks (e.g., traffic classification, QoS management, etc.) rather
have to consider features at an individual flow level. While
we leave a thorough analysis of this second viewpoint for
future work, this example gives us some preliminary insights
on the relationship between the two observation levels. Fig. 2
shows a scatter plot of the sampled versus unsampled metrics
whose CDF is shown in Fig. 1-(a). More in details, the x-
axis represent the per-flow average IP packet size considering
unsampled traffic, while the y-axis shows the same metric
measured on sampled traffic. Notice that, while many points
align over they = x line, indicating good correlation between
sampled and unsampled data even at flow-level, we can notice
a number of points falling in a few horizontal lines (namely
y = 40, 576, 1500). We found that for these flows only a
packet was sampled, which is not representative of the average
packet size. In fact by observing a single sample, it is likely
to get a typical-sized packet (e.g, a40−byte packet without
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Fig. 3. Mean and variance of the HD distortion score, for features grouped by protocol layer, as a function of the sampling step under uniform sampling
policy.

data, or1500−byte full payload packet, or a576−byte packet)
which will lead to a bad estimation of the actual average
packet size of the flow (represented on the x-axis). In this
case, other metrics may better represent the distortion of the
sampled population (e.g., such as the correlation coefficient,
the relative error, the root mean square error, etc.), whichwe
aim at investigating in future work.

B. Protocol Layer Impact

To refine our understanding of sampling impact on a large
number of features, we start by grouping the features in
different sets according to the protocol layer: in particular
we consider IP features, UDP single-segment features, TCP
single- and multiple- segment features as in Tab. I. By com-
paring the effect of sampling on these groups, we want to
find out whether there exists a family of features which is by
definition more robust to sampling.

Without loss of generality, for the time being we express the
distortion scores using the Hellinger Distance. We also select
a single sampling policy (namely, uniform sampling) and
consider sampling rates ranging from 1/2 to 1/1024. Results
are reported in the three graphs of Fig. 3, which correspond to
the different datasets. In every single plot, each curve depicts
the mean and the variance of the HD metric over a given group
of features as a function of the sampling stepk.

As a first general comment, it can be seen that the distortion
score for the different groups exhibits, with minor exceptions,
a consistent behavior across datasets. In other words, there are
features that are intrinsically easier to quantify under sampling:
for instance, features relying only on the inspection of a single
packet (e.g., IP packet size) can be expected to be more
robust to sampling than features depending on the observation
of multiple packets (e.g., inter-arrival time). This intuition is
confirmed by the plots, where the curves of distortion scores
for both IP and UDP single-segment features are considerably
closer to the minimum value for the HD.

The behavior of TCP features is instead more complex and
counter-intuitive. In fact, notice that the trend of the twoTCP
groups of features varies for different datasets. Considering for
example the Auckland trace, we observe that single-segment
TCP features, which are directly derived from TCP header
fields or options (e.g. related to MSS negotiation, window
scale, etc.), exhibit an unusually low distortion score. Inves-
tigating this issue further, we found out that in the Auckland

dataset, portions of the captured traffic are obfuscated (i.e.,
more precisely, set to zero) for privacy reasons. Incidentally,
also the portion of the packet header carrying TCP options
undergoes this obfuscation process, making Tstat unable to
correctly measure the related features (i.e., more precisely,
Tstat assumes a maximum value for MSS, and by default con-
siders timestamp, window scale and sack options as unused).
Therefore, in this case the low distortion score is an artifact,
arising from impossibility of correctly estimating the features
from the trace under investigation, even in the unsampled case.

On the other hand, notice that, apart from of the Auckland
dataset, at lower sampling rates, TCP features depending on
multi-segment suffer a smaller distortion than that of TCP
features depending on single-segment observation. Also, the
HD value for TCP multi-segment features keeps increasing
with the sampling, whereas TCP single-segment features, al-
beit already distorted for low levels of sampling, do not further
degrade for high sampling factors. This unexpected behavior
is due to the fact that, in the TCP case, some of the single-
segment features requirespecific segmentsto be monitored:
for instance the segment corresponding to the negotiation of
a specific option. If this very segment is missed because of
sampling, which is often the case already at low sampling
rates, the features estimation is compromised. Conversely,
some of the features requiring multiple segments (e.g., average
and maximum value of the receiver window, etc.) can still be
safely estimated for low sampling rates.

C. Sensitivity analysis

In this section we investigate the impact of different sam-
pling policies and rates as well as the use of different metrics
to express the distortion. Under this wider perspective, weaim
at isolating a set of features which are more robust to sampling
(or, equivalently, less distorted), irrespectively of theprotocol
layer they pertain to. Therefore, we first define a “robustness”
criterion to identify such features. Then, by focusing on this
reduced set, we perform a more detailed sensitivity analysis.

1) Robust feature set:To identify the robust set of features
we employ a simple threshold-based criterion based on the
Hellinger Distance: features whoseHD value is lower than
the defined threshold are considered robust. More specifically
in the following results refers to features which have anHD <
0.1 with a sampling ofk = 128, but similar considerations
hold for other values of the threshold (cfr. [30]) as well. Notice
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Fig. 4. Sensitivity analysis: Mean and variance of the statistical distortion scores of the robust features set, for different datasets, sampling policies and rates.

that we selectHD = 0.1 in reason of the existence of a clear
separation between the curves in Fig. 3. Moreover notice also
that the selectedHD threshold is about half of the distortion
early shown in Fig. 1-(a), where discrepancy of the CDFs was
clearly visible although not massive.

It is important to stress that we no longer take into account
the grouping by protocol layer when applying the robustness
criterion. Rather, features are evaluated individually, so that the
robust set actually consists of properties belonging to different
groups. As we also consider each direction separately (i.e.,
incoming versus outgoing versus local traffic), it may happen
that a feature is robust for a given direction, but not for the
opposite one. Moreover, we conservatively require features to
be jointly robust across all datasets under consideration: in
other words, the resulting set is theintersectionof the sets of
robust features on each single datasets.

The final set contains 34 features, 10 of which belong to the
IP layer (representing the 66.6% of the 15 IP layer features
computed by Tstat), 20 of which belong to the TCP layer
(16.7% of the TCP features) and the remaining 4 to the UDP
layer (23.5%). Thus, each protocol layer is represented in
the robust set, except for the RTCP and MM layers which
are missing. In fact, the relatively low amount of MM/RTCP
traffic present in the Auckland dataset makes it difficult to
evaluate the related features for this traces, especially when
hard sampling conditions further limit the number of valid
samples.

As for the union of the robust feature sets of each single
trace, such set contains 110 features, and it is larger than the
intersection. This means that the actual amount of distortion
experienced by features may also depend on the dataset –
suggesting that some features are robust only under specific
traffic conditions.

2) Impact of Sampling Policy:In this section we investigate
on the robust set of features just defined: for lack of space and

to avoid cluttering the overall picture, we omit the analysis of
the complete feature set, which is available in [30].

Results of the sensitivity analysis for the robust set are
reported in Fig. 4: graphs are arranged in a matrix, whose
columns correspond to the different sampling policies, while
rows are related to the two statistical metrics used to quantify
the feature distortion. As before, for each sampling policy, we
employ an exponentially increasing sampling stepk = 2i, i ∈
[1 . . . 10] ⊂ N, reported on the x-axis of every plot. Each
graph contains three curves, one for each dataset, depicting the
average distance score over the 34 features belonging to the
robust set; variance of the distance score is also reported,by
means of vertical error bars (notice that stdev is visually noisy
since the square root of score values in[0, 1] ∈ R exploses).

At first glance, we can observe that there is no clear
advantage over the choice of stratified sampling over random
or systematic sampling: indeed considering either row of
three plots, one can gather a striking similar behavior. This
finding holds whenever several features are considered, and
contrasts with earlier results supporting stratified sampling
techniques [4]. Our intuition is that, given the level of sta-
tistical multiplexing of traffic flows, the sampling policy has a
minor impact, especially when complex traffic properties are
considered. Also, notice that similar conclusions have been
recently reported by independent research [9], which however
limitedly considers only traffic volume measurements under
sampling (i.e., flow length).

Let us now compare the different distortion scores and
focus on the two graphs belonging to the same column, so
considering each single sampling policy on its own. Although
the two metrics take values in different ranges, they both
identify the Campus and Auckland dataset as the best case
yielding lower distortion scores, and agree that ISP constitutes
a stiffer scenario under sampling. However another important
consideration stems from the comparison of the plots of the
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Fig. 5. Scatter plot of HD andφ distortion for the robust feature subset,
considering samplingk = 2 andk = 128.

two distortion metrics. For HD first, one can notice that
the range of distortion values is similar for all datasets, and
that a monotonously increasing slope characterizes all curves.
Instead, as far as theφ score is concerned, such behavior is
observed only for the Campus and Auckland traces, but not
for ISP one. Indeed, in this case, the curve shows a almost
flat portion for sampling rates in the rangek = [64, 256]: this
is an interesting point that deserves further attention, and that
we investigate further in the following.

3) Artifacts of Distortion Score:To better understand the
phenomenon early observed in Fig. 4, we need to focus more
closely on the features that are robust across all datasets.For
this purpose we resort to the scatter plots of Fig. 5. Each robust
feature is represented by a single point whose (x,y) coordinates
are the distortion scores fork = 2 and k = 128, where the
flatness of theφ score is observed. The left plot reports the
value of theφ coefficient while the right one is related to the
HD distance.

In the picture, we label some representative points with
the name of the corresponding feature. Intuitively, we could
expect all the points falling in the upper part of the graph
above they = x bisector, since metrics should deteriorate at
higher values ofk. Instead, some features exhibit an opposite
and counter-intuitive behavior, falling in the gray-shaded area
which correspond to features whose distortion score actually
reduceswith higher sampling rates. For instance, this effect
is particularly evident for thetcp_cl_b_l_c2s feature,
i.e. the TCP flow length, measured with a coarse granularity.
In this case, for larger sampling steps, many short flows
are no longer sampled, with a corresponding decrease of
the mass of flows falling into the smallest bin. Thus the
improvement of the feature estimation is a joint consequence
of the traffic nature (sampling tends to select packets from
the same elephant flows, yielding a better estimation of the
length of such flows) and the specific binning adopted (as this
behavior is not shown by the corresponding feature calculated
with fine granularitytcp_cl_b_s_c2s).

Notice that this effect is instead less evident in theHD
score plot, where only a single feature falls in the gray region,
than in theφ plot where we actually find three points in this
area. Moreover for theφ coefficient many features actually fall
on the bisector as well, which means that no degradation is
detected by the distance metric despite the increased sampling

rate. In fact, it seems as though different choices of binning
have a greater impact on theφ metric, sometimes compromis-
ing its accuracy. On the other hand, theHD distance appears
able to better characterize the distortion, because a greater
score usually corresponds to a larger sampling step. This is
due to the different weighting of the errors inφ andHD: in
the former, larger discrepancies will be amplified (i.e., squared
difference) with respect to the latter score (i.e., product): this
entails that several small errors, affecting several bins,may
produce a lower distortion score inφ. The main outcome of
this reflexion is that special care must be also taken in the
selection of the distortion metric used, as otherwise similar
artifacts may yield to misleading conclusions.

V. D ISCUSSION ANDCONCLUSIONS

In this paper, we have investigated the impact of packet
sampling on network traffic monitoring and analysis. Aiming
at a comprehensive study, we have (i) implemented three
different sampling policies, (ii) considered a vast set of packet-
level and flow-level features of network traffic, and (iii)
applied our methodology to a fairly large dataset of very
heterogeneous traces. By running a modified version of Tstat,
a flow-level traffic analyzer, we have been able to compare the
results obtained with sampled versus unsampled traffic data.
Comparison has been expressed in terms of two statistical
indexes, apt at quantifying the amount of features degradation
introduced by sampling.

Our results show that, on the one hand, sampling causes an
important degradation of the features estimation: indeed,most
of the features are already severely distorted at low sampling
rates. By separately analyzing properties belonging to different
protocol layers, we find that a lower level of distortion affects
the features based on the estimation of a single packet (e.g.,
those related to IP or UDP) with respect to those related to
more packets, except in the case of features whose estimation
rely on very specific segments (e.g., as for some TCP features).

On the other hand, we have found that, irrespectively of
the protocol layer considerations, there exists a small setof
features robust to sampling, which is furthermore consistent
across all the considered datasets. The sensitivity analysis
conducted on this reduced set of features further points out
that, unlike previous studies have shown, the specific sampling
policy employed only has a minor impact on reducing the
degradation. We identify two main reasons behind this finding:
first, the statistical multiplexing may partly eliminate the
bias induced by simple strategies (e.g., systematic sampling);
second, this evidence may have been hidden by previous work
which typically focused on a few specific features only (e.g.,
traffic volumes). At the same time, we have also isolated
a number of counter-intuitive behaviors and measurement
artifacts, showing that it may be challenging to correctly assess
the impact of sampling even on simple measures.

In future work, we aim at extending this study in several
directions. First, we would like to consider a larger set of
sampling strategies, such as non-uniform sampling policies
(e.g., sample all TCP packets with SYN flag set, sample a
batch of consecutive packets, etc.). Indeed, these strategies
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may improve the estimation of some features (e.g., SYN
sampling is useful for flow-length, while batch-sampling is
useful for packet inter-arrival, etc.), and as such their impact on
other features is worth investigating as well: eventually,results
may suggest that several sampling process, each optimized
to monitor a specific feature, shall be run in parallel to
gather consistent results over all features of interest. Second,
we aim at considering a wider range of applications (e.g.,
traffic classification, anomaly detection, etc.) so as to better
correlate the feature distortion with the performance of the
application itself. In particular, as early work [12], [15]has
already shown, the degradation of a metric introduced by
sampling does not necessarily reflect in an equal reduction
of performance of successive applications (e.g., anomaly de-
tection, traffic classification) operating on that measure.Thus,
a mild improvement of the estimation quality may be enough
to allow a useful exploitation of sampled data: in future work
we aim at exploring this trade-off.
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