
A molecular architecture for creating advanced GUIs
Eric Lecolinet

GET / ENST and CNRS LTCI
INFRES Dept.

46 rue Barrault, 75013 Paris, France.
 Eric.Lecolinet@enst.fr - www.enst.fr/~elc

ABSTRACT
This paper presents a new GUI architecture for creating
advanced interfaces. This model is based on a limited set of
general principles that improve flexibility and provide
capabilities for implementing information visualization
techniques such as magic lenses, transparent tools or
semantic zooming. This architecture also makes it possible
to create multiple views and application-sharing systems
(by sharing views on multiple computer screens) in a
simple and uniform way and to handle bi-manual
interaction and multiple pointers. An experimental toolkit
called Ubit was implemented to test the feasibility of this
approach. It is based on a pseudo-declarative C++ API that
tries to simplify GUI programming by providing a higher
level of abstraction.

KEYWORDS: GUI toolkits, GUI architectures, multiple-
views, multiple displays, declarative languages, transparent
tools, ZUIs, bi-manual interaction, Ubit, brickgets.

INTRODUCTION
This paper presents a new architectural model that
simplifies the programming of complex interfaces. Previous
studies have shown that GUI programming is a difficult
task that requires intensive work and extended knowledge
[18]. As a consequence, sophisticated GUIs that implement
new visualization or interaction techniques tend to be rare
because such systems involve high development costs. Our
model was implemented as an experimental GUI toolkit
called Ubit (for “Ubiquitous Brick Interaction Toolkit”).
This toolkit is based on a limited set of general principles
that improve flexibility and provide capabilities for
implementing information visualization techniques such as
magic lenses, transparent tools or semantic zooming. The
Ubit GUI architecture also makes it possible to create
multiple views and application-sharing systems in a simple

and uniform way. Bi-manual and multi-user interaction are
also supported by this architecture. The next sections
present the main principles of the Ubit model: the
“molecular” architecture, pseudo-declarative programming
in C++, object sharing and the visual replication of GUI
components. The final sections are devoted to multiple
display applications, information visualization techniques,
related work and the conclusion

WIDGETS AND SCENE GRAPHS
Widget-based toolkits
Most 2D GUI toolkits rely on a widget-based architecture.
In these systems, interactive objects and object containers
are modeled by classes, called widgets, controls or
interactors that implement a large set of features and
behaviors. In most cases, these features are statically
encoded in widget classes and can not easily be changed
nor enriched. For instance, transforming a widget that can
only display simple text into a widget that could contain
composite text or hypertext elements is generally
challenging, even if other widgets in the toolkit provide this
capability. Hence, behaviors and other features are not seen
as general services that could be used by any widget.
Instead, classes tend to link widgets with toolkit features in
a static way that cannot be easily changed.

This problem, that can be summarized as “the lack of
flexibility of the class/inheritance model” has already been
pointed out in previous studies (Amulet [20]). As a
consequence, GUIs tend to be quite stereotyped and novel
interaction and visualization techniques are rarely used.
Originality often requires a lot of complex source code and
higher programming costs. While GUIs should certainly
respect certain guidelines in order to make them easier to
understand, this lack of flexibility is an obstacle to
creativity and makes it difficult to experiment new GUI
techniques.

Scene graphs
Most 3D toolkits, and some recent advanced 2D toolkits
(CPN2000 [2], Jazz [4]), are based on a scene-graph
approach. 3D scenes are modeled by a graph of nodes

which represent shape objects, properties, cameras,
grouping objects, etc. The main difference with the widget-
based approach does not reside in the idea of using a graph
(a widget tree can be seen as a kind of scene graph) but in
the granularity of the nodes of the graph. Widgets are
coarse objects embedding many features. Scene-graph
nodes are fine grained objects that generally have a much
more specific function. This low level of granularity
enhances flexibility since many objects of different kinds
can be composed together dynamically in various ways.
However, scene-graphs may not be well-suited for creating
2D GUIs. Widgets provide a convenient encapsulation of
usual interaction styles and a standardized appearance.
They also enforce certain usability rules and reduce the
number of objects that must be dealt with. This may
facilitate programming traditional GUIs, especially
interaction. In addition, the scene-graph approach is
unfamiliar to most 2D GUI programmers.

MOLECULAR ARCHITECTURE
The Ubit model is a synthesis of the widget-based and
scene-graph approaches. As with scene-graph approaches,
Ubit GUIs are made up of small “atomic” objects called
bricks. Hence, the appearance and behavior of the GUI
components are not imposed statically by widget classes
but result from the combination of inter-changeable light-
weight components. However, this model also integrates
the usual notion of a widget, although standard widget
classes do not embed specific behaviors nor any other
feature. Instead, Ubit “widgets” are just combinations of
bricks that implement behaviors and other features. In that
sense, they can be seen as “molecules” made up of
“atomic” bricks. Because of this specific structure, we will
call them brickgets in order to emphasize the difference
with classical widgets. Depending on the programmer’s
point of view, a Ubit GUI graph can either be seen as a
traditional widget graph or as a scene-graph of atomic
elements. A brickget can itself be seen as a sub-graph of the
global scene-graph. Ubit graphs thus follow a model where
scene graph nodes can embed other scene-graphs.

Figure 1 shows an example of a simple scene-graph: a tree
that contains three brickget nodes (a check box, a button
and a menu) and eight atomic brick leaves. Brickgets can
contain an arbitrary combination of bricks that belong to
five categories (Fig.2):

- Behavioral bricks. For instance, UEdit makes all the
strings contained in the brickget editable (although it is
a button).

- Graphical properties, such as UFont and UColor that
specify the appearance of the brickget and its children.

- Viewable elements, such as text strings (UStr), images
(UIma), pixmaps and graphical symbols.

- Callback objects (UCall) that are not illustrated here.

- nested brickgets (UGroup subclasses). For instance,
the button contains a box that “contains” a menu. This
latter kind of parent-child relationship means that the
menu will be automatically opened when the box is
pressed. This box serves as an invisible interactor: it is
not discernible but can react to events and change the
appearance of its children (as in Fig.!1 where the box is
pressed and the arrow symbol highlighted).

Figure 1: A simple example.

There are several advantages to this approach. First,
embedded scene-graphs hide the complexity of traditional
monolithic scene-graphs and are therefore easier to
program. This may be less confusing for programmers that
are accustomed to widget-based approaches (in fact, novice
programmers may not even notice the architectural
difference). However, this scheme also allows for a high
level of flexibility. Brick combination makes it possible to
create brickgets that combine any arbitrary set of features.
The standard brickgets that are provided by the toolkit can
be modified and enriched dynamically by adding bricks or
removing bricks and there is no restriction on the type of
content a brickget can display nor on the type of behavior it
can implement. So, the richness of the toolkit does not
reside in the capabilities of its interactive components but
in its ability to combine many basic features and services in
a generic and uniform way.

Figure 2: The main classes of the Ubit toolkit

USING C++ AS A DECLARATIVE LANGUAGE
GUI source code tends to be verbose and hard to read.
Informative data is often hidden in a large amount of
“syntactic sugar” that conveys little information but is
necessary for proper compilation. This lack of conciseness
tends to make programs harder to understand and to
maintain. This fact has been a major argument in favor of

high-level programming languages that provide a higher
level of abstraction. Mathematical formulas are another
example: their ability to represent sophisticated concepts in
a very concise way had a major impact on the development
of mathematics.

Declarative languages may be a good solution to ease the
design of GUIs. It is for instance surprising that even non
specialists can create rather sophisticated HTML pages
while most of them would be unable to use a GUI
programming toolkit. However, declarative languages
generally provide only limited interaction capabilities (with
some exceptions such as UIML![27], an XML-based
language). Scripting languages propose another approach
(e.g. Tcl/Tk [21]). But they require that the GUI and the
functional part of the application to be developed separately
by using different languages. In both cases, this separation
implies connection mechanisms that may be impractical for
creating complex interactive programs requiring significant
feedback.

Declarative C++. The Ubit toolkit solves this problem by
providing a pseudo-declarative API that is compliant with
the C++ language. As this API only makes use of the
standard features of this programming language, no pre-
processing stage is required and the C++ compiler ensures
syntactical correctness. Thus, interface specifications can
benefit both from the simplicity and compactness of a
declarative language and the power of expression of an
object-oriented programming language. For instance, the
example shown in Fig.!1 could be created as follows:

UStr& ! filename = ustr(“eiffel.gif”!);
UColor& color ! = ucolor(“orange”!);
UIma* ! ima;

UBox& !example1 != !ubutton(
 uedit(!)
 + UFont::bold !+! UColor::blue !+! “Image”
 + (ima! =! &uima(!“eiffel.gif”!))
 + UFont::italic !+! color! +! filename
 + ubox(USymbol::down + umenu(..etc..))
);

String literals such as “Image” are implicitly converted into
UStr bricks. Graphical properties apply to the children that
follow them. They can be instances or predefined constants
such as UFont::bold and UColor::blue. They can also be
specified several times inside a single brickget in order to
control its subparts independently. This feature can for
instance be used to create multi-font multi-colored text, as
illustrated in Fig.1. The notion of a graphical property is
quite general. This category includes object decorators such
as borders, background images and colors, alpha blending,
scaling properties, layout managers, brickget locations, etc.

This syntax makes it possible to create an instance graph in
a declarative way. It relies on a simple and uniform
mechanism. First, expressions such as ubutton(...) are
functions that call the constructor of the corresponding

classes (UButton in this case). They are intended to make
the code more legible and to give it a “declarative flavor”.
Brickget constructors have an UArgs argument that
represents a list of arbitrary bricks. The + operator is
overloaded in such a way that the “addition” of two bricks
creates a temporary list. More precisely, the expression
a+b+c+d first creates a list containing the first two
elements then adds the remaining elements to it. This list is
then passed as an argument to the brickget constructor
which adds these elements to the scene-graph. This
mechanism also works when brickgets have only one child
or no child at all. A single child is implicitly converted into
a list in the first case (thanks to the C++ type conversion
mechanism). An empty list is provided as a default
argument in the second case. This addition mechanism
allows for safe type checking at compile time since it relies
mainly on polymorphism and does not involve any
dangerous casting operation. The toolkit also provides
methods for adding, removing and retrieving brickget
children dynamically. For instance, the addlist() method
makes it possible to add a list of bricks in a single call.

Variables and dependencies
Declarative specifications can be split into several parts by
using intermediate variables. This can be useful to enhance
the readability of the code source when too many objects
are nested. Variables also provide a simple way to share
objects and thus, to create a DAG (direct acyclic graph) or
even an arbitrary graph. Two brickget parents could for
instance share the example1 object (Fig. 1) in this way:

UDialog& d1 = udialog(!example1!);
UMenu& !m1 = umenu(!example1!);

As will be explained later, example1 will appear in both its
parent brickgets: a menu and a dialog box in this case.

Implicit dependencies are automatically inferred from the
scene-graph. This makes it possible to synchronize objects
automatically. For instance, the following assignments
automatically update example1 because its depends on the
color and filename variables:

 color = UColor::green; filename = “orsay.jpg”;

This example also shows that brickget subparts can be
controlled independently. For instance, the example1 button
contains two strings but the previous code sample only
changes the color and contents of the second string. Explicit
dependencies that do not rely on the scene-graph can also
be specified:

 filename.onChange(uset(!ima, filename));

This specification means that the ima image will be
automatically updated when filename is changed. More
precisely, the set method of the image will be called and
this method will load the image file given by filename. This
is a general feature of the toolkit: all bricks can update

dependencies or execute callback functions when their
value is changed.

Callbacks and conditional specifications
Dependencies provide an efficient way to reduce the
number of callback functions and to avoid the “spaghetti of
callbacks” problem [18]. However, callback functions are
often useful to connect the GUI with the functional part of
the application. Callback functions and conditional
specifications can be specified in a pseudo-declarative way:

class Ex {
 void load(UStr* name) { ... }
} ex;

example1.addlist(// adds bricks to example1
 UOn::enter / ucall(!&filename, showName!)
 + UOn::action / ucall(!&ex, &filename, &Ex::load!)
);

The UCall brick represents a callback object. This object
will call the function in its last argument with the
arguments before it when the UOn condition is verified.
Callback functions can either be non-member or member
functions (i.e. methods). In the latter case (illustrated on the
second line of the previous example), the instance pointer is
provided as the first argument of the ucall() construct. Such
specifications are based on C++ templates. They ensure that
the arguments given to a given ucall() construct match the
formal parameters of its callback function. Any function or
method can be used as a callback function as long as is does
not have more than two arguments.

Each ucall() specification creates a node in the instance
graph. The / operator is overloaded. Its left hand side
specifies the relationship between the enclosing brickget
and the callback object. This can be a predefined condition,
such as UOn::action (true when an object was activated,
typically by clicking on it) or more general conditions, as
explained in the next section. The same mechanism can be
used for creating conditional specifications that activate (or
deactivate) graphical properties or make viewable elements
visible (or invisible). For instance, the following code
specifies that the color object is changed when the mouse
enters the brickget and that an image is shown when the
mouse is pressed. A sub-tree of brickgets could also be
made visible or invisible in this way.

example1.addlist(
 UOn::enter / uset(!&color, UBColor::red!)
 + UOn::mpress / uima(!“working.gif”!)
);

BRICKGETS AND INHERITANCE IN THE SCENE-GRAPH
Brickgets are simple derivations of three base classes:
UGroup, UBox and UWin described below.

Groups and markup tags
A group brickget is a node that defines a rendering context
in the scene-graph. It acts as a generic container that

“glues” together an arbitrary combination of children.
Bricks inside a group are evaluated in left-to-right depth-
first order. Graphical property bricks apply to the following
children in the group (and, possibly, to their children). They
do not have any effect on the parents of the group.

UBox& my_page = ubox(
 UFlowView::style
 + ugroup(UFont::bold + “Architect Pei’s”)
 + “ pyramid ” + uima(!“pyramid.gif”!)
 + “ marks the ”
 + ulinkbutton(!“entrance”!) + “to the new museum”
 + example1
);

Figure 3: Markup tags and flow layout.

This example creates a box that will be laid out as an
HTML page (the UFlowView::style brick specifies such a
layout). Like an HTML page, it can contain any
combination of text, images, links and other brickgets. The
UGroup brickget applies a bold font to its remaining
children but does not have any effect on their layout.
Hence, a group behaves very much like an HTML markup
tag. A “bold” brickget with the same semantics as the bold
tag of the HTML language could be implemented as
follows:

class UBold !:! public UGroup {
 UBold(const UArgs& a != !UArgs::none) {
 addlist(UFont::bold + a);
 }
};

UBold& ubold(!const UArgs&!a!) {!return *new UBold(a);!}

my_page = ubox(ubold(!“Architect Pei’s”!) + ... !);

The Ubit architecture is thus not limited to the management
of widget-like components but can also model markup tags.
The toolkit not only provides “black box” widgets that can
read hypertext data but also makes it possible to manage
document trees at a fine-grained level. There is no
structural difference between a document tree and a GUI
tree, all their elements are part of the same global scene-
graph and dealt with in the same way. There is no
equivalent to groups in traditional 2D GUI toolkits.

Boxes, windows and widget-like objects
UBoxes are similar to groups except that they can manage
one or several views on the screen (Fig.!4). Box views
impose a specific layout and define a clipping area. The
difference between boxes and groups is very much the
same as between widgets and markup tags. For instance, an
HTML bold tag does not interfere with layout (its content

can be displayed on several lines) while a button widget
corresponds to a specific area on the screen and imposes a
given layout to its children. Widget-like brickgets such as
buttons, text fields, list boxes thus derive from UBox.

Box views can be visually opaque, transparent or
translucent. They can also be transparent to events in
certain cases. Each view is controlled by a view renderer
that controls its layout. Depending on the type of renderer,
objects can be arranged in a line or in a column (horizontal
and vertical boxes), in a continuous flow (such as HTML
pages) or in two-dimensional tables. Objects can also be
located on the borders of the brickgets (such as scrollbars
that control a viewport) or at arbitrary positions.

Windows are a special case of boxes. The UWin container is
a subclass of UBox that serves as a base class for menus,
dialog boxes and main frames.

Figure 4: The architecture of a box brickget

Styles and inheritance in the scene-graph
Although they can mimic widgets, standard brickget classes
do not have any property nor viewable elements of their
own. For instance a UButton does not have a label field nor
a background or foreground color. The appearance and the
contents of brickgets depends on the bricks they contain,
the properties inherited from their parents, and styles.

Styles provide a different flexibility than inheritance and
make it possible to adapt the presentation to a specific
platform (for instance a small sized handheld device or a
large screen). Styles are compilations of atomic bricks that
specify the default appearance of brickget class instances.
A style object stores a complete set of graphical attributes
for each possible state of the corresponding brickget
instance (such as being pressed, activated, dragged, etc.) It
can also specify the default content of a brickget and can be
context-dependent. For instance, buttons have a specific
appearance in menus and menu bars. The rendering
algorithm manages style bricks in the same way as if they
were actually added to the scene-graph. This algorithm
collates style brick values, then overrides them with the
values of inherited bricks and brickget children.

Property inheritance is specified in style objects. While this
feature exists in document specification languages such as
HTML, it has rarely been used in GUI toolkits. The
combination of styles and scene-graph inheritance make it
possible to control the appearance of a GUI by very few

parameters. Implicit dependencies make this feature even
more powerful. A single brick can not only control the
appearance of the brickgets that depend on it but also those
of all their children and descendants. All these objects are
automatically updated when the value of such a brick is
changed.

Behaviors
Behaviors are not embedded in specific widget classes.
They are either common to all brickget classes or
implemented as behavioral bricks that can be added to any
brickget. Basic behaviors (such as highlighting, activation,
selection, selection in a group, a list or a menu, text editing,
drag and drop) are controlled by programmable controllers.
Such behaviors can be dynamically activated or deactivated
by brickget instances (typically in the object constructors).
Since all brickgets share the same basic behaviors, any
standard interactor can be dynamically transformed into
any other. For instance, the following specifications are
equivalent from a functional point of view:

 ubutton(a) = ubox(!UMode::canHighlight!+!UMode::canArm!+!a!)

 ucheckbox(a) = ubutton(UMode::canSelect + a)

 utextfield(a) = ubox(uedit(!) + a)

The UMode::canArm brick tells the interaction controller
of this brickget that it can be armed when the user presses
the mouse on it while the UMode::canSelect brick makes it
selectable. A brickget controller is equivalent to a finite
state machine. The state of each brickget controls its
appearance. There is a direct correspondence between
states, UOn conditions and style specifications.

More sophisticated behaviors (such a text editing, text
selection, object selection in lists, various implicit
behaviors) are handled by separate brick instances that
cooperate with the brickget controllers. These behavioral
bricks act as sub-controllers. As seen in the previous
examples, these “chunks of behaviors” can be combined
together. For instance, the UEdit brick makes it possible to
edit text in any brickget. Several independent text strings
can be contained in the same brickget, even if they are
separated by other children. These strings will be seen as a
continuous character string from the user point of the view.
For instance, the caret will move automatically from the
end of a string to the beginning of the following one. Text
selection works in a similar way. Text can be selected in all
brickgets, even if it is included in their children and
descendants.

The following examples (Fig. 5) illustrate the generality of
this model. In the first example, menu items contain various
interactors, such as editable text fields or buttons included
in other buttons. It is thus possible to create generalized
menus that contain any kind of interactor (for instance, a
file selection box, an active overview of the GUI, etc.) The
second example shows an icon box that automatically

Event
Flow(s)

adjusts the number of icons in each line according to the
width of the icon box. Two features are combined here: a
behavior brick that ensures exclusive selection among
brickget children and a “flow” layout brick that arranges
children in a left-to-right flow. Any brickget can thus
behave as a “list” widget, and its items can be of any type.
Any brickget can also enforce a flow layout. Its text string
children are then automatically wrapped if they cannot fit
on a single line (as illustrated in Fig.!3). There is no need
for specific text components, as in Swing [9] and other GUI
toolkits. For the sake of simplicity, text editing brickgets
are provided in the toolkit, but they are just trivial
derivations of the UBox class.

UColor color, red, blue green;
UString font_str!;

UMenu& optionMenu = umenu(
 ubutton(UPix!::colors + "Colors:"
 + ubutton(ubgcolor(!red!) + " " + uset(!&color, red))
 + ubutton(ubgcolor(!green!) + " " + uset(!&color, green))
 + ubutton(ubgcolor(!blue!) + " " + uset(!&color, blue))
)
 + ubutton(UPix!::edit + "Font:"
 + utextfield(font_str + ucall(this, &font_str, setFont!))
)
 + ubutton(UPix!::book + "Current Page" + umenu(...)
);

UMenubar& mbar = umenubar(
 ubutton("File" + file_menu!)
 + ubutton("Views" + viewMenu!)
 + ubutton("Options" + optionMenu!)
 + ubutton(UPix!::question + helpMenu!)
);

Figure 5: generalized menus and list boxes.

Multiple event-flows and bi-manual interaction
Events are sent to brickget controllers by one or several
event flows (Fig!4). Event flows receive raw events from a
given event source (such as a pointer or a keyboard) and
perform object picking. There is usually only one native
event source for a given computer. However the toolkit can
also support alternate event sources. A separate event flow
is created for each event source so that events coming from
the different sources can be distinguished and controlled in
an independent way. Multiple actions controlled by
different input devices can thus be performed
simultaneously. Hence, the toolkit supports bi-manual
interaction and multiple user interaction (each user
controlling its own pointer). A multiple mouse server that
can manage several cursors on the same screen has been

developed for this purpose. This server also makes it
possible to control applications from a remote machine or
to manage pointers continuously on a set of screen
controlled by different machines (as in [6]).

THE EFFECT OF SHARING OBJECTS
A general principle of the Ubit architecture is that all bricks
(including brickgets) can be shared by several parents.
While some systems support sharing, sharing sophisticated
interactive components is a rather unusual feature. The
molecular architecture of the toolkit favors the sharing of
objects. In traditional widget-based toolkits, features can
not be shared because they are embedded in the widget
instances. In some cases, sharing is limited to specific
cases, such as the “models” of the Swing toolkit [9].
Sharing is used in a more uniform way in 3D toolkits
(Interviews [15]) or in some 2D toolkits (Fresco [16],
OpenInventor [11], Jazz [4]) but mainly concerns graphical
objects and properties, not interactive objects. The
generalization of object sharing in Ubit has many
advantages:

- multiple views are automatically synchronized. For
instance, brickgets that share the same textual elements
are automatically updated when the user enters text.

- sharing avoids object duplication and thus reduces the
amount of run-time memory. This point is not
negligible as GUIs may contain many memory
consuming objects (such as images, complex
composite widgets, etc.)

- sharing enhances configurability, especially when
combined with dynamic inheritance in the scene-graph.
A very small number of objects is then sufficient to
parameterize the whole interface.

Recursive replication
The Ubit toolkit makes it possible to share brickget sub-
trees without any restriction. The semantics of sharing
depends on the type of brickgets, as described below.

The viewable children of UGroup brickgets are visually
replicated in their parents. Since groups are just
intermediate nodes in the scene-graph, group children are
laid out according to the policy of each parent (or grand-
parent if the parent is itself a group).

As for group brickgets, the content of UBox brickgets is
visually replicated in all parents, but each replication is
controlled by a separate view that imposes its own layout.
This replication property is recursive. This means that when
a brickget tree is shared by N parents, each brickget will
then control N separate, but synchronized, views. Besides,
some parents (or some children, in the case of a brickget
sub-graph) can themselves be shared. Each brickget will
thus control as many views as there are possible paths from
the root object of the scene-graph (Fig. 6). More precisely,
a view corresponding to a given path is only created if all

parents are visible along this path. In any case replication
only takes place on brickget views and not on the brickgets
themselves.

In contrast with group and box brickgets, UWin brickgets
(i.e. windows) are not replicated on the screen. This is
because it would be meaningless to make the same dialog
box appear several times on the same screen. When several
parents share windows, the parent/child relationship is used
to make them appear automatically at appropriate locations.
Structural relationships are thus used to derive implicit
behaviors. Boxes can be used instead of windows when
visual replication is useful (for instance for creating
“internal windows”). The main difference between these
two categories of brickgets is their replication semantics.

a) b)

Figure 6: a) recursive replication. The number of
views controlled by each brickget is shown on the
figure. b) two replicated views (at different scales) of
a Web page markup tree.

Parameterized replication
The views controlled by a given widget are not necessarily
identical nor even similar. For instance, they will have
different layouts if their parents have been resized or if they
are managed by different view renderers. Dynamic
inheritance in the instance graph also provides a powerful
means to parameterize replicated views. Each view can for
instance inherit different fonts, colors or scaling factors
from each parent. In addition, specifications can be
parameterized by conditional flags that are inherited in the
scene-graph. This makes it possible to generate completely
different views from a single specification. For instance, the
icons shown in Fig.!5 could be created as follows:

UFlag IconBgcolor, DontShowImage, DontShowName;

UBox& icon = ubox(
 + UOrient::vertical + uhcenter(!) // vertical & centered layout
 + upropval(IconBgcolor)
 + ! DontShowImage!!/ icon_image
 + ! DontShowName!!/ icon_name
);

The icon_image and the icon_name of each icon will be
displayed except if the conditional flags DontShowImage or
DontShowName are inherited. upropval!(IconBgcolor)
represents an optional property brick that can be specified

by parents (and will be ignored otherwise). It is thus
possible to inherit “named properties” that are identified by
conditional flags. For instance, an icon box could specify
that its icons should have a black background color and
should not display images in the following way:

UBox&! iconbox =! listbox(
 UFlowView::style
 + !uflagdef(DontShowImage!)
 + !upropdef(IconBgcolor, UBgcolor!::black!)
)!;
for (icon = ...) iconbox.add(!icon!))!;

Conditional specifications make it possible to specify non-
local relationships between interactors. This feature shares
some similarities with lexical binding in the Lisp language
but it imposes stronger syntactical constraints. It should
obviously be used with care in order to preserve
understandability in the code. For instance, flags should be
part of the public API of the brickget classes that are
sensitive to them. However, conditional specifications
provide a simple parameterization mechanism that is
coherent with the scene-graph structure of Ubit GUIs. They
make it possible to communalize specifications, and thus, to
avoid the duplication of code (with many subtle variants).

Multiple displays
The Ubit toolkit is able to open and manage GUIs on
several displays controlled by different computers. Object
sharing makes this feature quite powerful as objects can be
shared among several screens. This approach does not
impose restrictions on the degree of sharing: it is possible to
share atomic bricks, brickgets or any subpart of the scene-
graph. It is thus possible to show the same windows on
several displays, to share some windows but not others, to
share subparts of certain windows or just to share
constitutive elements such as strings and data structures. As
seen above, conditional specifications can be used to
parameterize the views according to the displays where
they are shown. For instance, the views displayed on a
small PDA could be displayed with smaller fonts, some
unnecessary objects could be omitted on these views, etc.

The main advantage of this centralized architecture is that
collaborative applications can be created almost in the same
way as single-display applications. As pointed out in [8]
very good performance can be obtained under certain
conditions (typically, a high bandwidth network, such as a
local network, and a limited number of remote displays).

This mechanism (and the Ubit toolkit) is currently
implemented on top of the X Window system, but other
protocols could also be used. In contrast with X, Ubit
property bricks have a level of abstraction that makes them
independent from the characteristics of a given display. For
instance, a UColor brick can work with several displays
that do not have the same number of bits per pixel.

ADVANCED FEATURES
Novel interaction and visualization techniques such as
semantic zooming, magic lenses, transparent tools, Control
menus, bi-manual interaction can easily be implemented by
combining the features described so far.

Translucent widgets and Control menus: boxes and
windows can be made transparent or translucent by adding
a UAlpha brick to them. The background of the widget is
then alpha-blended with the part of the GUI that is located
beneath. Multiple separate transparent layers can also be
created in this way. This makes it simple to create
transparent dialog boxes, transparent scrollbars (Fig.!7) or
Control menus [23], an extension of Pie menus![22] that
makes it possible to select an operation and to control it
interactively with a single gesture (Fig.!11).

Figure 7: transparent dialogs, menus and scrollbars.

Zoomable interfaces. Widgets can be zoomed dynamically
by adding a UScale brick to them. This scaling attribute
also applies to widget children. UScale bricks can appear at
several levels of the instance graph. They are always
relative to the current level of scaling of the parents.
Scaling can thus take place on the entire interface or any of
its subparts. This feature can also be used to display several
views with different scales:

 UScale small, large;
 UBox& overview = !ubox(small + my_page);
 UBox& large1 = !uscrollpane(large + my_page);
 UBox& large2 = !uscrollpane(large + my_page);

The my_page brickget and its children will be displayed
three times: in a box that shows a small-size overview and
in two independent scroll panes. The scaling of both scroll
panes can be dynamically changed and will be
synchronized as they share the same scaling brick.

Figure 8: Two multiple-scale interfaces

Semantic zooming can be obtained by using conditional
specifications that specify scale ranges:

 usrange(-10,!-4) !/! version1
 + !usrange(-3,!3) / !version2
 + !usrange(4,!10) / !version3

Depending on the current level of scaling one of the three
versions of the widget will be displayed. This mechanism is
recursive: each version can contain sub-versions that
depend on other scale ranges and so on. The toolkit updates
the display automatically when the level of scaling of a sub-
tree is changed. This mechanism is quite efficient for
creating zoomable interfaces. This illustrates a motivation
of this work: the Ubit toolkit is not dedicated to a specific
visualization technique (some specialized toolkits such as
Jazz [4] or CPN2000 [2] provide more advanced features
for creating ZUIs) but its architecture makes it possible to
create advanced interfaces by combining the standard
features of the model.

Figure 9: Magic lenses on a sensitive map.

Magic lenses. Magic lenses are visual filters that change
the appearance (or the behavior) of objects that are located
beneath them. They are typically used to provide alternate
representations or complementary information. They can be
active or passive: passive lenses just reveal hidden data
while active lenses completely change the representation.
Sharing and conditional specifications make it easy to
create both types of lenses. The lens shown at Fig. 9 could
for instance be created as follows:

UFlag stores, museums, stations;
UBox& scene = !ubox(uima(!“paris-map.jpg”!)
 + !stores / ugroup(!....!)
 + !museums / ugroup(!....!)
 + !stations / ugroup(!....!)
);
stores_lens != !upane(uflagdef(!stores!) + scene!);
uscrollpane(!scene + store_lens!);

This will create two superimposed views: a view of the
scene that only displays an image and a view of the
store_lens that also contains all the objects conditioned by
the stores flag. The store_lens brickget is a viewport
(UPane) that only displays a subpart of the scene and that
can be moved interactively over the image. A magic lens
effect can be obtained by synchronizing the location of
store_lens with the area shown in its viewport.

Transparent tools. Transparent tools are used to perform
alternate operations on the interactors that they cover [5]
[25]. The toolkit provides two ways for implementing such
tools. Active tools retrieve the object that is underneath and
performs an operation on it. Passive tools are transparent to
events but modify them in an appropriate way. They do not
perform any operation by themselves but define a protocol
that modifies the actions of other interactors. It is up to
these interactors to react in a specific way if they are aware
of this protocol. From an architectural point of view, this
scheme avoids complex interactions between objects and
makes it simple to create such tools.

Figure 10 shows an example of a transparent tool and a
transparent note editor. These objects are created by
combining standard brickgets (that are made translucent by
adding ualpha() bricks to them). The transparent Cross tool
modifies events in two different ways: it adds a flag to the
event and changes its location so that the object located
beneath the cross will get the event that is produced when a
button of the tool is clicked.

Figure 10: An annotating tool using transparent tools

RELATED WORK
One of the main goals of the molecular architecture is to
enhance the flexibility of the toolkit. This was also one of
the goals of the Amulet toolkit [20]. Ubit is quite different
as it is not based on a prototype/instance system. One
important advantage of the Ubit architecture is that it only
relies on standard features of a general-purpose
programming language and thus allows safe type-checking
at compile time. The fact that no interpretation takes place
at run-time may also improve performance.

In contrast with Amulet or SubArtic [26], the Ubit
architecture does not provide constraint solvers but
implements a simplified form of constraints called
dependencies. Dependencies are less general but they
provide an efficient means to control and synchronize
multiple objects. The combination of this feature with
scene-graph inheritance makes it even more powerful as
trees or sub-graphs of related objects can be automatically
synchronized.

Procedural programming languages have not been used for
expressing GUIs in a declarative way except in our former
XXL system [12]. However, this idea has been used in
other domains, such as in the QOCA constraint-solving

toolkit [24]. The Ubit syntax also resembles a formal
specification. Its conciseness and the higher level of
abstraction it provides may offer better understandability
and help the programming of complex interfaces. A
preliminary version of this approach was presented in [13].

The sharing of objects is supported by previous systems
such as Interviews [15] and Fresco [16] and is rather
common in 3D toolkits such as OpenInventor [11]. But the
“molecular” architecture generalizes this principle since all
GUI objects can be shared, including interactors. This point
has a major impact on the way applications are designed,
especially for the synchronization and the configuration of
GUI components. This feature offers very interesting
properties, such as the recursive generation of multiple
views that are synchronized – although not necessarily
similar. It also serves as a basis for novel interaction and
visualization techniques. Brickget “molecules” can be seen
as “abstract” representations in the sense that they do not
control the screen area directly. As in the MVC model, the
views are completely separated from the interaction
controller. This architecture can be seen as an extension of
MVC where each brick would be a separate “model”.

Several GUI toolkits that provide advanced interaction and
visualization techniques have been developed in recent
years. Jazz [4] and CPN2000 [2] use a scene graph for
implementing 2D GUIs. The molecular architecture is an
intermediate approach between classical widget-based and
scene-graph toolkits. A complex sub-hierarchy can be seen
as a single element in the global instance graph of the GUI.
Hence, the Ubit DAG follows a recursive model where
scene graphs can be embedded. This feature may ease
programming (by avoiding handling large scene graphs)
and may be less confusing for programmers that are
accustomed to classical 2D toolkits. Moreover, Ubit is a
general-purpose toolkit that proposes a new architecture for
designing interactors, while Jazz relies on Swing widgets
and an embedding mechanism. CPN2000 is based on the
notion of “instrumental interaction” [1]. The reification of
behaviors in the Ubit toolkit is a similar (but currently less
powerful) approach.

IMPLEMENTATION
The toolkit has been implemented on top of the Xlib, but it
follows a layered architecture so that most of the code does
not depend on a specific platform. Optionally, the Open GL
graphical engine can be used instead of X. This latter
implementation is not optimized but it demonstrates the
feasibility of the approach. Alpha blending and double
buffering are performed internally by the toolkit if these
services are not provided by the windowing system.
Windows can either be rendered as hard windows that use
the windows of the underlying windowing system or as soft
windows that are drawn directly on the main window. This
feature is useful for Open GL rendition and for improving
alpha blending when the Xlib is used. The toolkit has been

tested on a variety of Unix platforms (Linux, SunOS, Mac)
including an embedded version of Unix for the Ipaq PDA.

Our informal tests show that the performance of the X
implementation compares well with other C or C++ GUI
toolkits. For instance, a refreshing rate of 65 fps (30 fps
with internal double buffering) was obtained on an Ultra
Sparc-60 with a 450 MHz processor by forcing the icon box
shown on Fig.!5 (with thirty 60x60 images) to redisplay
itself continuously (normally, views are only repainted
when they are damaged). The size of the toolkit is relatively
small (about 25 000 lines of C++ code including header
files). The size of its dynamic library is less than 2 Mo on a
Unix system (as an example, the libraries of Qt and Gtk,
two popular Unix GUI toolkits, are five times larger).

CONCLUSION
A new GUI toolkit, based on a “molecular architecture” is
presented in this paper. It enhances flexibility by means of
a very dynamic model and offers a higher level of
abstraction for GUI specifications. This model also makes
it possible to program advanced interaction and
visualization techniques in a simple way.

The Ubit toolkit has been used for developing various
students’ projects at our institute, such as tools for editing
annotations on hypermedia documents [14] or the GUI of
the VReng [28] virtual reality engine (Fig.!11). The
(superficial) similarity with classical widget-based toolkit
seems to help novice programmers. They also seem to be
comfortable with the pseudo-declarative API and to
appreciate this feature. The source code of the toolkit, some
examples, demonstration programs and videos are available
from: www.enst.fr/~elc/ubit.

Figure 11: The Vreng GUI (with a Control menu![23])

ACKNOWLEDGEMENTS
The author would like to thank Michel Beaudouin-Lafon,
Scott Hudson and the anonymous reviewers for their
helpful comments.

REFERENCES
1. Beaudouin-Lafon M. Instrumental Interaction: An Interaction

Model for Designing Post-WIMP User Interfaces. Proc CHI
2000, ACM, 446- 453.

2. Beaudouin-Lafon M. The Architecture and Implementation of
CPN2000, a Post-WIMP Graphical Application, Proc. UIST
2000. ACM, 181-190.

3. Bederson B.B., Hollan J.D., Perlin K., Meyer J., Bacon D.,
Furnas G.W. Pad++: A Zoomable Graphical Sketchpad for
Exploring Alternate Interface Physics. Journal of Visual
Languages and Computing, 1996, 7(1), 3-31.

4. Bederson B., Meyer J., Good L., Jazz: An Extensible
Zoomable User Interface Graphics Toolkit in Java, Proc UIST
2000.

5. Bier E.A., Stone M.C., Pier K., Buxton W., DeRose T.D.
Toolglass and Magic Lenses: The See-Through Interface,
Proc. SIGGRAPH, ACM, 1993, 73-80.

6. Booth K.S. et al. The “Mighty Mouse” Multi-Screen
Collaboration Tool, Proc UIST 2002, 209-212.

7. Card S.K., Mackinlay J.D., Shneiderman B. Readings in
Information Visualization "Using Vision to Think". Morgan
Kaufman, 1999.

8. Chung G., Dewan P. Flexible Support for Application-Sharing
Architecture. Proc ESCSW, 2001, Kluwer, 99-118.

9. Fowler !A. A Swing Archi tec ture Overview.
http://www.javasoft.com/products/jfc/tsc

10. Gamma E. et al. Design Patterns, Addison-Wesley, 1995.
11. Inventor. http://www.sgi.com/Technology/Inventor/
12. Lecolinet E. XXL. A Dual Approach for Building User

Interfaces. Proc. UIST, ACM, 1996, 99-108.
13. Lecolinet E., A Brick Construction Game Model for Creating

Graphical User Interfaces. Proc. INTERACT 1999. 510-518.
14. Lecolinet E. Robert L., Role F. Text-image coupling for

editing literary sources, Computers and the Humanities
Journal, 2002. Kluwer. 36(1), 43-73.

15. Linton M., Vlissides J.M., Calder P.R. Composing User
Interfaces with InterViews. Trans. IEEE Computer, 1989,
22(6), 8-22.

16. Linton M., Tang S., Churchill S. Redisplay in Fresco. The X
Resource, 1994, (9), 63-69.

17. Maloney J.H., Smith R.B. Directness and Liveness in the
Morphic User Interface Construction Environment. Proc.
UIST, 1995, ACM, 21-28.

18. Myers B.A. Challenges of HCI Design and Implementation,
ACM Interactions, 1994, 1(1), 73-83.

19. Myers B.A., Hudson S.E., Paush R., Past present and future of
user interface software tools,!ACM ToCHI,!2000,!43(3),!82-89

20. Myers B.A et al. The Amulet Environment: New Models for
Effective User Interface Software Development. IEEE trans.
on Software Engeenering, 1997, 23(6), 347-365.

21. Ousterhout!J., Tcl!and!the!Tk!Toolkit. Addison Wesley, 1994.
22. Pie menus. http://www;piemenus.com
23. Pook S., Lecolinet E., Vaysseix G., Barillot E. Control

Menus: Execution and Control in a Single Interactor. Proc.
CHI 2000, ACM, 263-264.

24. QOCA: http://www.csse.monash.edu.au/projects/qoca
25. Hudson S.E., Rodenstein R., Smith I. Debugging lenses: a

new class of transparent tools for user interface debugging,
Proc. UIST 97, 179 – 187.

26. Hudson S.E., Smith I. Ultra-Lightweight Constraints. Proc
UIST 96, 147-155. http://www.cc.gatech.edu/gvu/ui/sub_artic.

27. UIML. http;//www.uiml.org
28. Vreng: http:/www.enst.fr/~dax/vreng

