A Brick ConstructionGameModelfor Creating
GraphicalUserInterfaces: TheUDbit Toolkit

Eric Lecolinet

EcoleNationaleSugerieure desTélecommunication& CNRSURA820
Dept. INFRES 46 rue Barrault, 75013Paris, France

EMail: elc@enst.fr
URL: http://wwwenst.fr/-elc

This paper presents“Ubit”, a new graphical toolkit that is basedon the “brick construction game”

model.

This approach makes it possible to create sophisticated application-specific components by

combining simple “basic bricks”. All bricks can be sharedin order to simplify GUI control and to reduce
memory cost. This model supports the the conceptof ubiquitous GUI componentsthat are inherently able
to display several representationsof their contenton the screen. At last, Ubit providesa simple and flexible
C++ API that makesit possibleto specifyGUIs in a pseudo-declarativestyle.

Keywords: User interface software, graphical toolkits, declaratve GUI language,brick object model,
hyperdocumeninteractioncontrol,ubiquitouscomponentsnultiple views.

1 INTRODUCTION

It is awell known fact thatuserinterfacesarenot only
hardto designbut arealsohardto implement(Myers,
1995). As a consequencemost peopleprefer using
tools (such as interactive interface builders or other
kindsof userinterfacemanagemergystemsjatherthan
programmingdirectly with a GUI toolkit. Thus, in
recentyears,attentionhasratherbeenfocusedon tools
thanontheprinciplesof GUI toolkit design.We believe
we now needto reconsiderthe underlying ideasthat
areat the basisof theimplementatiorof graphicaluser
interfacesThereareseveralreasongor that:

1. UIMS are very useful tools for creating “static”
GUIsthataremainly madeof forms,menusanddialog
boxes. But they generallyprovide ratherlimited help
for creatingapplication-specificomponentshatevolve
dynamically at run time (for instancea graph editor
where nodesare application-specificobjectsthat can
changeadynamically)

2. New interactionand visualization conceptssuch
as zoomable interfaces, magic lenses and other
informationvisualizationtechniquesrenow comingto
maturity But suchtechniquesare generallyout of the
scopeof currenttools. Moreover, mosttoolsdo noteven
fully supporttheimplementatiorof classicabut highly
interactve GUIs that make an extensie use of direct

manipulatiortechniques.

It may seem reasonableto think that the
implementation of sophisticatedGUIs will always
require a certain amountof textual programmingat
the toolkit level (althoughsomeinterestingresearch
hasbeenperformedon interactive model-basedJIMS
ableto produceadwvancedGUIs (Szekelyet al., 1993)).
Most tools just do not provide the appropriatdevel of
abstractiorior dealingwith loops,dynamiccreationand
deletion of objects, highly interactve behaiors, etc.
Textual programmingmay just be more appropriaten
suchcases.

Unfortunately programmingat the toolkit level is
oftenquiteadifficult taskthatis reseredto experienced
programmersGUI toolkits aregenerallyquite comple
and hardto use. As a result, GUI sourcecodetends
to be verboseand cumbersome. Besides, creating
application-specificomponentanay be a non trivial
taskastoolkit designoften makesit difficult to deeply
customizehe setof standarccomponents.

This paper presentsa nev GUI toolkit, called
Ubit (for “Ubiquitous Brick InteractionToolkit”) that
is basedon the “brick constructiongame” model. In
this model, GUI objectsare simple basic bricks that
can easily be combinedtogether This model makes
it possibleto createhighly customizedcomponentsn
a simpleway by combining(or derving) thesebricks.

Besides,it alsoimproves GUI sourcecode legibility
and simplifies GUI control. Ubit provides a flexible
C++ API that supportsa genericadding metanism
This featurefavors codecompactnesand makesGUI
source code resemblemark-up languagetext. The
brick model also simplifies GUI control thanksto a
generalizedsharing metanism This designfeature
ensurgheimplicit controlof multiple views cohereny.
Ubit alsosupportghe new conceptof ubiquitous GUI
components:in this model ary userinterface object
is inherently able to managean arbitrary number of
synchronizedepresentationsf its dataon the screen.

The next sectionswill describe and compare
classicaltoolkit architecturesintroducethe conceptual
principles of Ubit model and describeits properties.
The lastsectionswill thendetail someimplementation
aspectandpresenthe currentstatusof the systemand
futurework.

2 GUI ARCHITECTURES

Mary graphicaltoolkits consistin a setof “fat objects”
thatimplementquite a large variety of functions. As a
consequenceGUI objectsare often hardto learnand
to usebecausehey handleso mary differentdifferent
aspectsMoreover, objectsattributesofteninadequately
fit the realneedsof a givenapplication. Paradoxically
mostobjectsattributesareuselesgor mostapplications,
while GUI objectsoftenlack “this specificfeature”that
would be usefulfor a given application. For instance,
the pushbuttonwidgetof theMotif 1.2toolkit hasmore
than60 different‘resources”’mostof thembeingrarely
used. However, in its standardversion,this objectcan
eitherdisplaya charactestringor a pixmapimage,but
cannotdisplaybothsimultaneously

This points highlights an important conception
problem:thereis no possible*bestchoice”in defining
object properties while conceving a GUI toolkit
becauseapplications are simultaneouslyso similar
and so different. They are similar becausethey
usestandardizedsUl componentghat shouldremain
similar from one applicationto anotherin order to
presere a consisteniook and feel. But application
are alsovery differentbecausehey dealwith specific

Eric Lecolinet

mayrequirequite alargenumberof GUI components.

The “fat object” architecture also tends in
multiplying similar object classes. For instance,the
Java AWT toolkit introducestwo differentpushbutton
classegdependingnwhethembuttonsarelocatednside
or outsidemenus)while the Motif toolkit evendefines
six differentclasseqincluding “widget” and“gadget”
variants).This problemclearly shavs the limitations of
sucharchitecturesfat objectsareso complex thatthey
aredifficult to derive or to combinetogetherin order
to fit applicationneeds. Thus, mary objectsvariants
mustbe provided in orderto compensatédor the lack
of flexibility of standarccomponents.

This lack of generic design leads to mary
ambiguities and increasesthe toolkit compleity.
Besidesjt makesiterative developmentquite laborious
as small Ul design refinementsmay lead to heay
programmingchanges. Some of theseaspectshave
already beenaddressedn previous research. MVC
based(or derived) systems,such as the Java Swing
toolkit (Fowler) provide more flexible objectsetsthat
are easierto customizeand to extend. However,
thesesystemsgenerallylead to an increasedevel of
compleity asthey requireextendedknowledgeabout
variouscomponentsarchitectureand how they should
preciselyinteract.

3 THE “UBIT" BRICK MODEL

The Ubit toolkit proposes new approacththatis based
ontheconcepbf genericbasicbricks. Basicbricksare
specialized++ objectghatonly implementandcontrol
one specificfunctionality Thesebricks caneasily be
combinedtogetherthrougha standardand dynamical
adding metanism The model is recursve so that
compositeobjectsresulting from brick combinations
arebrick themselesthatcanbe furthercombinedwith
otherbricks.

Brick combination is always performed in a
standardizedvay througha genericinterface:the Box
object. The Box brick acts as a general container
that can contain ary possible brick combination,
including other boxes. The idea of using container
objectsis not new: this principle was for instance

domainsand thus require customizedrepresentations used by most X-Window (or derived) toolkits (e.qg.

andinteractionstyles. Trying to anticipateall possible
GUI componentuses is an impossible task. As

a consequencewe believe GUI objects should be

dynamicallyadaptablénsteadof providing a staticset
of predefinedfeaturesthat can not fit all application
needs.Besidesfor the sakeof simplicity andmemory
efficieng, standardobjectsshould not systematically
provide a large numberof generallyuselessfeatures.
This last point shouldnot be neglectedas applications

Motif, Athena, OpenLook, InterViews, Tcl/Tk, Java
AWT...) With such systems, GUIs are made by
creatinginstancereeswherecontainerobjectsareable
to layout and display their childrenin an appropriate
way. Containersaandinteractorsaregenerallynot dealt
with in anhomogeneouway: mosttoolkitsdonotallow
interactve components(such as buttons, text fields,
lists, etc.) to containotherinteractorobjects.However,
certainsystemsffer extendedcontainmentapabilities

A Brick ConstructionGameModelfor CreatingGraphical UserInterfaces:TheUbit Toolkit

(for instance: Gtk (Mattis, 1998), Fresco (Linton,
1994), Self/Morphic (Maloney, 1995)). Applications
constructedwith Morphic are composite “morphs”
whosesubmorphscan handleuserinput events. The
Frescotoolkit is basedon an advancedcomposition
mechanismthat allows the mixture of userinterface
componentsand structuredgraphicsobjects. Fresco
objectsderive from a primitive type called “glyph”.
While Ul componentareorganizedn astricthierarchy
primitive glyphs may be shared. Frescothus supports
theredisplayof a directagyclic graph(DAG) of objects.
At last, object compositionis also relatedto the field
of Visual Programming(Glinert 1986). Some VP
systemsncludea special-purpostolkit layerbasedn
acomponentombinationrmetaphoiEstebarl995).
The Ubit toolkit is based on a drastic
generalizationof the containmentprinciple. In this
model, a Box is not seenas a window objectthat can
display child widgets,but ratheras a genericinterface
that let other bricks cooperate. By oppositionwith
classicabystemd$oxesdonothave graphicalproperties
of their own. Instead,it will be up to the programmer
to addall the necessaryingredients”to boxesin order
to obtainthe appropriateeffect. A Box brick basically
is a “pure container”which role is to containchildren
of varioustypes.Dependingon their respecte classes,

(calledltem bricks) thatcanbe Box children. A Box
can thus contain ary combinationof Items, manage
their layout and display them on the screen. This
makesdt possibleto produceawiderangeof customized
componentdy combiningalimited setof basicobjects
(Fig. 1). For instance,a push button or ary other
interactor could contain an arbitrary combination of
pixmapimages,characteistringsand varioussymbols
(suchasarraws, checkingindicatorsand other special
marks.) Decorationgthe borders shadavs, etc.) could
also be dynamicallyspecifiedin the sameway. This
may be seenasan elegantsolutionto the “no possible
bestchoice”dilemmathatwaspresentedh theprevious
section, as object attributes are actually chosenby
toolkit usersnotby toolkit designers.

This flexibility is a direct consequenceof the
reification of all GUI objects. For instance,the Box
containerdoesnot needto know how to display ary
specificchild: this serviceis alwaysprovided by the
childitself, evenif it is alow-level GUI object.Besides,
thelayoutcapabilitiesof theBox containelalsodepends
on a separatéLayout” brick that can be dynamically
changed. As said before, a Box is indeeda pure
containerwhoseappearanceand behaior dependson
morespecializedricks.

Thesameprincipleappliesfor specifyinggraphical

thesechildrenwill dynamicallychangethe appearance propertiessuchas backgroundand foregroundcolors,

and the behaior of their Box parent. This design
principle is relatedto the Design Pattern conceptsof
“Container”and“Decorator”objects.
Characterstrings, images, pixmaps, decorations,
bordersand graphicalsymbolsare first classobjects

charactefonts, backgroundiling andsoon. Graphical
propertiesarenot predefinedox attributes.Insteadthe
toolkit providesanextensiblesetof Property bricksthat
canbedynamicallyaddedo Box interactorsn thesame
way asothercomponents.

Dttt | & Button1 || Fig. 1a File Wiew [shiblfd 7
ol Gick dde F & . &
A Buftan &4 =8 Calar:
Ub" I am Ready! Uhiq Brick: IJIJ Exit
444 4 4 ||0OButton 3 O ——— ;¥ Font: (bold ¥
[This is 58 multi-color text #eat contzins 2 BA] Find: Fig. 1h
LiCheckhox € | and & pseudo hyperlink &% ‘T"WIJI ; | € Current Page -
i = Cof@fs.-|
= ‘ £ A Button & st condains |Dther Ohj | Fig. 1d I
_ - - — A % Brick Construction
=

Game Model for creating

Dialog M=l E3 = §F Grapiical Usep intentaces
[C1 & rw- ubit-dir Fig.1f & D SearciUbiguitous B
[- rw- demo y Brick
D18 w- sy Checktrox VEloxl HEloxl
) i . Fig. 1¢
D - hw- uuhrick.ec 7 B —rw-r—--——- ubit-dir
[§ - - uubuttan.cc ¥ |D T YT R uubrick.cc ¢
[y = rw- uucolorce | - Copy O = -rw-r-—-—- uubuttan.cc
[y - rw-2shy Eﬂ?&?ﬁ"e [q =~ -tw-r-—--- uucolorce ¥
0K/ cancel| 2 Help| B [q = -tw-r----- uufont.cc Fig. 1e
27 Exec

Figurel: GUI objectcomposition

4

3.1 Ubit Metaclasses

Box children can derive from five distinctive
metaclasses:.other Boxes, viewable Items, graphical
PropertiesCallbackbricksandStateobjects.Callback
bricks specifythata given call-backfunction or object
methodwill be invoked when a certain condition is
verifiedonthecontainingBox (typically, whenacertain
event occurson this Box, althoughmore sophisticated
conditionsmay alsobe specified.) State bricks makes
it possibleto changeo thegraphicalstateof the Box or
to modify its behaior. Quite animportantpointis that
child order matterswhenmeaningful. A Box child list
couldfor instancecontaina callback(brick), a pixmap
image, a red color (brick), a first characterstring, a
bold font, a blue color, a secondstring and an arrow
Symbol. As a result,the containingbox would display
all viewableelementsn sequencahetwo stringsbeing
drawn by usingdifferentcolorsandfonts(Fig. 1a). This
box would be sensitve anda given function would be
calledaccordingo the callbackbrick specification.

Thecombinationof objectreification,list ordering
andextendedcompositioncapabilitiesmakeit possible
to create multifont and multicolor text in an easy
way. Besides,it also allows for mixing up text and
other GUI componentsand make them appearin a
sequence.This ability of sequencingext, imagesand
interactorsandparameterizingheir graphicalattributes
is somavhat similar to the capabilitiesof hypertetual
languages.This featuremakesit easyto createGUIs
thatresemblehyperdocument€fig. 2a)andthatfollow
the samelogic (especiallyfor what concernslay out
managemerdndthepropagatiorof graphicaproperties
amongcomponents.) Besides,GUI sourcecode will
resemblemark-uplanguageext aswill beshovn in the
next section. Ubit thus proposesan unified framewvork
that attemptsto bring together classical GUIs and
hyperdocuments.

3.2 Stylesand Gadgets

For the sakeof simplicity, Ubit also offers a set of
predefinedGadgetsthat simulatethe usual “widgets”
or “controls” that can be found in othertoolkits (e.g.
buttons,menus text fields, dialog boxes...). Most Ubit
gadgetsare mere derivationsof the Box brick. They
are just provided for corvenienceand mostly act as
“shortcuts”.

DefaultGadgetappearances determinecy Style
bricks. By constructioneachGadgetlassis associated
to (at least) one Style object. A Style object can
be seenas a collection of default Properties. Style
andcustomizedspecificationare cascadedothat Box
Property children can override default Style settings.
Stylesprovide a corvenientway for parameterizinghe

Eric Lecolinet

defaultappearancef GUI componentsThis ability of
configuringthe “look” of the GUI is somevhat similar
to the notion of “plugablelook andfeel” developedin
the Java Swingtoolkit.

Gadgeinstanceslo not storegraphicalattributein
a staticway but point to specializedobjects(the Style
andPropertybricks) whenneeded.This modelis very
efficient in terms of memory managemenas objects
do not maintain uselesdataand sharemost physical
resources. Moreover, this specificationmechanism
worksin adynamicalwayanddoesnotrequireto create
new objectsclasses.Colors, fonts and othergraphical
attributesare determinedat display time by scanning
the Box child list and propagatinghemalongthe Box
hierarchy

This model is coherentwith the fact that most
GUI componentsaire highly standardizedput that very
specific objects are also often required. Moreover,
suchcomponentoften quite differ one from another
Thus,the ability of customizingobjectswithout having
to createnew classesis a featurethat is especially
well suitedfor GUI design. This point was formerly
addresseih someresearclsystemshroughtheconcept
of prototype-instancebject systemssuch as Amulet
(Myers1995).

4 THE PSEUDO-DECLARATIVE API

Ubit providestwo compatibleC++ APIs. Thefirst one
is a classicalobject-orientedA\PI: objectare createdy

invoking the “new” primitive and are addedto parents
by usingtheir “add” method. One could for instance
write the following sourcecodeto createa pushbutton

thatcontainsa pixmapanda charactestring:

UButton *b = new UButton();

UPi x *p = new UPRi x("ny_i mage. xpn') ;
UStr *s = new UStr("dick Me!");

b- >add(p) ;

b- >add(s) ;

This first API presentdwo remarkablepoints: object
creationdoesnot dependon parents(this will avoid
useless priori dependencied the code)and objects
canpossiblybeaddedo several parentsThisimportant
design principle will be detailedin section5. The
secondAPI makesit possibleto specify GUIs in a
pseudo-declarativestyle. It is basedon a generic
adding medanism that favors code legibility and
compactness:

ubut t on(upi x("my_i mage. xpnt') + "dick Me!");

This simplified API only makesuse of standardC++
features:
1. ubutton() andupix() arejust intermediatefunctions

A Brick ConstructionGameModelfor CreatingGraphical UserInterfaces:TheUbit Toolkit 5

thatcall the“new” primitive with theappropriateclass,
2. The “Click Me!” characterstring is implicitly
corvertedinto a UStr brick throughthe C++ standard
corversionmechanism,
3. The"+" addingoperatohasheenoverloadedn order
to createbrick listsin a corvenientway.

Any brick can be addedto a Box Gadgetin a
similarway:

ut ext (ucal | back(foo, UState::action)

upi x("ubit.xpm')

UCol or: : red

"Click Me!"

UFont : : bol d + UCol or: : bl ue

"l am Ready!"

ubutt on(USynbol : : down

+ unmenu(ucheckbox(" Mbde")

+ ubutton("Do it")
+ utext("Ubit...")

)

+ 4+ + + + +

)

Property and Item bricks can either be constantsor
variables in which case they can be dynamically
modified. The containingbox will be automatically
updatedvhenoneof its childrenis modified:

UCol or &col = ucol or(UCol or::red);
UStr &str = ustr("dick Me!");
ubutton(col + str);

t hen:

col . set (UCol or: : bl ue);
str.set("l am Ready!");

This programming style roughly resemble
Lisp programming or special-purposespecification
languagesuchasFormsVBT (Avrahami,1989). It is
alsoconceptuallysimilar to mark-uplanguagegBoxes
couldbeseerastagswhosebehaior andappearances
specifiedoy Propertybricks.)

4.1 Conditional Specifications

Property and Item bricks can also be specifiedin a

conditional way. Thesebricks will only be active (or

visible) whena givenconditionis verified. For instance
the following codespecifiesthat the backgroundcolor

andthe characterfont will change(respectiely) when
themouseenterghis text areaandwhenit is pressed:

ut ext (ufont (UFont:: bol d, USt at e: : ent er ed)
+ ubgcol or (UCol or: :red, USt at e: : pressed)
+ "dick me!"

)
Conditionsmay alsodepend®n timer valuesor on the
Statevalue of anothergadget. This makesit possible
to programanimationsor to enforcesimple cohereng
constraint@amongsereral GUI objects:

UButton *close = null;
udi al og(

+ ubut t on(&cl ose,
+ ushow(f al se,

cl ose->when(USt at e: : pressed))
)

The“ushown” Propertywill closeits dialogparentwhen
the“close” buttonis pressed.This examplealsoshawvs
how brick pointerscanbeinitialized by giving themas
thefirst amumentof uxxx() functions.

"Cd ose")

4.2 Customizationand Ghost Gadgets

Application-dependentomponentsnay be createdby
adding Decorationor Layout bricks or by including
GadgetsBoxes into other GadgetsBoxes. Standard
Decorationbricks provide various kinds of borders,
shadavs, etc. for customizingBox objects. New
Decorationbricks can easily be derived from standard
ones(the correspondingcode being quite simple and
limited in size.) Decorationbricks may be active and
dynamicallychangeaccordingo the currentBox State.
They mayalsobespecifiedn a conditionalway.

Layout bricks makesit possibleto display Box
childrenvertically, horizontally in a flow or in a table.
The“flow” modemimicsHTML standardayout. Text
can be warpedand can be combinedwith other GUI
componentgFig. 1c).

The gadgetcompositionmechanisnis especially
powerful becausdt hasbeendesignedin a way that
gives the illusion of perfectillusion. For instance,
Fig. 1d shavs a button that containsfour sub-tuttons.
Clicking on eachsubparwill provokedifferentactions
(such as invoking a call back function or openinga
pop-up menu.) The last button hasno visible border
and only displays a down arrav. This is not a
specific* ArrowButton” objectbut a standarduttonthat
containsasinglearrov Symbolbrick (apredefinedbrick
thatcouldeasilybe subclassetbr otherpurposes.)

This visual effect is madepossibleby using the
Ghostfeature.Ghostsareinvisible gadgetoxeswhose
children remainvisible. They do not interfere with
the propagatiorof graphicalProperties:ghostchildren
are drawvn accordinglyto the graphical attributes of
ghost parents. Ghost Gadgetsare not specific new
classes. They are just standard Gadgets whose
Style specificatiormechanisnmhasbeeninactivated(by
adding a Ghost State brick) but still behae in the
expectedway (a ghostbutton can be clicked, a ghost
checkboxcan be set, etc.). So, ghostsare not mere
sensitve areasbut actually act as invisible versions
of standardinteractors. It should be noted that the
sameresult could be achieved by directly addingthe
appropriatebricks to an empty Box brick. The Ghost
featureproduceghe sameeffect, but ratherworksin a

“subtractive” way. Both techniquesare equivalentand
canbeusedaccordingo programmergreferences.

Fig. 1f shavs a file managerexample that is
entirely madeof standarccomponents.Eachdirectory
line is anhorizontalbox thatcontainsamixtureof items
and gadgets(Fig. 1e). This GUI componentcould
(almost)be entirelywrittenin pseudo-declaraie style.
The+/- indicatoris a GhostCheckboxhatcontaingwo
conditionalpixmapsthatdepend®nits on/off state(the
“+" pixmapappearsvhenthe checkboxis in the “off”
statewhile the"-" pixmapappearsn theoppositecase.)
Clicking on this checkboxwill alsoopen(or close)a
vertical box that containsthe directory subfiles(each
subfileline beingmadein the sameway) This basic
behaior is alsospecifiedn a declaratve wayby linking
abox“ushow” brick to the checkboxon/off State. Just
onecall-backfunctionis neededor searchinglirectory
subfilesin thefile system.

5 BRICK SHARING AND UBIQUIT OUS
COMPONENTS

An importantconsequencef the brick modelis that
it implicitly transfersGUI control from gadgetsto
Propertyand Item bricks. In classicalarchitectures,
Ul objects store and control the values of their
own attributes. Heterogeneouarchitecturedasedon
the MVC model improve this basic architectureby
clearly separatingsUIs componentsnto “model” and
“rendering” objects. Among othercharacteristicsthis
makesit possibleto createmultiple-view GUIs in a
simplified way. Besidessomesystemsalsointroduce
the notion of object groups that makesit possible
to handlea collection of primitive objectsin a more
abstractvay (Ousterhout1994).

Both aspectarehandledn adifferentwayin Ubit
interfaces. First, all Primitive and Item bricks can be
shared(i.e. have multiple gadgetparents). As these
brickscontroltheGUI appearanceéhey implicitly actas
groups.So,changingthe currentvalueof a Stringbrick
would automaticallyupdateall the gadgetdhat contain
this string. This mechanismnis completelygenericand
doesnot makeassumptionsn objectprecisetypes.

Thisfeatureis somavhatsimilar to theactivevalue
mechanisnthat can be found in certainsystems. For
instancethe UStr and UInt bricks can also be seen
asgenericdatatypesfor representingharactestrings
and integer values. Such objectsare not necessarily
relatedto graphicalaspectandcanbeusedby nonGUI
application parts for notification purpose. Similarly,
Box objectscanbeseenasgenericdatacontainers.

Datasharingoptimizesmemorycostandsimplifies
the synchronizatiorof multiple views. This featurecan
also be usedfor parameterizinggraphicalinterfaces.

Eric Lecolinet

Becausegraphicalpropertiesare reified, Colors, Fonts
andDecorationganbesharedy anarbitrarynumberof
Box gadgets.Thus, modifying a simple Propertybrick
will automaticallyupdateall related Ul components.
Moreover, commongraphicalpropertiessuchas Fonts
andColorsareautomaticallypropagate@longthe GUI
DAG (Ubit interfaceshaving a DAG structurerather
thanatreestructure.)The combinationof bothfeatures
offersquitea powerful way for controlling GUI aspect.

5.1 Implicit Behaviors

This data sharing principle also appliesto all other
bricks,including GadgetBoxes. Gadgetsaresaidto be
sharedwhenthey have multiple parents.Two different
casegnustbe distinguisheddependingon whetherthe
sharedGadgetis a Box or a Window subclass. A
Window is a Box subclasshatownsa physicalwindow
on the screen. The Window classis the baseclassfor
makingMenus,Dialog boxesandthe mainwindow of
theapplication.

Childhood relationshipsdo not denote physical
inclusionwhen the sharedchild is a Window subclass
but lead to variousimplicit behaiors that dependon
parent/childcombinations. So, a Menu parentwill
for instance automatically open this Menu when it
is activated in an appropriateway. The activation
conditionandthe child behaior dependon context. A
Menu Gadgetwill behae asa pull-down menuif its
parentis aButtonthatis locatedinsidea MenuBar. But
it will behae asa contextual pop-upmenuif its parent
is anisolatedButton. It will only beopeneddy pressing
on theright button of the mouseif its parentis a Label
or aText field. At last,someparent/childcombinations
will not performary implicit behaiors. Similar rules
appliesfor Dialog boxes (except that parentsmust be
clickedinsteadof beingpushed.)

Implicit behaiors work in a dynamicalway. The
same Window child may behae in different ways
dependingon which parentwasactuallyactivated. So,
the sameMenu could eitherbehae asa pop-upor asa
pull-down menudependingon activationcontext.

Implicit Behaviors make it possibleto encode
menusystemsand dialog boxesin a quasi-procedural
style, all basicbehaiors being automaticallydeduced
from structural relationships among components.
Besides,by oppositionto most other toolkits, thereis
noneedto usedifferentspecifickindsof buttonor menu
classessinstancexombinationsautomaticallyleadto
theappropriatdehaior.

5.2 Ubiquitous Gadgets

Thesecondcaseconcernghildhoodrelationshipsvhen
the sharedchild is not a Window subclass. This
caseis quite different as this type of parent/child

A Brick ConstructionGameModelfor CreatingGraphical UserInterfaces:TheUbit Toolkit 7

combinationdo imply physicalinclusion of children
into parents.Child Gadgetsarethenvisuallyreplicated
into all parents. However, datais not duplicated,
only physical representationgre. A single gadget
canthushave ubiquitous representationsf the screen.
Moreover, this mechanisnis ableto virtually replicate
anentireinstancesubtregall subtreegadgetdeingthen
implicitly ubiquitous.)

This featureis quite useful when implementing
multiple views. It could for instancebe used to
displaya setof checkborsor compositeext (including
complex combinationof items or other gadgetsas in
Fig. 2a)in differentpartsof the GUI. All views would
be automaticallyupdatedand data would alway be
displayedn a consistentvay.

Theubiquitymechanisnensuresogicalcohereng
but doesnot imposeall views to be strictly identical.
As seenbefore, the Ubit toolkit works in a totally

dynamicalway. Thus, different graphical properties
can simultaneouslyapply on a shared component,
dependingn which componenparenttheseproperties
where addedto (eachview will recursvely use the
propertiesspecifiedby its correspondingparent.) This
featurecanfor instancébeusedo displaythesameview
at differentscaleswith anotherayoutor with different
colors,etc.

This feature could be extendedto the case of
distributedinterfaces so that ubiquitousgadgetscould
be representedn several screens.This could be done
in a simpleway in the caseof X-Window applications
by usingthe standardhetworkingcapabilitiesof the X
protocol. A singleprogramcouldthendisplayidentical
windows on several remotemachinesin a transparent
way (the codebeing almostidenticalwhen displaying
GUlIsononeor severalmachines).

File Wiew Options 7 Help
Didog AIBIE3
7 & & & M = o]
Ubig Bricks File Rules Chart Text Exit 14 Red| 4P Red| 0
Index:
TheUbit Toolkit < Ubig2 The Ubit Tor
2 Chart
. : . A 3 Brick Construction
A gizBrick Construction Game Model * Bricks for creating & Grapsics:
for creating 47 Grapiical Liser interzces 4 | o File
o View 0 Search| Ubi@ |z
0 Seareh:| Ubi@guitows 1] Fig. 2a £Z 1lkin | G Bricke | EwEil
£ Ubiq| aBricks | E¥File | @ Rules| | 7 OPUORS ¥ Ok |[SUEE]] ? Help
|:|| | [[T Experienced? Z P
TMerm UText

/#““—
i -
’ . e

UChain —+Link—*Link—+Link UChain —* Link—» Link

Fg. 2h lT l?
UColor UButton

- -
N‘ /.f
B -

l4
I
shared-UText uUstr

Figure2: UbiquitouscomponentandULinks

6 IMPLEMENT ATION

6.1 Boxanatomyand visual polymorphism

All gadgetslerivefrom, andarevery similarto, theBox
brick (or to the Window brick for menusanddialogs.)
Boxesare conceptuallydividedinto threeseparatébut
logically related)parts:the Style,the Rendereiandthe
State/Behwior part.

Styles are interchangeablgarts that specify all
possible default properties (such as colors, fonts,
borders, shadavs...) that a given gadgetclass may
need for being dravn in all possible states (i.e.

when this gadgetis pressed,activated, disabled...).
Styles are definedin a hierarchicalway by further
customizingof the Default Style object, so that most
datais actually sharedbetweenstyle instances. This

feature simplifies Style customizing(for instancefor

implementingapplication-definear native “look-and-
feels”). It alsoimprovesdatamanagemerandmakest

possibleto optimizecertaindraving routines.

Stylescanbe inactivated,asin the caseof Ghost
objects. They alsoallow for visual polymorphismas
several Styles can be associatedo the samegadget

class.Theappropriatestyleis thendynamicallychosen
by the gadgetinstance dependingon its structural
contet. ForinstanceButtongadgetaisedifferentvisual
Styleswhetherthey arelocatedinsideor outsidemenus.

Behaviors are also defined in a generic way.
Typical GUI behaiors arevirtually designedatthe Box
brick level. In mostBox subclasse§i.e. the Gadgets)
just declarewhich specifichehaiors they will require.
This is doneby changingthe Box Statecharacteristics.
Box Statecanalsobe changeddynamicallyby adding
appropriateStatebricks. So,all gadgetsarefor instance
virtually ableto dealwith text, canbe activatedandcan
have an”on/off” state.

These design principles simplifies the toolkit
architecture and improves memory management
efficiengy. First, codeduplicationis avoided asobject
featuresare never implementedwice. Moreover, the
systemdoesnot require programmergo learn a large
numberof complex objectclasseghat may differ in a
subtleway.

6.2 Ubiquitous objects

Brick sharingandubiquity aretightly relatedto theway
objectsareinternallystored.Box objectsmaintainthree
differentlists: the parent,behaior andchild lists. The
behaior list includesthe CallbackandStatebricksthat
arerelative to this Box while the child list containsits
Property Item and (child) Box bricks. The bricks are
indirectly chainedthroughintermediateobjectscalled
ULinks. Eachlist consistdn a chainof ULink objects
that both point to their correspondingrick andto the
next ULink in thelist (Fig. 2b). This designallows for
objectsharingasa single brick may belongto several
Box child lists.

ULink objectsdo not only point to brick objects.
They can also contain specific data that is usedin
combinatiorwith thebrick instancahey pointto. There
are several ULink subclasseghat correspondto the
main brick metaclassefroperty Iltem, Box, Callback
and State.) This featureis at the baseof ubiquitous
gadgets: Box sizesand coordinatesare not storedin
Box instanceshut in their correspondindinks. Thus,
GadgetBoxesthat have multiple parentscandealwith
separateoordinatesystems. This mechanisnis quite
generalandis transparento the user Link handling
routinesare part of their counterpartorick classesso
that correspondencbetweenlink and brick objectsis
performedn animplicit way.

7 CURRENT STATUS AND FUTURE
WORK

The current version of the Ubit system has been
implementedn thetop of the X-Window system It has

Eric Lecolinet

beentestedon several Unix/Linux operatingsystems
and is freely available at URL: http://www.enst.fr/-
elc/ubit. A MS-Windows version of the systemis
currentlyunderdevelopment.

Future work will first focus on Information
Visualization.We planaddingstandardV capabilities
(such as zooming interfaces and miscellaneous
focus+contet techniquesin thetoolkit design.Wealso
plan to adaptthe XXL builder (a visual programming
tool thatwasbasedon textual + visual equivalenceand
sketchdrawing (Lecolinet,96, 98)) to the Ubit toolkit.

ACKNOWLEDGMENTS

We would like to thank J-D. Fekete,L. Robert, D.
Verna,S. Pookandthe anorymousreviewersfor useful
comments.

REFERENCES

AvrahamiG., Brooks K., Brown M. (1989) “A Two-View
Approach to Constructing User Interfaces. Computer
Graphics (23)3.

EstebanO., Chatty S., PalanqueP. (1995) “Whizz'ed:
a visual programming ervironement for building highly
interactve software”.Proc. INTERACT’'95, 121-127.

Fowler A. “A Swing Architecture Overvien.
http://wwwjavasoft.com/products/jfc/td@archive.)

Glinert, E.R, (1986), “Towards "Second Generation”
Interactve, Graphical ProgrammingEnvironments. Proc.
IEEEWbrkshopon Misual Languages61-70.

Lecolinet E. (1996) “XXL: A Dual Approach for
Building Userinterfaces. Proc. ACM UIST, 99-108.

Lecolinet E., (1998) “Designing GUIs by Sketch
Drawing and Visual Programming. Proc. Int. Conf on
Advanced/sual Interfaces(AVI), 274-276.

Linton M., Vlissides J.M., Calder PR. (1989)
“ComposingUser Interfaceswith InterViews. Trans. IEEE
Computer226, 8-22.

Linton M., Tang S., Churchill S. (1994) “Redisplayin
Fresco”. TheX Resouce, 9, 63-69.

Malongy J.H., Smith R.B. (1995) “Directness and
Liveness in the Morphic User Interface Construction
Environment. Proc. ACM UIST, 21-28.

Mattis P at al. (1998) “The GIMP Toolkit”
http://wwwgtk.og/docs/gtk.html.

Myers B.A. (1995) “User Interface Software Tools”
ACM Trans.on ComputerHumaninteraction, 2(1), 64-103.

Myers B, McDaniel R., Mickish A., Klimovitski A.
(1995) “The Designfor the Amulet User InterfaceToolkit”
Proc. Human-Computeinteraction Consortiunmeeting

Ousterhoutl.K. (1994) Tcl andthe Tk Toolkit. Addison
Wesley.

Szekely P, Luo P, Neches R. (1993) “Beyond
Interface Builders: Model-BasedInterface Tools” Proc.
INTERCHI'93 383-390.

