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Abstract—Due to significant advances in transmission tech- results of unsampled traffic, so as to assess the level of
nology and to the corresponding increase of link rates, traffic degradation introduced by sampling.
sampling is becoming a normal way of operation in waffic \yg herform experiments on three real traffic traces, some of
monitoring. Given this trend, in this paper we aim to assess hich blicl ilabl h . LT
the impact of the sampling on a wide range of tasks which are Which are publicly available, so that our investigationeapre-
typical of an operational network. We follow an experimental Sentative of rather heterogeneous scenarios. Our reits s
approach, exploiting passive analysis of network traffic flows, that a substantial degradation affects the majority ofuiesst
taking into account different sampling policies (e.g., systematic, glready for low levels of sampling. Yet our analysis hightig
uniform and stratified) and different sampling rates. To quantify that the distortion may vary for features pertaining toegit

the amount of degradation and bias that sampling introduces with [ ~indeed . h . . o
respect to the unsampled traffic we use well-known statistical protocol layers: indeed, properties whose estimatioresedin

measures (i.e., Hellinger Distance, Fleiss Chi-Square). Unlike the inspection of a single packet (e.g., IP or UDP propeérties
previous work, we consider a very large set of “features” (i.e., are generally less distorted than properties depending on
any kind of properties characterizing traffic flows, from packet multiple packets (e.g., inter-arrival, RTT, etc.). At thamse

size and inter-arrival time, to Round Trip Time, TCP congestion time, we also find the TCP case to be more complex, as

window size, number of out-of-order packets, etc.) which are . | . ft . ifi
typically exploited by a rather wide class of applications, such as single-segment properties often requsgecific segments to

traffic monitoring, analysis, accounting, and classification. Using Pe sampled (e.g., those negotiating specific options), aad a
three real traffic traces, representative of different operaional as a result severely affected already at low sampling rates.

netWOI’kS, we find that (|) a S|gn|f|cant degradation affects a Moreover, we are able to |nd|v|duate a set Of features

wide number of features; (ii) the set of features less degraded is “robust’ to sampling (i.e., minimally distorted), which is

consistent across the three datasets; (iii) at the same time, somef h . Il the d f .
artifacts may arise, resulting in lower distortion scores at higher urthermore consistent across all the datasets. By fogusm

sampling rates, which are tied to both the specific metric, as well such a reduced subset of features, we perform a thorough
as the way in which the feature is computed (e.g., binning); (iv) sensitivity analysis and find that no sampling policy is able
no significant reduction of thg estimation biz_is can be obtained tg reduce the distortion induced by sampling. This is an
by merely tweaking the sampling policy — which partly contrasts ;e eting finding, that partially counters earlier olvagipns
earlier observations concerning the better quality achievable with . . . '
stratified sampling. (focusing on a narrower set of features, i.e., mainly traffic
volume) concerning the better quality achievable withtgieal
sampling, and which we believe to be tied to the level of
I. INTRODUCTION AND MOTIVATIONS statistical multiplexing already present in the traces.
Incidentally, we also point out some unexpected behavior
Due to ever growing line speed and Internet traffic amourdf some features, whose distortion apparently decreasea wh
measurement of network traffic generates a massive volug@ sampling rate increases. Digging further, we find the roo
of data introducing scalability issues in both storage amrfhuse of this phenomenon to be the joint effect of the type of
processing. Althouglilata aggregatioris a core technique in traffic, the distortion metric used and the features estonat
current Internet, as the widespread use of Simple Netwoskocedure. This suggest that extra care must be taken when
Management Protocol (SNMP) testifies, nevertheless there gealing with sampled traffic, as otherwise uncorrelatetbfac
many operations (such as billing, management, SLA compthay combine together and yield misleading conclusions.
ance Veriﬁcation, ClaSSiﬁcation, etC.) that require infation The reminder of this paper is Organized as follows. In Sec. |l
pertaining to individual flows, rather than to flow aggregatewe overview the most relevant work, highlighting the relas
As such,sampling has become an integral part of passivgith our study and describing the main contributions of this
network measurements, and much work has already been d@pgk. We describe the followed methodology in Sec. I,
in this field: a number of studies focus on the design @fetailing the tools used, the dataset to which we apply them,
sampling policies and on their impact, typically considgri and the metrics that we use for the quantitative assessment.
a few metrics only [1]-{9], whereas other works concentraiResults of our experimental campaign are reported in Sec. IV
on a single application of sampling [10]-{15]. Finally, conclusive remarks and future directions are used
In this paper we aim at quantifying the robustness of ja Sec. V.
large number of properties characterizing the traffic floines (
“features”) under different sampling strategies. We helithat
this wider perspective can be instrumental to a number of ap-
plications (e.g., monitoring, classification, anomalyedtion, Due to the crucial role of packet sampling, several works
etc.), without being bound to a single one in particular. Theave already been published on this topic. While it is out
robustness of the features is evaluated in terms of statistiof scope to provide a throughout survey of these studies, for
indexes (i.e. “metrics”), such as theellinger Distanceand which we refer the reader to [17], we nevertheless need to
the Fleiss Chi-Squareof sampled versus unsampled databetter position our paper with respect to that work.
The proposed methodology is based on a popular flow-levelin [2] researchers have started agreeing on a categorizatio
analyzer, Tstat [16], which operates on packet level traffaf packet sampling techniques, which has since then evolved
producing a wealth of statistical features, and which wantil recently becoming an IETF standard document [18].
instrumented with different sampling policies. By perfangn  Basically, sampling techniques can be categorized depgndi
offline analysis of passive traces, we are able to compare the the selection scheme, which can Heterministic (or
results gathered from sampled traffic with the correspandisystematic)randomor possiblycontent-dependenivith some

II. RELATED WORK



further subcategories exhaustively presented in [18].eviorwork we underline that, to the best of our knowledge, it
over, the selection trigger can be either based on the anedunéxtends the results present in literature in that: (i) it e o
time elapsed or on the number pécketsransmitted between of the first attempt to study the impact of sampling on a
two consecutive samples. Initially, researchers invastid very broad set of traffic features (see Tab. I); (i) we found a
and compared different random selection schemes (possitdyy limited number of features can be safely estimated unde
including stratification) and triggers [4], proposing theore sampling; (i) we found the way packet sampling is perfodme
sophisticated techniques based on hash functions [19plsanhas a very limited impact on the estimation accuracy when a
and hold [20], and hash-based sketches [7]. Other worksge set of features is considered.
focused instead on making the sampling rdaptive[3], [10],
[21], for instance to the traffic load. I1l. M ETHODOLOGY

Major results can be summarized from the above WorkS-First, we elaborate on théeatures(Sec. IlI-B) we focus

First, authors of [4] showed that sampling _triggers based BA. We then describe theampling policies(Sec. 11I-B) we
the count of packets are more robust than time-based t899¢5ye into account, as well as the different statisticatrics
which cope badly with the bursty nature of data traffic. TheéSec. lI-C) used to evaluate the distortion induced by sam-

also point out the advantages of random sampling, due bothyig,  Finally, we briefly describe thelatasets(Sec. 11I-D)
its intrinsic statistical robustness and to its higherliesce to | ¢aq throughout this work.

evasion/attacks. The inherent robustnessaofdlom sampling

(and especially of stratified sampling [17]) has been also

pointed out in [4], [22], although more recent results [9@' Features

suggest that the statistical multiplexing of traffic can énav Tstat [16] logs several traffic features, which are in part

the same effect of a random selection process. In fact, [@gr-flow metrics and in part aggregated indexes. Moreover,

shows that volume information (e.g., packets, bytes) abthi for certain properties Tstat is able to distinguish thefitaf

through deterministic 1-out-of-k packet sampling is eqiéwt directionality of the measurement (e.g., incoming versuss o

to random packet sampling with rage= 1/k. going versus local, and client-2-server versus serveiePHy.
Researcher have also highlighted that specific samplifgsummary of such properties is reported in Tab. |, divided

techniques may be more effective for different tasks onfiest according to (i) the corresponding layer as well as (i) the

— such as trajectory Samp"ng for Spatia| properties [1gT,umber of packets needed to perform the measure, as some

sketches for [7] flow-size and so on. Moreover, most worfeatures can be directly derived from a single packet (e.g.,

to date focuses on specific metrics, essentially accountipgcket length), while others require multiple packets to be

for traffic volumes under sampling [5]-[9]. More recentlyevaluated (e.g., packet inter-arrival). It is importantnatice

researchers have started investigating the impact thatlsam that there is a good match with the about 240 features listed

may have on a wider range of applications, such as netwdfk[27], which contains the most relevant features for teaffi

management [10], SLA verification [11], traffic classificaclassification. Yet, we point out that our work uses these

tion [12], [23] or anomaly detection [13]-[15]. This shiftthe features with a different semantic from [27], as we consider

application focus also implies a shift on the quantities ltzwve the feature distortion mostly in itaggregatedform, whereas

to be measured — e.g., from simple volumes of traffic [5]traffic classification needs measures atratividual flow level

[9] to other properties, or “features”. However these works an interesting aspect we leave for future work.

consider the effect of sampling only on the performance of

a specific application (e.g., precision and recall of angmaB. Sampling Policies

detection or traffic classification, SLA compliance). Whitést  \y/e implement different sampling policies as defined [18].

is a very useful effort, nevertheless results may be boutioeto For the time being, we have implemented “unbiased” sampling

specific technique used for that task, thus measuring the jojechniques, leaving biased techniques as a future work. In
effect of sampling on the metrics and on the discriminative,, e details we consider:

power of the considered underlying machine learning tool.

In this work we adopt a complementary approach, focusing®
on the impact of sampling on the measure of relevant traffic
features irrespectively of their actual usage. Under this light,
[24] is a work closer to ours, even if not directly related to
sampling, as it investigates the relative stability of eliént
metrics across different datasets (although [24] focugaina
on a specific application, namely traffic classification)[28]
another closer contribution to ours is proposed: mainly, ob )
tained results indicate that the accuracy of standardifiss C- Metrics
tion tools degrades drastically with sampling. In our wdrk, In order to quantify the distortion introduced by the sam-
considering different features over different traces, werdify pling procedures, we consider different statistical iretex
instead the amount of “distortion” that different samplinddenote by P an unsampled feature, which is described by
policies and rates introduce on the measurement process. the probability density functiop(z) measured over the traffic

To highlight the significance of the contributions of thisaggregate. Denote hy the same feature as measured under a

Systematic sampling packets are sampled in a deter-

ministic fashion, with 1-out-ofe packets selected;

« Random sampling packets are sampled at random, each
packet is sampled independently at a rate 1/k;

« Stratified sampling: k£ consecutive packets are grouped

in a window, in which a single packet is randomly

sampled.



TABLE |

LIST OF CONSIDERED FEATURESSTAR SIGN (x) DENOTES FEATURES

MEASURED FOR INCOMING VS OUTGOING VS. LOCAL DIRECTIONS.

ip_tosx TOS field
P ip_ttlx TTL field
(single ip_lenx Packet length [byte]
datagram) | ip_bitratex Bitrate [kbit/s]
ip_protocok Protocol type
udp_port flow_dst  Destination port per flow
UDP udp_port_dstx Destination port per segment
(single udp_tot_time Flow lifetime [ms]
segment) | udp.cl_b_I* Flow length [byte], coarse granularity|
udp_cl_b_sx Flow length [byte], fine granularity
udp_cl_p* Flow length [packet]
tcp_mss used Negotiated MSS
tcp_mss b MSS declared by Server
tcp_mss a MSS declared by Client
TCP tcp_opts TS Timestamp option
(single tcp_opts WS WindowScale option
segment) | tcp_opts SACK SACK option
tep_bitratex Application bitrate
tcp_port_syndst Destination port (SYN segments onl
tcp_port_synsrec Source port (SYN segments only)
tcp_port_dstx Destination port (all segments)
tcp_port_srcx Source port (all segments)
tep_interrupted Early interrupted flows [25]
tcp_thru Application throughput [Kbps]
tcp_tot_time Flow lifetime
tep_rtt_cnt RTT: number of samples
tep_rtt_stdev RTT: standard deviation [ms]
tep_rtt_max RTT: maximum RTT [ms]
TCP tcp_rtt_avg RTT: average RTT [ms]
(mutliple tep_rtt_min RTT: minimum RTT [ms]
segments) | tcp_cl_b_| Flow length, coarse granularity [byte]
tcp_cl_b_s Flow length, fine granularity [byte]
tep_cl_p Flow length [packet]
tcp_cwnd TCP in-flight-size [byte]
tcp_win_max TCP max RWND [byte]
tcp_win_avg TCP average RWND [byte]
tep_win_ini TCP initial RWND [byte]
tcp_anomaliesx TCP anomalies as defined in [26]
rtcp_btx Average bitrate [bit/s]
rtcp_mm_btx Associated MM flow bitrate[kbit/s]
rtcp_mm_cl_bx Associated MM flow length [bytes]
rtcp_mm_cl_px Associated MM flow length [packets]
rtcp_t_lostx Lost packets per flow
RTCP rtcp_f_lostx Prob. of lost packets
(mutliple rtcp_dupx Duplicated packets
segments) | rtcp_lostx Lost packets
rtcp_avg_interx Average inter-packet gap (IPG)
rtcp_jitterx Average jitter
rtcp_rttx RTCP Round trip time [ms]
rtcp_cl_bx RTCP flow length [bytes]
rtcp_cl_px RTCP flow length [packets]
mm_burst lossc Burst length of lost packets [packet]
mm_p_latex Prob. of late packets
mm_p_lostx Prob. of lost packets
mm_p_dupx Prob. of duplicate packets
mm_p_00sk Prob. of out-of-sequence packets
mm_n_oosk Length of out-of-sequence burst
mm_00s p* Total out-of-sequence packets
mm_reord p_nx Total reordered packets
RTP mm_reord delayx Delay of reordered packets
multimedia | mm_avg jitterx Average jitter [ms]
(mutliple mm_avg_ipgx Average IPG [ms]
segments) | mm_avg bitratex Stream bitrate [kbit/s]
mm_cl_bx Long stream flow length [bytes]
mm_cl_px Long stream flow length [packet]
mm_cl_b_sx Short stream flow length [bytes]
mm_cl_p_sx Short stream flow length [packet]
mm_tot_time_sx Short stream flow lifetime [ms]
mm_tot_timex Stream flow lifetime [s]
mm_rtp_ptx RTP payload type
mm_uni_multix Unicast/multicast flows
mm_typex Stream type

)

o Fleiss Chi-Square ¢)

[ Xsexla(@) — p(@)]*/p(z)
o) = ¢ Sxli@) tp] O
« Hellinger Distance (HD)

HD(p,q) = [1 =Y /px)q(x) @)

zeX

To provide backward compatibility with [4], we consider the
¢ metric, which is a normalized version of the standard Chi-
Square widely used also, e.g., for classification purpco28p |
As the Chi-Square statistic is sensitive to the size of the da
set, this makes it difficult to compare samples of varyingsiz
thus, it cannot quantify significant trends when varying the
sampling fraction. Fleiss’ definition af directly derives from
Chi-Square but overcomes this limitation, being indepehde
from the sample size [4].

The Hellinger Distance (HD) is typically used as a score
of similarity between metrics, and it has been used in [29]
to assist the context of classification as well. HD values are
confined in the rang@, 1], with lower values corresponding to
higher similarity between the distribution under compais
An extended set of results is available in [30], which alsn-co
sider other metrics, such as Kullback-Leibler, used end31]
to reduce the data set size in an approach complementary to
sampling.

D. Dataset

In order to gather results that are representative of a
wide range of network environments and epochs, we use
several traces, whose main features are summarized inlTab. |
Namely, the top portion of the table reports the capture year
and the number of packets, flows and different IP hosts
observed in the traces. In more details, the traces refer to:

o Campus is a 2-hours long trace captured during 2008
from our network, representative of a typical data con-
nection to the Internet. LAN users can be administrative,
faculty members and students. Most of the traffic is due
to TCP data flows carrying Web, email and bulk traffic,
since a firewall blocks all P2P file sharing applications.

« ISP is a 1-hour long trace collected during 2006 from
one of the major European ISP, which we cannot cite due
to NDA, offering triple-play services (Voice, Video/TV,
Data) over broadband access. ISP is representative of a
very heterogeneous scenario, in which no traffic restric-
tion are applied to customers.

o Auckland-VI is continuous 4.5-days long trace captured
during 2001 at the Internet egress router of the University
of Auckland, publicly available at [32].

To preliminarily assess the amount of traffic to which our

investigation refers to, we investigate tAew-Recall (FR)and
Byte-Recall (BR)nduced by sampling. Specifically, we define

sampling process, which is then described by the probgbilfER as the percentage of flows whose packets are selected by
density functiong(z) measured over the sampled traffic. Teampling, andBR as the correspondent percentage of bytes
express the distance betwegfr) and ¢(x) we consider the carried by flows which are selected by sampling (note that

following standard metrics:

this metric takes into account all packets of those flows of



TABLE I

SUMMARY OF DATASET USED IN THIS WORK 1500 N T o ir
o + o+t 4t + s g +
Trace ISP Campus Auckland-VI 3 o
Year 2006 2008 2001 B
Packets 44,396,297 17,246,459 291,052,998 S © 1000}
Flows 219,481 422,928 11,128,910 >
Packets/flow | 202.27 40.77 26.15 o
IPs 61,959 81,687 410,059 o é
FR k = 2) 1.125 0.938 1.130 oy 500l
BR (k = 2) 0.992 0.934 0.999 S
FR (k = 128) | 0.197 0.138 0.136 5
BR (k = 128) | 0.943 0.727 0.687 a
O h
0 500 1000 1500
. Per-flow average packet size
which at least one packet has been sampled). As an example, Unsampled traffic

bottom portion of Tab. Il reportER andBRresults considering
two different sampling ratesk(= {2,128}) for the uniform Fig 2. Individual-flow level: scatter plot of the unsampleetsus sampled
sampling policy for all dataset. As it can be seen, at loaverage per-flow IP packet size.
sampling stepc = 2, the number of flows artificially inflates
for the ISP and Auckland traces: as already observed in [5],
long flows can be split if the time between sampled packe)&S
exceeds the flow timeout (which defaults to 200 seconds ‘i
Tstat), possibly resulting in an over-estimation of theuatt  To have a first idea of the scale of the distortion scores
number of flows. This is especially visible fér= 2, since for defined so far we provide a preliminary example of some
k = 128 the effect of short flows under-sampling has a greatgslevant features. With reference to Campus trace Fig) 1-(a
impact, overall reducing the ratio of seen flows. On the othghd Fig. 1-(b) report the CDF of two features, respectively
hand, we observe that the byte recall is always very higfeunting the IP packet size in bytes and the number of
meaning that results reported in this paper are representapackets directed to a given TCP port. CDFs are reported
of the bulk of traffic. Clearly, theBR metric is tied to the for both original unsampled traffic, as well as for uniformly
average number of packets constituting a flow (reportedpn tegampled traffic withk = 128. Values of different distortion
portion of Tab. I1), as the longer the flows, the higher theebyimetrics are reported in the picture. The CDF of the packet-
recall. wise destination port shows a moderate distortion, with a
corresponding degradation ¢f D = 0.219 and ¢ = 0.498:

IV. EXPERIMENTAL RESULTS in this case, differences in the CDF, although modest, can be
seen with naked-eyes from the plot. Conversely, IP packet si
shows a degradation score of about one order of magnitude

Playing with Distortion Scores

— k=128 — k=128 = smaller for both metricsd D = 0.024 and ¢ = 0.051: in this

------ Unsampled ------ Unsampled .
0.8 {1 o8t z case, no remarkable difference appears from the plot.
06 06l w—— | To better understand the distortion score, let us dig furthe

é ' | in this example, considering the more robust features ketwe

0.4+ HD=0.024 1 04 HD=0 219 1 the two shown in Fig. 1, i.e., IP packet Iength. As previously
0.2 ¢=0.051 1 o ! ¢=0.498 | stated, some tasks (e.g., monitoring, accounting, eted e
' ' consider features at a traffic aggregate level, whereag othe
0 : : (T —— tasks (e.qg., traffic classification, QoS management, eithpr

0 500 1000 1500 O 10k 20k 30k 40k 50k 60k

, ) o have to consider features at an individual flow level. While
IP packet size [bytes] Packet-wise TCP destination port
(@

we leave a thorough analysis of this second viewpoint for
Fig. 1. Aggregate level of Campus trace: CDF of IP packet sjeaqd future work, this example gives us some preliminary insight
number of packets per destination TCP port (b). Plots reper&DF gathered on the relationship between the two observation levels. Fig
from the unsampled vs sampled traffic aggregate, along wittsthiistical  shows a scatter plot of the sampled versus unsampled metrics
indexes of distortion. . . . . .

whose CDF is shown in Fig. 1-(a). More in details, the x-

axis represent the per-flow average IP packet size consgleri

In this section, we first analyze thange of the variation unsampled traffic, while the y-axis shows the same metric

of the selected metrics and features (Sec. IV-A). Then, weeasured on sampled traffic. Notice that, while many points
analyze the behavior o#ll features grouped by protocol align over they = z line, indicating good correlation between
layer under increasing sampling rates but focusing mainkampled and unsampled data even at flow-level, we can notice
on uniform sampling (Sec. IV-B). This analysis allows us ta number of points falling in a few horizontal lines (namely
select a set ofobust featureg(i.e. less distorted across ally = 40,576, 1500). We found that for these flows only a
datasets), on which we conduct a thorowsghnsitivity analysis packet was sampled, which is not representative of the geera
by applying a wider range of sampling policies and ratgsacket size. In fact by observing a single sample, it is yikel
(Sec. IV-C). to get a typical-sized packet (e.g,48—byte packet without
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Fig. 3. Mean and variance of the HD distortion score, for et grouped by protocol layer, as a function of the samplteg ender uniform sampling
policy.

data, or1500—hyte full payload packet, or &6—byte packet) dataset, portions of the captured traffic are obfuscated, (i.
which will lead to a bad estimation of the actual averagmore precisely, set to zero) for privacy reasons. Incidbnta
packet size of the flow (represented on the x-axis). In thédso the portion of the packet header carrying TCP options
case, other metrics may better represent the distortioheof uindergoes this obfuscation process, making Tstat unable to
sampled population (e.g., such as the correlation cogtficiecorrectly measure the related features (i.e., more pigcise
the relative error, the root mean square error, etc.), whieh Tstat assumes a maximum value for MSS, and by default con-

aim at investigating in future work. siders timestamp, window scale and sack options as unused).
Therefore, in this case the low distortion score is an atifa
B. Protocol Layer Impact arising from impossibility of correctly estimating the fages

To refine our understanding of sampling impact on a Iaré@m the trace under inves_tigation, even in the unsampled.ca
number of features, we start by grouping the features inOn the other hand, n(_)tlce that, apart from of the Auckland
different sets according to the protocol layer: in particul data_set, at lower sampling rates, .TCP. features depending on
we consider IP features, UDP single-segment features, TéWIti-segment suffer a smaller distortion than that of TCP
single- and multiple- segment features as in Tab. I. By corfzatures depending on single-segment observation. Afep, t
paring the effect of sampling on these groups, we want \g-dp value for '!'CP multi-segment features keeps increasing
find out whether there exists a family of features which is bY/ith the sampling, whereas TCP single-segment features, al
definition more robust to sampling. beit already d|§torted for. low levels of sgmpllng, do notffier _

Without loss of generality, for the time being we express trgegrade for high sampling factors. This unexpected behavio
distortion scores using the Hellinger Distance. We alsectel IS due to the fact that, in the TCP case, some of the single-
a single sampling policy (namely, uniform sampling) angeg_ment features requispecific segm_entls) be momto_red:
consider sampling rates ranging from 1/2 to 1/1024. Resuf instance the segment corresponding to the negotiation o
are reported in the three graphs of Fig. 3, which correspond& SPecific option. If this very segment is missed because of
the different datasets. In every single plot, each curvactiep S@mpling, which is often the case already at low sampling
the mean and the variance of the HD metric over a given grolffes, the features estimation is compromised. Conversely
of features as a function of the sampling step some of 'ghe features requiring m_ultlple_segments (e.graggae

As a first general comment, it can be seen that the distortiBRd maximum value of the receiver window, etc.) can still be
score for the different groups exhibits, with minor excepsi, Safely estimated for low sampling rates.

a consistent behavior across datasets. In other wordg, #ner

features that are intrinsically easier to quantify undengiing: C. Sensitivity analysis

for instance, features relying only on the inspection ofral In this section we investigate the impact of different sam-
packet (e.g., IP packet size) can be expected to be meimg policies and rates as well as the use of different ro®tri
robust to sampling than features depending on the obsenvatio express the distortion. Under this wider perspectiveaine

of multiple packets (e.g., inter-arrival time). This irtfah is  at isolating a set of features which are more robust to sagpli
confirmed by the plots, where the curves of distortion scorésr, equivalently, less distorted), irrespectively of fh®tocol

for both IP and UDP single-segment features are consideralayer they pertain to. Therefore, we first define a “robusthes
closer to the minimum value for the HD. criterion to identify such features. Then, by focusing ois th

The behavior of TCP features is instead more complex arebuced set, we perform a more detailed sensitivity aralysi
counter-intuitive. In fact, notice that the trend of the tiMGP 1) Robust feature sefTo identify the robust set of features
groups of features varies for different datasets. Consigéor we employ a simple threshold-based criterion based on the
example the Auckland trace, we observe that single-segmetllinger Distance: features whodéD value is lower than
TCP features, which are directly derived from TCP headére defined threshold are considered robust. More spedffical
fields or options (e.g. related to MSS negotiation, windoin the following results refers to features which haverép <
scale, etc.), exhibit an unusually low distortion score/eby 0.1 with a sampling ofk = 128, but similar considerations
tigating this issue further, we found out that in the Aucklanhold for other values of the threshold (cfr. [30]) as well.tide
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Fig. 4. Sensitivity analysis: Mean and variance of the stiatl distortion scores of the robust features set, fdediht datasets, sampling policies and rates.

that we selecfi D = 0.1 in reason of the existence of a cleato avoid cluttering the overall picture, we omit the anadysf
separation between the curves in Fig. 3. Moreover notiae akhe complete feature set, which is available in [30].

that the selected/ D threshold is about half of the distortion Results of the sensitivity analysis for the robust set are
early shown in Fig. 1-(a), where discrepancy of the CDFs wagported in Fig. 4: graphs are arranged in a matrix, whose
clearly visible although not massive. columns correspond to the different sampling policies,lavhi

It is important to stress that we no longer take into accourdws are related to the two statistical metrics used to dfyant
the grouping by protocol layer when applying the robustnetise feature distortion. As before, for each sampling pokioy
criterion. Rather, features are evaluated individuatithat the employ an exponentially increasing sampling step 2°,i €
robust set actually consists of properties belonging tediht [1...10] C N, reported on the x-axis of every plot. Each
groups. As we also consider each direction separately (i.graph contains three curves, one for each dataset, deptbtin
incoming versus outgoing versus local traffic), it may happeverage distance score over the 34 features belonging to the
that a feature is robust for a given direction, but not for thebust set; variance of the distance score is also repdried,
opposite one. Moreover, we conservatively require feattwe means of vertical error bars (notice that stdev is visuatligy
be jointly robust across all datasets under consideration: since the square root of score valueg(nl] € R exploses).
other words, the resulting set is theersectionof the sets of At first glance, we can observe that there is no clear
robust features on each single datasets. advantage over the choice of stratified sampling over random

The final set contains 34 features, 10 of which belong to tlhe systematic sampling: indeed considering either row of
IP layer (representing the 66.6% of the 15 IP layer featuréiwee plots, one can gather a striking similar behaviorsThi
computed by Tstat), 20 of which belong to the TCP laydinding holds whenever several features are considered, and
(16.7% of the TCP features) and the remaining 4 to the UD¥ontrasts with earlier results supporting stratified samgpl
layer (23.5%). Thus, each protocol layer is represented techniques [4]. Our intuition is that, given the level of-sta
the robust set, except for the RTCP and MM layers whidfstical multiplexing of traffic flows, the sampling policyak a
are missing. In fact, the relatively low amount of MM/RTCRminor impact, especially when complex traffic properties ar
traffic present in the Auckland dataset makes it difficult toonsidered. Also, notice that similar conclusions havenbee
evaluate the related features for this traces, especidiignw recently reported by independent research [9], which hewev
hard sampling conditions further limit the number of validimitedly considers only traffic volume measurements under
samples. sampling (i.e., flow length).

As for the union of the robust feature sets of each single Let us now compare the different distortion scores and
trace, such set contains 110 features, and it is larger ti@n focus on the two graphs belonging to the same column, so
intersection. This means that the actual amount of distorticonsidering each single sampling policy on its own. Althoug
experienced by features may also depend on the datasehe- two metrics take values in different ranges, they both
suggesting that some features are robust only under spediientify the Campus and Auckland dataset as the best case
traffic conditions. yielding lower distortion scores, and agree that ISP ctrts8

2) Impact of Sampling Policytn this section we investigate a stiffer scenario under sampling. However another impobrta
on the robust set of features just defined: for lack of spade aronsideration stems from the comparison of the plots of the
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this reflexion is that special care must be also taken in the
Fig. 5. Scatter plot of HD and distortion for the robust feature subset,selection of the distortion metric used, as otherwise simil
considering sampling: = 2 andk = 128. artifacts may yield to misleading conclusions.

two distortion metrics. For HD first, one can notice that V. DiscussiON ANDCONCLUSIONS

the range of distortion values is similar for all datasets a | this paper, we have investigated the impact of packet
that a monotonously increasing slope characterizes allesur sampling on network traffic monitoring and analysis. Aiming
Instead, as far as th¢ score is concerned, such behavior igt g comprehensive study, we have (i) implemented three
observed only for the Campus and Auckland traces, but ngferent sampling policies, (i) considered a vast setathet-
for ISP one. Indeed, in this case, the curve shows a alm@sfe| and flow-level features of network traffic, and (iii)
flat portion for sampling rates in the range= [64, 256]: this  applied our methodology to a fairly large dataset of very
is an interesting point that deserves further attentiod, taat heterogeneous traces. By running a modified version of Tstat
we investigate further in the following. a flow-level traffic analyzer, we have been able to compare the

3) Artifacts of Distortion Score:To better understand theresults obtained with sampled versus unsampled traffic. data
phenomenon early observed in Fig. 4, we need to focus m@emparison has been expressed in terms of two statistical
closely on the features that are robust across all datd3ets. indexes, apt at quantifying the amount of features degi@ulat
this purpose we resort to the scatter plots of Fig. 5. Eachsiobintroduced by sampling.
feature is represented by a single point whose (x,y) coatd®  Our results show that, on the one hand, sampling causes an
are the distortion scores fdr = 2 and k¥ = 128, where the important degradation of the features estimation: indeeatt
flatness of thep score is observed. The left plot reports thef the features are already severely distorted at low sampli
value of theg coefficient while the right one is related to therates. By separately analyzing properties belonging ferdint
HD distance. protocol layers, we find that a lower level of distortion affe

In the picture, we label some representative points withe features based on the estimation of a single packet (e.g.
the name of the corresponding feature. Intuitively, we douthose related to IP or UDP) with respect to those related to
expect all the points falling in the upper part of the grapmore packets, except in the case of features whose estimatio
above they = z bisector, since metrics should deteriorate atly on very specific segments (e.g., as for some TCP features
higher values of. Instead, some features exhibit an opposite On the other hand, we have found that, irrespectively of
and counter-intuitive behavior, falling in the gray-shddeea the protocol layer considerations, there exists a smalloet
which correspond to features whose distortion score dgtuaeatures robust to sampling, which is furthermore constste
reduceswith higher sampling rates. For instance, this effecicross all the considered datasets. The sensitivity amalys
is particularly evident for thet cp_cl _b_| _c2s feature, conducted on this reduced set of features further points out
i.e. the TCP flow length, measured with a coarse granularitjtat, unlike previous studies have shown, the specific Sampl
In this case, for larger sampling steps, many short flowslicy employed only has a minor impact on reducing the
are no longer sampled, with a corresponding decrease deigradation. We identify two main reasons behind this figdin
the mass of flows falling into the smallest bin. Thus thfirst, the statistical multiplexing may partly eliminateeth
improvement of the feature estimation is a joint consegeenpias induced by simple strategies (e.g., systematic sag)pli
of the traffic nature (sampling tends to select packets frogecond, this evidence may have been hidden by previous work
the same elephant flows, yielding a better estimation of thhich typically focused on a few specific features only (e.g.
length of such flows) and the specific binning adopted (as thiaffic volumes). At the same time, we have also isolated
behavior is not shown by the corresponding feature caledlata number of counter-intuitive behaviors and measurement
with fine granularityt cp_cl _b_s_c2s). artifacts, showing that it may be challenging to correcigess

Notice that this effect is instead less evident in tHé) the impact of sampling even on simple measures.
score plot, where only a single feature falls in the grayaegi  In future work, we aim at extending this study in several
than in theg plot where we actually find three points in thisdirections. First, we would like to consider a larger set of
area. Moreover for the coefficient many features actually fallsampling strategies, such as non-uniform sampling palicie
on the bisector as well, which means that no degradation(esg., sample all TCP packets with SYN flag set, sample a
detected by the distance metric despite the increased smpbatch of consecutive packets, etc.). Indeed, these seateg



may improve the estimation of some features (e.g., SYhb]
sampling is useful for flow-length, while batch-sampling i§t7]
useful for packet inter-arrival, etc.), and as such thepact on

other features is worth investigating as well: eventuadigults

may suggest that several sampling process, each optimi
to monitor a specific feature, shall be run in parallel t
gather consistent results over all features of interestors

we aim at considering a wider range of applications (e.g2%!
traffic classification, anomaly detection, etc.) so as tdebet
correlate the feature distortion with the performance @& th21]
application itself. In particular, as early work [12], [18hs
already shown, the degradation of a metric introduced
sampling does not necessarily reflect in an equal reduction
of performance of successive applications (e.g., anomedy d?3l
tection, traffic classification) operating on that measiitaus,
a mild improvement of the estimation quality may be enough4]

to allow a useful exploitation of sampled data: in future kvor

we aim at exploring this trade-off.
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