
A Brick ConstructionGameModelfor Creating
GraphicalUserInterfaces:TheUbit Toolkit

Eric Lecolinet

EcoleNationaleSuṕerieure desTélécommunications& CNRSURA820
Dept. INFRES,46rueBarrault, 75013Paris, France
EMail: elc@enst.fr
URL: http://www.enst.fr/-elc

This paper presents“Ubit”, a new graphical toolkit that is basedon the “brick construction game”
model. This approach makes it possible to create sophisticated application-specific components by
combining simple “basic bricks”. All bricks can be shared in order to simplify GUI control and to reduce
memory cost. This modelsupports the the conceptof ubiquitous GUI componentsthat are inherently able
to display several representationsof their contenton the screen.At last, Ubit providesa simpleand flexible
C++ API that makesit possibleto specifyGUIs in a pseudo-declarativestyle.

Keywords: User interfacesoftware, graphical toolkits, declarative GUI language,brick object model,
hyperdocument,interactioncontrol,ubiquitouscomponents,multipleviews.

1 INTRODUCTION

It is a well known fact thatuserinterfacesarenot only
hardto designbut arealsohardto implement(Myers,
1995). As a consequence,most peopleprefer using
tools (such as interactive interface builders or other
kindsof userinterfacemanagementsystems)ratherthan
programmingdirectly with a GUI toolkit. Thus, in
recentyears,attentionhasratherbeenfocusedon tools
thanontheprinciplesof GUI toolkit design.Webelieve
we now needto reconsiderthe underlying ideasthat
areat thebasisof theimplementationof graphicaluser
interfaces.Thereareseveral reasonsfor that:

1. UIMS are very useful tools for creating “static”
GUIs thataremainlymadeof forms,menusanddialog
boxes. But they generallyprovide rather limited help
for creatingapplication-specificcomponentsthatevolve
dynamically at run time (for instancea graph editor
where nodesare application-specificobjectsthat can
changedynamically.)

2. New interactionand visualizationconceptssuch
as zoomable interfaces, magic lenses and other
informationvisualizationtechniquesarenow comingto
maturity. But suchtechniquesaregenerallyout of the
scopeof currenttools.Moreover, mosttoolsdonoteven
fully supporttheimplementationof classicalbut highly
interactive GUIs that makean extensive useof direct

manipulationtechniques.
It may seem reasonable to think that the

implementation of sophisticatedGUIs will always
require a certain amount of textual programmingat
the toolkit level (although some interestingresearch
hasbeenperformedon interactive model-basedUIMS
ableto produceadvancedGUIs (Szekelyet al., 1993)).
Most tools just do not provide the appropriatelevel of
abstractionfor dealingwith loops,dynamiccreationand
deletion of objects,highly interactive behaviors, etc.
Textual programmingmay just be moreappropriatein
suchcases.

Unfortunately, programmingat the toolkit level is
oftenquiteadifficult taskthatis reservedto experienced
programmers.GUI toolkitsaregenerallyquitecomplex
and hard to use. As a result, GUI sourcecodetends
to be verboseand cumbersome. Besides, creating
application-specificcomponentsmay be a non trivial
taskastoolkit designoftenmakesit difficult to deeply
customizethesetof standardcomponents.

This paper presentsa new GUI toolkit, called
Ubit (for “Ubiquitous Brick InteractionToolkit”) that
is basedon the “brick constructiongame” model. In
this model, GUI objectsare simple basic bricks that
can easily be combinedtogether. This model makes
it possibleto createhighly customizedcomponentsin
a simpleway by combining(or deriving) thesebricks.

2 Eric Lecolinet

Besides,it also improves GUI sourcecode legibility
and simplifies GUI control. Ubit provides a flexible
C++ API that supportsa genericadding mechanism.
This featurefavors codecompactnessandmakesGUI
source code resemblemark-up languagetext. The
brick model also simplifies GUI control thanks to a
generalizedsharing mechanism. This designfeature
ensuretheimplicit controlof multipleviews coherency.
Ubit alsosupportsthenew conceptof ubiquitous GUI
components:in this model any user interfaceobject
is inherently able to managean arbitrary numberof
synchronizedrepresentationsof its dataon thescreen.

The next sections will describe and compare
classicaltoolkit architectures,introducetheconceptual
principles of Ubit model and describeits properties.
The lastsectionswill thendetail someimplementation
aspectsandpresentthecurrentstatusof thesystemand
futurework.

2 GUI ARCHITECTURES
Many graphicaltoolkits consistin a setof “fat objects”
that implementquitea largevarietyof functions. As a
consequence,GUI objectsareoften hard to learnand
to usebecausethey handleso many differentdifferent
aspects.Moreover, objectsattributesofteninadequately
fit the realneedsof a givenapplication.Paradoxically,
mostobjectsattributesareuselessfor mostapplications,
while GUI objectsoftenlack “this specificfeature”that
would be useful for a given application. For instance,
thepushbuttonwidgetof theMotif 1.2toolkit hasmore
than60different“resources”,mostof thembeingrarely
used. However, in its standardversion,this objectcan
eitherdisplaya characterstringor a pixmapimage,but
cannotdisplaybothsimultaneously.

This points highlights an important conception
problem: thereis no possible“bestchoice” in defining
object properties while conceiving a GUI toolkit
becauseapplications are simultaneouslyso similar
and so different. They are similar becausethey
usestandardizedGUI componentsthat shouldremain
similar from one application to another in order to
preserve a consistentlook and feel. But application
arealsovery differentbecausethey deal with specific
domainsand thus require customizedrepresentations
andinteractionstyles. Trying to anticipateall possible
GUI componentuses is an impossible task. As
a consequence,we believe GUI objects should be
dynamicallyadaptableinsteadof providing a staticset
of predefinedfeaturesthat can not fit all application
needs.Besides,for thesakeof simplicity andmemory
efficiency, standardobjectsshould not systematically
provide a large numberof generallyuselessfeatures.
This last point shouldnot be neglectedasapplications

mayrequirequitea largenumberof GUI components.
The “fat object” architecture also tends in

multiplying similar object classes. For instance,the
Java AWT toolkit introducestwo differentpushbutton
classes(dependingonwhetherbuttonsarelocatedinside
or outsidemenus),while theMotif toolkit evendefines
six differentclasses(including “widget” and “gadget”
variants).This problemclearlyshowsthelimitationsof
sucharchitectures:fat objectsaresocomplex that they
aredifficult to derive or to combinetogetherin order
to fit applicationneeds. Thus, many objectsvariants
mustbe provided in order to compensatefor the lack
of flexibility of standardcomponents.

This lack of generic design leads to many
ambiguities and increases the toolkit complexity.
Besides,it makesiterative developmentquite laborious
as small UI design refinementsmay lead to heavy
programmingchanges. Some of theseaspectshave
alreadybeenaddressedin previous research. MVC
based(or derived) systems,such as the Java Swing
toolkit (Fowler) provide more flexible object setsthat
are easier to customizeand to extend. However,
thesesystemsgenerallylead to an increasedlevel of
complexity as they requireextendedknowledgeabout
variouscomponentsarchitectureandhow they should
preciselyinteract.

3 THE “UBIT” BRICK MODEL
TheUbit toolkit proposesa new approachthat is based
ontheconceptof genericbasicbricks. Basicbricksare
specializedC++objectsthatonly implementandcontrol
onespecificfunctionality. Thesebricks can easily be
combinedtogetherthrougha standardand dynamical
adding mechanism. The model is recursive so that
compositeobjects resulting from brick combinations
arebrick themselvesthatcanbefurthercombinedwith
otherbricks.

Brick combination is always performed in a
standardizedway througha genericinterface:the Box
object. The Box brick acts as a generalcontainer
that can contain any possible brick combination,
including other boxes. The idea of using container
objects is not new: this principle was for instance
used by most X-Window (or derived) toolkits (e.g.
Motif, Athena, OpenLook, InterViews, Tcl/Tk, Java
AWT...) With such systems, GUIs are made by
creatinginstancetreeswherecontainerobjectsareable
to layout and display their children in an appropriate
way. Containersandinteractorsaregenerallynot dealt
with in anhomogeneousway: mosttoolkitsdonotallow
interactive components(such as buttons, text fields,
lists, etc.) to containotherinteractorobjects.However,
certainsystemsoffer extendedcontainmentcapabilities

A Brick ConstructionGameModelfor CreatingGraphicalUserInterfaces:TheUbit Toolkit 3

(for instance: Gtk (Mattis, 1998), Fresco (Linton,
1994), Self/Morphic (Maloney, 1995)). Applications
constructedwith Morphic are composite “morphs”
whosesubmorphscan handleuser input events. The
Frescotoolkit is basedon an advancedcomposition
mechanismthat allows the mixture of user interface
componentsand structuredgraphicsobjects. Fresco
objects derive from a primitive type called “glyph”.
While UI componentsareorganizedin astricthierarchy,
primitive glyphsmay be shared.Frescothussupports
theredisplayof adirectacyclic graph(DAG) of objects.
At last, object compositionis also relatedto the field
of Visual Programming(Glinert 1986). Some VP
systemsincludeaspecial-purposetoolkit layerbasedon
a componentcombinationmetaphor(Esteban1995).

The Ubit toolkit is based on a drastic
generalizationof the containmentprinciple. In this
model,a Box is not seenas a window object that can
displaychild widgets,but ratherasa genericinterface
that let other bricks cooperate. By oppositionwith
classicalsystemsboxesdonothave graphicalproperties
of their own. Instead,it will be up to the programmer
to addall thenecessary“ingredients”to boxesin order
to obtainthe appropriateeffect. A Box brick basically
is a “pure container”which role is to containchildren
of varioustypes.Dependingon their respective classes,
thesechildrenwill dynamicallychangetheappearance
and the behavior of their Box parent. This design
principle is relatedto the DesignPatternconceptsof
“Container”and“Decorator”objects.

Characterstrings, images,pixmaps,decorations,
bordersand graphicalsymbolsare first classobjects

(called Item bricks) that canbe Box children. A Box
can thus contain any combinationof Items, manage
their layout and display them on the screen. This
makesit possibleto produceawiderangeof customized
componentsby combininga limited setof basicobjects
(Fig. 1). For instance,a push button or any other
interactor could contain an arbitrary combinationof
pixmapimages,characterstringsandvarioussymbols
(suchasarrows, checkingindicatorsandotherspecial
marks.)Decorations(theborders,shadows,etc.) could
also be dynamicallyspecifiedin the sameway. This
may beseenasan elegantsolutionto the “no possible
bestchoice”dilemmathatwaspresentedin theprevious
section, as object attributes are actually chosenby
toolkit users,notby toolkit designers.

This flexibility is a direct consequenceof the
reification of all GUI objects. For instance,the Box
containerdoesnot needto know how to display any
specificchild: this serviceis alwaysprovided by the
child itself, evenif it is a low-level GUI object.Besides,
thelayoutcapabilitiesof theBox containeralsodepends
on a separate“Layout” brick that can be dynamically
changed. As said before, a Box is indeed a pure
containerwhoseappearanceand behavior dependson
morespecializedbricks.

Thesameprincipleappliesfor specifyinggraphical
propertiessuchas backgroundand foregroundcolors,
characterfonts,backgroundtiling andsoon. Graphical
propertiesarenot predefinedBox attributes.Insteadthe
toolkit providesanextensiblesetof Property bricksthat
canbedynamicallyaddedto Box interactorsin thesame
wayasothercomponents.

Figure1: GUI objectcomposition

4 Eric Lecolinet

3.1 Ubit Metaclasses
Box children can derive from five distinctive
metaclasses:other Boxes, viewable Items, graphical
Properties,CallbackbricksandStateobjects.Callback
bricks specifythata givencall-backfunction or object
methodwill be invoked when a certain condition is
verifiedonthecontainingBox (typically, whenacertain
event occurson this Box, althoughmoresophisticated
conditionsmay alsobe specified.)Statebricks makes
it possibleto changeto thegraphicalstateof theBox or
to modify its behavior. Quiteanimportantpoint is that
child order matterswhenmeaningful.A Box child list
could for instancecontaina callback(brick), a pixmap
image, a red color (brick), a first characterstring, a
bold font, a blue color, a secondstring and an arrow
Symbol. As a result,thecontainingbox would display
all viewableelementsin sequence,thetwo stringsbeing
drawn by usingdifferentcolorsandfonts(Fig. 1a).This
box would be sensitive anda given function would be
calledaccordingto thecallbackbrick specification.

Thecombinationof objectreification,list ordering
andextendedcompositioncapabilitiesmakeit possible
to create multifont and multicolor text in an easy
way. Besides,it also allows for mixing up text and
other GUI componentsand make them appearin a
sequence.This ability of sequencingtext, imagesand
interactorsandparameterizingtheir graphicalattributes
is somewhat similar to the capabilitiesof hypertextual
languages.This featuremakesit easyto createGUIs
thatresemblehyperdocuments(fig. 2a)andthat follow
the samelogic (especiallyfor what concernslay out
managementandthepropagationof graphicalproperties
amongcomponents.) Besides,GUI sourcecodewill
resemblemark-uplanguagetext aswill beshown in the
next section.Ubit thusproposesanunified framework
that attempts to bring together classical GUIs and
hyperdocuments.

3.2 Stylesand Gadgets
For the sakeof simplicity, Ubit also offers a set of
predefinedGadgets that simulatethe usual“widgets”
or “controls” that can be found in other toolkits (e.g.
buttons,menus,text fields,dialogboxes...).Most Ubit
gadgetsare merederivationsof the Box brick. They
are just provided for convenienceand mostly act as
“shortcuts”.

DefaultGadgetappearanceis determinedby Style
bricks.By construction,eachGadgetclassis associated
to (at least) one Style object. A Style object can
be seenas a collection of default Properties. Style
andcustomizedspecificationsarecascadedsothatBox
Propertychildren can override default Style settings.
Stylesprovide a convenientway for parameterizingthe

defaultappearanceof GUI components.This ability of
configuringthe“look” of theGUI is somewhat similar
to the notion of “plugablelook andfeel” developedin
theJava Swingtoolkit.

Gadgetinstancesdonotstoregraphicalattributein
a staticway but point to specializedobjects(the Style
andPropertybricks)whenneeded.This modelis very
efficient in terms of memorymanagementas objects
do not maintainuselessdataand sharemost physical
resources. Moreover, this specificationmechanism
worksin adynamicalwayanddoesnotrequireto create
new objectsclasses.Colors, fonts andothergraphical
attributesare determinedat display time by scanning
theBox child list andpropagatingthemalongthe Box
hierarchy.

This model is coherentwith the fact that most
GUI componentsarehighly standardized,but thatvery
specific objects are also often required. Moreover,
suchcomponentsoften quite differ one from another.
Thus,theability of customizingobjectswithout having
to createnew classesis a feature that is especially
well suitedfor GUI design. This point was formerly
addressedin someresearchsystemsthroughtheconcept
of prototype-instanceobject systemssuch as Amulet
(Myers1995).

4 THE PSEUDO-DECLARATIVE API
Ubit providestwo compatibleC++ APIs. Thefirst one
is a classicalobject-orientedAPI: objectarecreatedby
invoking the “new” primitive andareaddedto parents
by using their “add” method. One could for instance
write the following sourcecodeto createa pushbutton
thatcontainsa pixmapanda characterstring:

UButton *b = new UButton();
UPix *p = new UPix("my_image.xpm");
UStr *s = new UStr("Click Me!");
b->add(p);
b->add(s);

This first API presentstwo remarkablepoints: object
creationdoesnot dependon parents(this will avoid
uselessa priori dependenciesin the code)andobjects
canpossiblybeaddedto several parents.Thisimportant
design principle will be detailed in section 5. The
secondAPI makesit possibleto specify GUIs in a
pseudo-declarativestyle. It is basedon a generic
adding mechanism that favors code legibility and
compactness:

ubutton(upix("my_image.xpm") + "Click Me!");

This simplified API only makesuseof standardC++
features:
1. ubutton()andupix() arejust intermediatefunctions

A Brick ConstructionGameModelfor CreatingGraphicalUserInterfaces:TheUbit Toolkit 5

thatcall the“new” primitivewith theappropriateclass,
2. The “Click Me!” characterstring is implicitly
convertedinto a UStr brick throughthe C++ standard
conversionmechanism,
3. The“+” addingoperatorhasbeenoverloadedin order
to createbrick lists in a convenientway.

Any brick can be addedto a Box Gadgetin a
similarway:

utext(ucallback(foo, UState::action)
+ upix("ubit.xpm")
+ UColor::red
+ "Click Me!"
+ UFont::bold + UColor::blue
+ "I am Ready!"
+ ubutton(USymbol::down

+ umenu(ucheckbox("Mode")
+ ubutton("Do it")
+ utext("Ubit...")
)

)
)

Propertyand Item bricks can either be constantsor
variables in which case they can be dynamically
modified. The containingbox will be automatically
updatedwhenoneof its childrenis modified:

UColor &col = ucolor(UColor::red);
UStr &str = ustr("Click Me!");
ubutton(col + str);

then:
col.set(UColor::blue);
str.set("I am Ready!");

This programming style roughly resemble
Lisp programming or special-purposespecification
languagessuchasFormsVBT (Avrahami,1989). It is
alsoconceptuallysimilar to mark-uplanguages(Boxes
couldbeseenastagswhosebehavior andappearanceis
specifiedby Propertybricks.)

4.1 Conditional Specifications
Propertyand Item bricks can also be specifiedin a
conditional way. Thesebricks will only be active (or
visible)whena givenconditionis verified.For instance
the following codespecifiesthat the backgroundcolor
andthe characterfont will change(respectively) when
themouseentersthis text areaandwhenit is pressed:

utext(ufont(UFont::bold,UState::entered)
+ ubgcolor(UColor::red,UState::pressed)
+ "Click Me!"
)

Conditionsmayalsodependson timer valuesor on the
Statevalueof anothergadget. This makesit possible
to programanimationsor to enforcesimplecoherency
constraintsamongseveralGUI objects:

UButton *close = null;
udialog(.......

+ ubutton(&close, "Close")
+ ushow(false,

close->when(UState::pressed))
)

The“ushow” Propertywill closeits dialogparentwhen
the“close” buttonis pressed.This examplealsoshows
how brick pointerscanbeinitialized by giving themas
thefirst argumentof uxxx() functions.

4.2 Customizationand GhostGadgets
Application-dependentcomponentsmay be createdby
adding Decorationor Layout bricks or by including
GadgetsBoxes into other GadgetsBoxes. Standard
Decorationbricks provide various kinds of borders,
shadows, etc. for customizingBox objects. New
Decorationbricks caneasilybe derived from standard
ones(the correspondingcodebeing quite simple and
limited in size.) Decorationbricks may be active and
dynamicallychangeaccordingto thecurrentBox State.
They mayalsobespecifiedin a conditionalway.

Layout bricks makesit possibleto display Box
childrenvertically, horizontally, in a flow or in a table.
The“flow” modemimicsHTML standardlayout. Text
can be warpedand can be combinedwith other GUI
components(Fig. 1c).

The gadgetcompositionmechanismis especially
powerful becauseit hasbeendesignedin a way that
gives the illusion of perfect illusion. For instance,
Fig. 1d shows a button that containsfour sub-buttons.
Clicking on eachsubpartwill provokedifferentactions
(such as invoking a call back function or openinga
pop-upmenu.) The last button hasno visible border
and only displays a down arrow. This is not a
specific“ArrowButton”objectbut astandardbuttonthat
containsasinglearrow Symbolbrick (apredefinedbrick
thatcouldeasilybesubclassedfor otherpurposes.)

This visual effect is madepossibleby using the
Ghost feature.Ghostsareinvisiblegadgetboxeswhose
children remain visible. They do not interfere with
thepropagationof graphicalProperties:ghostchildren
are drawn accordingly to the graphical attributes of
ghost parents. Ghost Gadgetsare not specific new
classes. They are just standard Gadgets whose
Stylespecificationmechanismhasbeeninactivated(by
adding a Ghost State brick) but still behave in the
expectedway (a ghostbutton can be clicked, a ghost
checkboxcan be set, etc.). So, ghostsare not mere
sensitive areasbut actually act as invisible versions
of standardinteractors. It should be noted that the
sameresult could be achieved by directly addingthe
appropriatebricks to an emptyBox brick. The Ghost
featureproducesthe sameeffect, but ratherworks in a

6 Eric Lecolinet

“subtractive” way. Both techniquesareequivalentand
canbeusedaccordingto programmerspreferences.

Fig. 1f shows a file managerexample that is
entirelymadeof standardcomponents.Eachdirectory
line is anhorizontalboxthatcontainsamixtureof items
and gadgets(Fig. 1e). This GUI componentcould
(almost)beentirelywritten in pseudo-declarative style.
The+/- indicatoris aGhostCheckboxthatcontainstwo
conditionalpixmapsthatdependsonits on/off state(the
“+” pixmapappearswhenthecheckboxis in the “off ”
statewhile the“-” pixmapappearsin theoppositecase.)
Clicking on this checkboxwill also open(or close)a
vertical box that containsthe directory subfiles(each
subfile line beingmadein the sameway.) This basic
behavior is alsospecifiedin adeclarativewayby linking
a box “ushow” brick to thecheckboxon/off State.Just
onecall-backfunctionis neededfor searchingdirectory
subfilesin thefile system.

5 BRICK SHARING AND UBIQUIT OUS
COMPONENTS

An importantconsequenceof the brick model is that
it implicitly transfersGUI control from gadgetsto
Propertyand Item bricks. In classicalarchitectures,
UI objects store and control the values of their
own attributes. Heterogeneousarchitecturesbasedon
the MVC model improve this basic architectureby
clearly separatingGUIs componentsinto “model” and
“rendering” objects. Among othercharacteristics,this
makesit possibleto createmultiple-view GUIs in a
simplified way. Besides,somesystemsalso introduce
the notion of object groups that makes it possible
to handlea collection of primitive objectsin a more
abstractway (Ousterhout,1994).

Bothaspectsarehandledin adifferentway in Ubit
interfaces. First, all Primitive and Item bricks can be
shared(i.e. have multiple gadgetparents). As these
brickscontroltheGUI appearance,they implicitly actas
groups.So,changingthecurrentvalueof a Stringbrick
would automaticallyupdateall thegadgetsthatcontain
this string. This mechanismis completelygenericand
doesnot makeassumptionsonobjectprecisetypes.

Thisfeatureis somewhatsimilar to theactivevalue
mechanismthat can be found in certainsystems.For
instancethe UStr and UInt bricks can also be seen
asgenericdatatypesfor representingcharacterstrings
and integer values. Such objectsare not necessarily
relatedto graphicalaspectsandcanbeusedby nonGUI
applicationparts for notification purpose. Similarly,
Box objectscanbeseenasgenericdatacontainers.

Datasharingoptimizesmemorycostandsimplifies
thesynchronizationof multiple views. This featurecan
also be used for parameterizinggraphical interfaces.

Becausegraphicalpropertiesarereified, Colors,Fonts
andDecorationscanbesharedby anarbitrarynumberof
Box gadgets.Thus,modifying a simplePropertybrick
will automaticallyupdateall relatedUI components.
Moreover, commongraphicalpropertiessuchasFonts
andColorsareautomaticallypropagatedalongtheGUI
DAG (Ubit interfaceshaving a DAG structurerather
thana treestructure.)Thecombinationof bothfeatures
offersquitea powerful wayfor controllingGUI aspect.

5.1 Implicit Behaviors
This data sharing principle also applies to all other
bricks,includingGadgetBoxes.Gadgetsaresaidto be
sharedwhenthey have multiple parents.Two different
casesmustbe distinguisheddependingon whetherthe
sharedGadgetis a Box or a Window subclass. A
Window is a Box subclassthatownsa physicalwindow
on the screen.The Window classis the baseclassfor
makingMenus,Dialog boxesandthe mainwindow of
theapplication.

Childhood relationshipsdo not denotephysical
inclusionwhen the sharedchild is a Window subclass
but lead to variousimplicit behaviors that dependson
parent/childcombinations. So, a Menu parent will
for instanceautomatically open this Menu when it
is activated in an appropriateway. The activation
conditionandthechild behavior dependon context. A
Menu Gadgetwill behave as a pull-down menuif its
parentis aButtonthatis locatedinsideaMenuBar. But
it will behave asa contextual pop-upmenuif its parent
is anisolatedButton. It will only beopenedby pressing
on theright buttonof themouseif its parentis a Label
or a Text field. At last,someparent/childcombinations
will not performany implicit behaviors. Similar rules
appliesfor Dialog boxes (except that parentsmust be
clickedinsteadof beingpushed.)

Implicit behaviors work in a dynamicalway. The
same Window child may behave in different ways
dependingon which parentwasactuallyactivated. So,
thesameMenucouldeitherbehave asa pop-upor asa
pull-downmenudependingonactivationcontext.

Implicit Behaviors make it possible to encode
menusystemsand dialog boxes in a quasi-procedural
style, all basicbehaviors beingautomaticallydeduced
from structural relationships among components.
Besides,by oppositionto mostother toolkits, thereis
noneedto usedifferentspecifickindsof buttonor menu
classesasinstancescombinationsautomaticallyleadto
theappropriatebehavior.

5.2 Ubiquitous Gadgets
Thesecondcaseconcernschildhoodrelationshipswhen
the sharedchild is not a Window subclass. This
case is quite different as this type of parent/child

A Brick ConstructionGameModelfor CreatingGraphicalUserInterfaces:TheUbit Toolkit 7

combinationdo imply physical inclusion of children
into parents.Child Gadgetsarethenvisuallyreplicated
into all parents. However, data is not duplicated,
only physical representationsare. A single gadget
canthushave ubiquitous representationsof thescreen.
Moreover, this mechanismis ableto virtually replicate
anentireinstancesubtree(all subtreegadgetsbeingthen
implicitly ubiquitous.)

This feature is quite useful when implementing
multiple views. It could for instance be used to
displayasetof checkboxesor compositetext (including
complex combinationof items or other gadgetsas in
Fig. 2a) in differentpartsof theGUI. All views would
be automaticallyupdatedand data would alway be
displayedin a consistentway.

Theubiquitymechanismensureslogicalcoherency
but doesnot imposeall views to be strictly identical.
As seenbefore, the Ubit toolkit works in a totally

dynamicalway. Thus, different graphicalproperties
can simultaneouslyapply on a shared component,
dependingon which componentparenttheseproperties
where addedto (each view will recursively use the
propertiesspecifiedby its correspondingparent.) This
featurecanfor instancebeusedto displaythesameview
at differentscales,with anotherlayoutor with different
colors,etc.

This feature could be extended to the case of
distributedinterfaces,so that ubiquitousgadgetscould
be representedon several screens.This could be done
in a simpleway in the caseof X-Window applications
by usingthe standardnetworkingcapabilitiesof the X
protocol.A singleprogramcouldthendisplayidentical
windows on several remotemachinesin a transparent
way (the codebeingalmostidenticalwhendisplaying
GUIsononeor severalmachines).

Figure2: UbiquitouscomponentsandULinks

6 IMPLEMENT ATION

6.1 Boxanatomyandvisualpolymorphism
All gadgetsderivefrom, andareverysimilarto, theBox
brick (or to the Window brick for menusanddialogs.)
Boxesareconceptuallydividedinto threeseparate(but
logically related)parts:theStyle,theRendererandthe
State/Behavior part.

Styles are interchangeableparts that specify all
possible default properties (such as colors, fonts,
borders,shadows...) that a given gadgetclass may
need for being drawn in all possible states (i.e.

when this gadget is pressed,activated, disabled...).
Styles are defined in a hierarchical way by further
customizingof the Default Style object, so that most
data is actually sharedbetweenstyle instances. This
featuresimplifies Style customizing(for instancefor
implementingapplication-definedor native “look-and-
feels”). It alsoimprovesdatamanagementandmakesit
possibleto optimizecertaindrawing routines.

Stylescanbe inactivated,asin the caseof Ghost
objects. They also allow for visual polymorphismas
several Styles can be associatedto the samegadget

8 Eric Lecolinet

class.Theappropriatestyleis thendynamicallychosen
by the gadget instance dependingon its structural
context. For instanceButtongadgetsusedifferentvisual
Styleswhetherthey arelocatedinsideor outsidemenus.

Behaviors are also defined in a generic way.
TypicalGUI behaviorsarevirtually designedat theBox
brick level. In mostBox subclasses(i.e. the Gadgets)
just declarewhich specificbehaviors they will require.
This is doneby changingtheBox Statecharacteristics.
Box Statecanalsobe changeddynamicallyby adding
appropriateStatebricks.So,all gadgetsarefor instance
virtually ableto dealwith text, canbeactivatedandcan
have an”on/off” state.

These design principles simplifies the toolkit
architecture and improves memory management
efficiency. First, codeduplicationis avoidedasobject
featuresarenever implementedtwice. Moreover, the
systemdoesnot requireprogrammersto learn a large
numberof complex objectclassesthat may differ in a
subtleway.

6.2 Ubiquitous objects
Brick sharingandubiquityaretightly relatedto theway
objectsareinternallystored.Box objectsmaintainthree
differentlists: theparent,behavior andchild lists. The
behavior list includestheCallbackandStatebricksthat
arerelative to this Box while the child list containsits
Property, Item and(child) Box bricks. The bricks are
indirectly chainedthroughintermediateobjectscalled
ULinks. Eachlist consistsin a chainof ULink objects
that both point to their correspondingbrick andto the
next ULink in thelist (Fig. 2b). This designallows for
objectsharingasa singlebrick may belongto several
Box child lists.

ULink objectsdo not only point to brick objects.
They can also contain specific data that is used in
combinationwith thebrick instancethey pointto. There
are several ULink subclassesthat correspondto the
mainbrick metaclasses(Property, Item, Box, Callback
and State.) This featureis at the baseof ubiquitous
gadgets:Box sizesand coordinatesare not storedin
Box instancesbut in their correspondinglinks. Thus,
GadgetBoxesthathave multiple parentscandealwith
separatecoordinatesystems.This mechanismis quite
generaland is transparentto the user. Link handling
routinesare part of their counterpartbrick classesso
that correspondencebetweenlink and brick objectsis
performedin animplicit way.

7 CURRENT STATUS AND FUTURE
WORK

The current version of the Ubit system has been
implementedonthetopof theX-Window system.It has

beentestedon several Unix/Linux operatingsystems
and is freely available at URL: http://www.enst.fr/-
elc/ubit. A MS-Windows version of the systemis
currentlyunderdevelopment.

Future work will first focus on Information
Visualization.We planaddingstandardIV capabilities
(such as zooming interfaces and miscellaneous
focus+context techniques)in thetoolkit design.Wealso
plan to adaptthe XXL builder (a visual programming
tool thatwasbasedon textual + visualequivalenceand
sketchdrawing (Lecolinet,96,98)) to theUbit toolkit.

ACKNOWLEDGMENTS
We would like to thank J-D. Fekete,L. Robert, D.
Verna,S.Pookandtheanonymousreviewersfor useful
comments.

REFERENCES
Avrahami G., Brooks K., Brown M. (1989) “A Two-View
Approach to Constructing User Interfaces.” Computer
Graphics, (23)3.

EstebanO., Chatty S., PalanqueP. (1995) “Whizz’ed:
a visual programming environement for building highly
interactivesoftware”.Proc. INTERACT’95, 121-127.

Fowler A. “A Swing Architecture Overview.”
http://www.javasoft.com/products/jfc/tsc(archive.)

Glinert, E.P., (1986), “Towards ”Second Generation”
Interactive, GraphicalProgrammingEnvironments.” Proc.
IEEEWorkshopon VisualLanguages, 61-70.

Lecolinet E. (1996) “XXL: A Dual Approach for
Building UserInterfaces.” Proc. ACM UIST, 99-108.

Lecolinet E., (1998) “Designing GUIs by Sketch
Drawing and Visual Programming.” Proc. Int. Conf. on
AdvancedVisual Interfaces(AVI), 274-276.

Linton M., Vlissides J.M., Calder P.R. (1989)
“ComposingUser Interfaceswith InterViews. Trans. IEEE
Computer, 226,8-22.

Linton M., Tang S., Churchill S. (1994) “Redisplayin
Fresco”.TheX Resource, 9, 63-69.

Maloney J.H., Smith R.B. (1995) “Directness and
Liveness in the Morphic User Interface Construction
Environment.” Proc. ACM UIST, 21-28.

Mattis P. at al. (1998) “The GIMP Toolkit.”
http://www.gtk.org/docs/gtk.html.

Myers B.A. (1995) “User InterfaceSoftware Tools.”
ACM Trans.on Computer-HumanInteraction, 2(1),64-103.

Myers B, McDaniel R., Mickish A., Klimovitski A.
(1995) “The Designfor the Amulet User InterfaceToolkit.”
Proc. Human-ComputerInteractionConsortiummeeting.

OusterhoutJ.K. (1994)Tcl andtheTk Toolkit. Addison
Wesley.

Szekely P., Luo P., Neches R. (1993) “Beyond
Interface Builders: Model-BasedInterface Tools.” Proc.
INTERCHI’93, 383-390.

