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ABSTRACT
Uncertainty plays an important and complex role in data anal-
ysis, where the goal is to find pertinent patterns, build robust
models, and support decision making. While these endeavours
are often associated with professional data scientists, many do-
main experts engage in such activities with varying skill levels.
To understand how these domain experts (or “data workers”)
analyse uncertain data we conducted a qualitative user study
with 12 participants from a variety of domains. In this paper,
we describe their various coping strategies to understand, min-
imise, exploit or even ignore this uncertainty. The choice of
the coping strategy is influenced by accepted domain practices,
but appears to depend on the types and sources of uncertainty
and whether participants have access to support tools. Based
on these findings, we propose a new process model of how
data workers analyse various types of uncertain data and con-
clude with design considerations for uncertainty-aware data
analytics.
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INTRODUCTION
Data scientists are professionals whose primary function is to
extract knowledge or insight from structured and unstructured
data. One of the key challenges they face is how to deal with
uncertainty that could arise from, e.g., missing values, impre-
cision, and noise. In today’s age of digital footprints, experts
from various domains equally engage in data science activi-
ties with varying levels of skills. These non-professional data
scientists, or data workers, acquire and generate datasets that
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they then need to explore, in order to find pertinent patterns,
build robust models, and construct supporting arguments for
decision making. Whereas professional data scientists may
have formal training to deal with uncertainty (e.g. uncertainty
modelling, propagation, and visualization techniques), it is not
clear how data workers deal with this uncertainty in practice.
Uncertain data may require special types of analysis tasks and
exploration strategies, but little work has looked at how data
workers manage uncertainty.

Existing work that has looked at data analysis in the wild did
not necessarily focus on uncertainty [16] or only examined one
aspect of the analysis such as the uncertainty categories [32].
Work that has considered the whole analysis pipeline has gen-
erally focused on specific domains or on trained data scien-
tists [31]. In addition, related user-studies on uncertain data
analysis have largely dealt with simplified low-level tasks,
making it unclear how applicable the results of these studies
are in the real-world [29]. When high level tasks are used,
few authors justify their choice [19]. Recent reviews [19,
18, 3] on the exploration of uncertain data show an existing,
large body of work that focuses on communication [17, 12],
collaboration [35, 8] and user evaluations [4, 34]. These re-
views also highlight the need to focus on enabling reasoning
and sense-making under uncertainty [25]. Although there are
established general data analysis and sense-making models,
few frameworks explicitly consider uncertainty at all stages of
analysis.

To better understand how data workers analyse uncertain data
in practice, we conducted a qualitative user study to identify
the various sources and types of uncertainty that our study
participants encounter in their daily work; the tasks that they
engage in when they are confronted with uncertainty; the dif-
ferent uncertainty coping strategies they deploy; and other
factors that may affect analysis under uncertainty. Our con-
tributions are (1) a characterisation of uncertainty-aware data
analysis in practice, highlighting sources and types of uncer-
tainty, specific tasks and processes, strategies to manage and
exploit this uncertainty, and human and technical factors affect-
ing the analysis; (2) a process model that describes common
uncertainty-aware data analysis tasks and workflows; and (3)
a set of design considerations and open research questions for
further research in the analytics of uncertainty.



RELATED WORK
A variety of research has focused on understanding how ana-
lysts work with uncertain data, including defining typologies,
task taxonomies, coping strategies, and creating analysis and
sense-making models. We contribute to this body of work an
analysis of how real-world data workers think about, under-
stand, and deal with uncertainty.

The Diversity of Uncertainty Concepts and Terms
There is no unified single definition of uncertainty across all
domains. The general consensus is that there are different
meanings and that the term itself encapsulates many concepts.
For example, in information theory, Klir et al. [22] describe
uncertainty as a source of deficiencies such as incompleteness
or as imprecise, unreliable, vague or contradictory information.
With some overlap to Klir et al.’s taxonomy, Pang et al. [27]
define uncertainty for the scientific visualization domain to
include “statistical variations or spread, errors and differences,
minimum-maximum range values, and noisy or missing data”.
In Geographic Information Science (GIScience), MacEachren
et al. [26] built on existing models of information uncertainty
to produce a topology of geospatial uncertainty with the goal
of supporting visualization. Their conceptualisation delineates
nine components of information uncertainty including error,
precision, completeness, consistency, and subjectivity.

To further characterise information uncertainty, a number of
authors have looked at sources of uncertainty. Pang et al. [27]
discuss how uncertainty can be introduced to the visualization
pipeline from models, measurements, data transformations,
and the visualization process itself. Taking the decision-maker
into account, Kahneman and Tversky’s [15] taxonomy for
what they call variants of uncertainty describes two sources of
uncertainty: internal attributed to the human thinker, and ex-
ternal relating to the outside world. In the same spirit, Schunn
and Trafton [31] divide sources of information uncertainty
in scientific data analysis into four classes related to physics,
computation, visualization, and cognition.

These efforts to conceptualise uncertainty can have different
goals in mind (e.g. support data analysis, visualization or deci-
sion making), which may explain their differences. However,
there are also some commonalities. Gershon [7] proposed
a high level taxonomy of causes for imperfect knowledge
where uncertainty becomes one source of this imperfection,
with the remaining causes: corrupted data and information,
incompleteness, inconsistency, complexity and imperfect pre-
sentation. Skeels et al. [32] also looked at common uncertainty
categories across domains. Their classification captures two
uncertainty dimensions: types and levels of uncertainty; where
measurement uncertainty lives at the low level of the taxon-
omy, completeness at the mid level, inference at the high level,
and credibility and disagreement span all levels.

Strategies and Tasks to Cope with Uncertainty
Although not the focus of their study, Skeels et al. [32]
looked at how domain experts deal with information uncer-
tainty. Their participants decided to either “live with the un-
certainty” or “try to become more certain”. The choice of
which strategy to adopt was the result of balancing the costs

and benefits of accounting for the uncertainty. A more detailed
description of uncertainty coping strategies in scientific data
analysis can be found in [31]. Based on longitudinal observa-
tions of experts in the field, Shunn and Trafton described two
categories for dealing with informational uncertainty: diag-
nosis and reduction. They illustrated each strategy with tasks
they observed from cognitive anthropological work that they
carried out over several years for specific scientific domains.
Like our work, they conducted interviews and real-world obser-
vations. Our focus in this work, however, is on understanding
how data workers, or what we could call non-professional data
scientists, think about, manage, and interpret uncertainty. As
such, while we use similar methods, our participants come
from a wider variety of domains and would not necessarily
associate with the job title of “[data] scientist.”

The closest work in spirit to ours is perhaps the study by Lip-
shitz and Strauss [23]. Their work is also concerned with the
understanding of uncertainty, coping strategies, and the rela-
tionship between the two. However, our contexts, methods and
results differ. Lipshitz and Strauss focus on decision makers
in the context of military defense. In contrast, our participants
are data workers from a variety of domains and they engage in
data-driven decision support; they are not necessarily decision
makers. Further more, Lipshitz and Strauss use self reports of
decision making scenarios drawing on participants’ long term
memory. We use interviews and think aloud walkthroughs and
look specifically at user interactions with support tools.

Uncertainty-Aware Sensemaking Models
Various authors have proposed design guidelines for empir-
ical evaluation studies that take into account pain points in
the sense-making process (such as hypothesis management,
reasoning, and decision making) and their associated cogni-
tive biases [28]. Klein et al.’s data-frame theory of sense-
making [21, 20] proposes a closed-loop to track anomalies,
gauge data quality and infer new data that could be suitable
to manage uncertainty in the sense-making process and on
the user’s mental model. These models suggest that analysts
maintain a mental representation of what data should be like,
allowing them to filter uncertain data from their workflows.
The use of uncertainty in the decision making process is not
new and impacts various domains, types of data, and kinds
of analysis [11]. Focusing on the human analyst, Grolemund
and Wickham [9] propose a cognitive model and interpreta-
tion of the data analysis process that describes the effects of
cognitive bias inherited from sense-making processes, with a
goal of improving current data-analysis. Other work has exam-
ined relationships between uncertainty and human trust [30]
to propose guidelines and challenges aiming to handle uncer-
tainty, and to expose frameworks for uncertainty-aware visual
analytics systems [6, 25]. By better understanding the role
of uncertainty in the analytic process, we can provide data
workers with much-needed tools to facilitate reflection over
the relationships in a whole data set [1] and to provide support
for decision-making in the face of uncertainty [2].

STUDY DESIGN
We conducted semi-structured interviews and think-aloud de-
mos with domain experts to better understand their workflows



when they analyse uncertain data. In particular, we wanted to
investigate the following aspects of analysis under uncertainty:

[A1] The types & sources of uncertainty affecting analysis.
[A2] The tasks data workers engage in.
[A3] The strategies they deploy to cope with uncertainty.
[A4] The role of expertise & automatic tools in the analysis.
Participants
We interviewed 12 domain experts (9 female) aged 26–56
(mean 38) from 11 different organisations (2 enterprise, 7
research and 3 mixed units). The organisations where from
different sectors including healthcare, marketing, history and
GIScience (Table 1). Participants were self identified as work-
ing with uncertainty describing it as an important aspect to
consider during the analysis and decision making. They held
a number of job titles, including “researcher”, “historian”,
“medical surgeon”, “consultant” and “chief data officer”. Parti-
ciants ranged from PhD. students in their second year of work
to chief data officer with over 14 years of experience. In this
paper, we use the term “data worker” to refer to anyone whose
primary job function includes working with data to answer
questions that inform business [16] or research decisions. We
recruited participants by email contacts at organisations within
our personal and professional networks.

Study Procedure
The study was conducted in the following steps. First, we care-
fully prepared a recruitment email paying attention not to bias
potential participants. For instance, we did not provide a defi-
nition of what uncertainty means. However, when prompted,
we gave this definition: “uncertainty is when you are not sure
about one or more aspects of your data”. Data was defined as
any artifact used for the analysis such as text documents, data
tables, images and maps. We asked our participants to pre-
pare an analysis scenario from a recent project. We arranged
to meet our participants in their workplace whenever possi-
ble (three participants were interviewed by means of video
conferencing because they were travelling or due to visitor
restrictions at their workplaces). Interviews were one-to-one
and lasted from 45 minutes to 2 hours. They were conducted
in the participant’s native language (10 participants) or the
second language to facilitate verbalisation. We began each in-
terview with a quick introduction describing the purpose of the
study: “to understand how domain experts explore and anal-
yse uncertain data”. The rest of the interview was conducted
in a semi-structured fashion. Whenever possible, we asked
participants to show us the tools and data sets they use within
their current organisation and walk us through their scenario in
a think-aloud demo style. All interviews were video recorded
to better capture user interactions with the tools. Throughout
the interview, we took extensive notes.

Interviews and Think-Aloud Demos
We asked open-ended questions and encouraged participants
to describe their lived experiences, such as “walk us through a
recent analysis scenario” or “if you had a magic wand, what
would you change to improve the analysis described in your
scenario?”. The interview was structured in three parts. In the
first part, we asked questions about what uncertainty means
to the participant and their community’s general approach for

handling uncertainty [A1,A3]. In the second part, we asked
participants to think of a recent project or scenario where they
had to analyse data for their work, e.g. to report on their
findings or to make a decision, and where taking uncertainty
into account was important. After describing the context of the
scenario, datasets and tools, we wanted to understand how the
analysis is undertaken by asking participants to break down
their workflow into three to six main steps. For each step,
we asked participants questions to clarify the high level goals,
specific tasks and uncertainty coping strategies [A2,A3]. In
addition, we paid special attention to the different analysis
stages affected by uncertainty, and the role of expertise and
automatic tools at each step [A4]. Whenever possible, this
part of the interview was run as a think-aloud demo session
(7 out of 12 participants prepared a demo). Here, we asked
the participants to proceed with their analysis while speaking
out loud about what they are thinking of. The interviewer
observed, asked questions and took extensive notes. In the final
part, we had an open discussion about the main challenges
data workers face today when exploring uncertain data and
their views on how these could be addressed.

Data Collection and Analysis
We collected 681 minutes of recordings in total, which were
transcribed by one author. The resultant data set contained
92,151 words. Two authors independently open coded the tran-
scripts, highlighting interesting snippets of text and key ideas.
We then crossed checked the selected excerpts before extract-
ing 805 snippets, we call “notes”, into a data table. After
filtering, we analysed 787 notes using iterative coding based
on the grounded theory [5] method and digital affinity diagram-
ming. We grouped common types and sources of uncertainty;
tasks and strategies; and tools and expertise into high level
categories. We iterated and refined these categories in separate
affinity diagrams as we gathered more data. An analysis of
affinity diagramming log data for theoretical saturation found
conceptual stability after ⇡ 2

3 of the data analysis. Whenever
possible, we went back to our participants for validation. In
total we produced four independent affinity diagrams covering
the different aspects of uncertainty: types and sources [A1],
tasks and strategies [A2,A3], human and technical factors
[A4], in addition to a global diagram containing all the notes.

A second type of analysis was carried out to extract work-
flows from participants’ scenarios. This was achieved in the
following steps: (a) two independent authors analysed the
video and transcript data, and drew a process diagram for each
participant’s scenario; (b) each diagram was sent to the corre-
sponding participant for validation; (c) two authors open coded
participants’ activities using, as much as possible, the task la-
bels that emerged from the affinity diagramming (there were
161 tasks in total); (d) these domain-specific tasks were open
coded by the same authors and mapped into five high-level
categories, we call processes (Figure 1).

Apparatus
To facilitate the exploration of our notes, we prototyped an
affinity diagramming tool to use on a multi-touch wall-size
display. Whereas analog affinity diagramming provides rich
interactions and material affordances [10], we found that when



P# Org Domain Analysis Tools P# Org Domain Analysis Tools
(1) M medecine 3-D planification tools, Excel (7) E marketing Hadoop, SPSS, SPARC, Tableau
2 R history Zotero, Excel, genealogy tools, Jigsaw [33] (8) R bioinformatics Python, graph drawing tools
3 R biology Excel, metabolic network analysis tools (9) R medical imaging Matlab
(4) R bioinformatics R, Excel, PCA, bioinformatics analysis tools 10 E project management Excel, email, shared repositories
5 R history Google search, office tools (11) R video analytics Matlab
(6) M vision research Matlab, Excel (12) M GIScience GIS tools and scripting languages
Table 1. Participants by domain of expertise. Organisation: R:research, E:enterprise and M:mixed. Participant IDs between brackets indicate data
workers with scripting or programming skills. Tools refer to software packages and libraries used for the data analysis scenario.

dealing with a large set of notes, digital affinity diagramming
is a more effective approach to accommodate our emerging
hypotheses. It also helped to save time and avoid digitisation
and note transfer errors.

FINDINGS
In this section we report on our main findings, covering sources
and types, processes and workflows, uncertainty coping strate-
gies, and human and technical factors. As much as possible,
we will give example statements from participants.

Our participants contributed their own definitions of what un-
certainty means for their respective domains. We found that
most of these definitions covered two important aspects of
uncertainty: type and source. Uncertainty types refer to un-
knowns and imperfections that are often measurable in some
way, qualitatively or quantitatively. Uncertainty sources refer
to the causes of uncertainty. We note that although some partic-
ipants referred to established taxonomies (e.g. in GIScience)
to define precisely what uncertainty means for their domain,
others used the term “uncertainty” more broadly.

Generally speaking, sources and types of uncertainty do not
form a perfect dichotomy: some sources of uncertainty can
also be considered as categories of uncertainty and vice versa,
whereas some sources and types of uncertainty are indepen-
dent. These terms fall generally into one of four layers: data,
model, interface, and cognitive. At the data layer, uncertainty
pertains to the data set itself, such as uncertainty about particu-
lar values in the data. At the model layer, uncertainty pertains
more to processing applied to the underlying data, such as to
fit them to a particular model. The interface layer deals with
the software that acts as an interface between the data and the
user. Finally, uncertainty at the cognitive level relates to how
the user interprets and makes sense of the data.

Source and types of uncertainty do not cleanly partition into
individual categories. For example, ambiguity may enter in at
the data level or it may pertain to reasoning. As such, individ-
ual source-types of uncertainty may figure in at multiple levels.
(Note: quotations indicated with a † have been translated.)

Types of Uncertainty
In this section, we describe the types of uncertainty that we
identified in participant interviews. These types are not in-
tended to provide an exhaustive taxonomy of the different
kinds of uncertainty that exist. Rather, our intent is to provide
a characterisation of the kinds of uncertainty that arose from
our interviews.

Uncertainty arose at all layers of the data analysis model: at
the data, model, interface, and cognitive layers. At the data

layer, we identified five such types of uncertainty: Errors; im-
precise or inaccurate data; inconsistency; missing or unknown
data; and vagueness, ambiguity, and fuzziness. Errors pertain
to captured data that might not accurately reflect ground truth,
such as might be introduced by transcription errors; impre-
cision may be due to sensor error or historical artifacts. For
example, one participant dealt with historical manuscripts that
date from somewhere in the “13th or 14th century” (P5†). Am-
biguity or fuzziness may derive from inexact naming: “The
catch is that, in [this country], a city is not unique. There can
be two [city-name]s in [this country]” (P7†). Finally, miss-
ing data pertains to values that might not have been recorded
in the data set. Regardless of which kind of uncertainty is
present, uncertainty at the data level relates to uncertainty that
exists in the underlying captured data and its relationship to
the phenomena they are intended to represent.

Model uncertainty is that which is related to the models that
are used to, e. g., fit or analyze the data by automated means.
This kind of uncertainty generally consists of inaccuracy and
error, wherein the model may be an approximation of pro-
cesses described by the data.

Interface uncertainty relates to the software interface used
to process, visualise, or interact with the data. It is differ-
ent from modelling types in that the software does not try
to interpret or model the data. We identified two types of
interface uncertainty: algorithmic errors and inconsistency
between the system and interface. Algorithmic errors are those
introduced by data processing algorithms, such as when OCR
might misinterpret an 18th-century long “s” as an “f” (P5).

Finally, cognitive uncertainty pertains to the human reason-
ing process, such as sense-making or inter-personal dynamics.
For example, one participant would try to reason about missing
data by making several categories of possible values, carry-
ing those possibilities throughout the different phases of the
analysis process (P12).

Sources of Uncertainty
As with types of uncertainty, we have identified a variety
of sources of uncertainty at the data, model, interface, and
cognitive levels. Sources of uncertainty at the data level pertain
to uncertainty that manifests itself directly in the data set
itself. These sources thus pertain to uncertainty in the source
data under consideration. We have identified the following
kinds of data sources of uncertainty among our participants:
variability, temporality, inconsistency, missing data, and bias.
One such example is when meaning may change over time:
“[City A] is today a part of the city of [City B], but back then
it was an independent parish” (P2†). These kinds of sources
of uncertainty exist directly in the underlying data.



Process Goal Typical Tasks Process Goal Typical Tasks
Acquire collect and enrich data generate, measure, store Reason derive meaning infer, hypothesise, compare, validate
Manipulate transform data transform, correct, remove Present share findings plot, write a report, make a presentation
Characterise* generate info on uncertainty annotate, compute, model

Table 2. The five processes of data analysis under uncertainty. Characterise uncertainty being a key process.

Model sources are not directly related to the data themselves
but to applied models, such as by using sampling on a continu-
ous data model (P6). Interface sources introduce uncertainty
that is not necessarily present in the underlying data or the
model, but rather in the tools used to communicate them to the
user.

Finally, cognitive sources of uncertainty come from reason-
ing about the data or other similar cognitive, human fac-
tors, rather than uncertainty intrinsic to the data. We iden-
tified three primary cognitive sources of uncertainty: ambi-
guity/communication, subjectivity, and more general human
factors. For example, a historian reported that when “read-
ing the same article, . . . , I understood one thing, and [my
colleague] understood something else” (P2†).

Processes in Uncertain Data Analysis
In this section we describe abstract tasks that our participants
engaged in when they analysed uncertain data. Our approach
is similar to [14] for collaborative visual analysis and [13] for
visualization construction, where we also focus on meta-level
processes rather than low level tasks. We then use these pro-
cesses as building blocks to illustrate participants’ workflows
from which we generate a process model that characterises
uncertain data analysis. We illustrate this process model with
a use case from participant P12 (Figure 3).

Our analysis revealed five processes frequently used by our
participants when analysing uncertain data (summarised in Ta-
ble 2): acquire, manipulate, reason, characterise and present.
Key to data analysis are the manipulate, characterise and rea-
son processes. We differentiate between these processes by
the output they each produce: manipulate generates data; char-
acterise generates meta-data and reason generates thoughts.
The characterise process being particular to uncertain data
analysis. We note that these sensemaking processes are not
strictly delineated in practice. In many cases, we observed
overlaps between processes. In our analysis, we characterised
these processes by the dominant process or by a transition
between overlapping processes. We describe each process and
provide real examples drawn from our study, discussing when
relevant, the type and source of uncertainty, participants’ tasks
and any collaboration with other parties.

Acquire: Most participants start their analysis by acquiring
data (11/12) and half of them would repeat this process at least
once during the analysis. The acquisition process comprises
activities involving collecting, generating, enriching and stor-
ing data. The result of this process is often a database. Our
participants acquired images (P1,2), sensor data (P6,9,11,12),
log data (P12), DNA sequencing tables (P3,4,8), and docu-
ments (P2,5,10). They either generated these datasets them-
selves or received them from a third party or a combination
of both. Data acquisition in itself, was considered a source of

uncertainty, often generating errors, imprecisions, vagueness,
inconsistencies and missing values.

Manipulate: The manipulation process consists of applying
computerised tools that transform data. We have observed
four groups of data manipulations: transform by application
of statistical operations (e.g. normalisation) and aggregation;
correct often to clean data or correct known biases; remove
such as for filtering outliers; and enrich through data fusion,
extrapolation, duplication and estimation. We consider op-
erations that change models of data as part of this category.
These operations can be manual or automatic and the output
is typically a transformed or a new database or model. All our
participants manipulated data or models of it; and used one or
more of the aforementioned data manipulation tasks.

Characterise Uncertainty: This process involves any op-
eration which tries to qualify or quantify uncertainty, thus
generating information about uncertainty. We found this pro-
cess to be characteristic of uncertainty-aware data analysis,
and all our participants engaged in this activity. Characterisa-
tion tasks are either informal via annotations, or more formal
to compute or model the uncertainty. When annotating, partic-
ipants assigned notes to data, to describe their thoughts, doubts
and their own or collaborative informal assessments of data
quality. The output of this task are often annotations and com-
ments, stored as metadata in a database (P1,2,3,4,10). This
method was most used for annotating the following data level
uncertainties: ambiguity (P1,2,10), imprecisions (P1,2,12)
and inconsistency (P10). Computing the uncertainty was often
carried out through statistical assessments of data quality (e.g.
calculating the mean and standard deviation (P1,4,7)), or by
defining a quality threshold manually (P1) or through learning
and clustering algorithms (P7,9,12). This method was applied
to a variety of uncertainty categories: variability (P1,4,7,9,12),
missing data (P1,9), imprecision (P9,12), error (P7), noise
(P9) and inconsistency (P12). Modelling is the most formal
way to characterise uncertainty. A few participants engaged
in this activity where they tried to build a model that takes
uncertainty into account (P8,9,12) or model the uncertainty
in itself (P12). All these models had a confidence attribute to
characterise predictions or estimations. This method was most
used for missing data (P8) and ambiguity (P12).

Reason: Reasoning encapsulates all tasks that result in the
generation of thoughts, insights or decisions. This could be an
individual or a collaborative task. The outcome of this process
is currently not stored or exploitable in an automatic process.
In this category, we include the following re-occurrent tasks
within our participants: infer, interpret, make a hypothesis,
cross check, compare, search, derive insight, conclude and
validate with experts. All of our participants reasoned about
their data and with uncertainty during their analysis.



P1 Acquir chara Reas Reas chara chara Data Annot Annot Prese Acquir Reas

P2 Acquir Reas Reas Data Reas Reas Annot Reas

P3 Acquir chara Data Data chara Annot Reas Reas Reas Reas Reas Reas Reas Prese

P4 Acquir chara Reas Data Reas chara Data Data chara Reas Data Annot Reas Reas Reas

P5 Acquir Data Acquir Reas Reas chara Reas Acquir Annot Link ( chara Reas

P6 Acquir Acquir Data chara Reas Data chara Reas chara Reas chara Reas Reas chara Data Prese

P7 Reas Reas Acquir Reas chara Acquir Data Data Data Data chara chara chara Reas Prese Prese Data

P8 Acquir Data Reas chara chara Reas

P9 Acquir Data Data Data Data Reas chara chara chara Reas Reas Chara Data Reas

P10 Acquir chara Data chara Acquir chara chara chara chara chara Prese Prese chara Data Reas

P11 Acquir Data chara chara Data Acquir Data

P12 Acquir Reas chara chara Data chara chara Reas Reas Reas Acquir Data Prese

Reasoning

Present

Present

Present

Present

Reasoning

Reasoning

Present

Reasoning

Reasoning

ACQUIRE DATA

MANIPULATE DATA

CHARACTERIZE
UNCERTAINTY

REASON 

PRESENT

Figure 1. Analysis workflows for all participants using the five uncer-
tainty processes: acquire, manipulate, characterise, reason and present.

Present: In the present process, participants produced arte-
facts such as written reports, presentations and plots for the
purpose of exploration, communication and dissemination. All
participants used this process, usually towards the end of their
analysis workflow. However, only a few participants used the
present process to explore intermediate results. Amongst these
participants, (P9) was interested in visualising two categories
of uncertainty: noise and variability. This participant produced
histograms to understand data distribution, and used Fourier
transfom visualizations, to understand the quality of measured
signals. Other participants, used graph based visualizations to
explore ambiguous entity relationships (P2).

Sequences of Processes and Workflows
To understand how the five processes of analysis under uncer-
tainty relate to one another, we created a process workflow
for each participant using our process labels (Figure 1). The
visual analysis of these processes shows no common overall
sequencing between participants. What is shared, however, is
that many participants started their analysis with data acqui-
sition and finished with a presentation of their findings (six
participants). Starting with data acquisition seems a standard
practice (11/12), however, what is interesting is that it could
occur at any time during the analysis process itself. Indeed,
participants often needed to enrich their data from external
sources (P2,7), even towards the end of the analysis for com-
parison with initial views e.g. P1 who compared a 2D scan
acquired at the beginning of the analysis with another one
performed after a surgical operation.

Data manipulation, is at the core of the analysis, interleaved
with reasoning and uncertainty characterisation. Similar to
data acquisition and manipulation, but with a higher frequency
is the uncertainty characterisation process. It appears that the
majority of participants used this process extensively, often
using two or more characterisation operations in a row. For
instance, participant P10 recorded various types of annotations
when resolving conflicts related to software versioning. P5
adopted a similar approach for characterising ambiguous links
between paragraphs in a manuscript. Interestingly, uncertainty
characterisation is never at the end of the analysis (like data
acquisition). This is because for all of our participants, man-
aging uncertainty was an aspect of analysis and not the goal.
Reasoning also happens at various places in the analysis. This
is understandable, as participants form hypotheses that inform
all other steps of data analysis.

We translated these findings about the process sequences into
the process model in Figure 2. The diagram illustrates our

ACQUIRE DATA PRESENT

CHARACTERIZE
UNCERTAINTY

Annotate | Compute | Model

MANIPULATE DATA
Data transformation 

Correction

REASON 
Infer | Interpret | Hypothesis

Compare | Validate

Figure 2. A flow-diagram describing the variety of ways data workers
interact with uncertainty information during data analysis and sense-
making. Characterising uncertainty is a distinctive step in uncertainty-
aware data analysis and can happen at any stage.

observation that the five data analysis processes can occur at
anytime during the analysis. The links between the process
boxes indicate possible sequence paths.

Use case
Participant (P12) is a GIScience expert working at a state
agency. P12’s employer plans a new update to the company’s
database. One source of information they are currently us-
ing are crowd-sourced GPS logs that walkers publish online.
However the acquisition of these GPS logs could generate
errors, noise, and incoherent data (>acquire data). The first
analysis step undertaken by P12 is to interpret the new data
to locate the geospatial features described in the logs. P12
then tries to assess whether the new data is valid and meets the
company’s standards (>reason). This can be done automati-
cally or manually, and involves multiple sub-tasks: filtering
outliers and aberrant values, and verifying whether the GPS
logs have the expected scales, distances, directions and speed
(>characterise uncertainty). The outcome of this step deter-
mines whether or not P12 will save the crowdsourced data
(> manipulate data). If this data is not reliable, P12 tries to
find more appropriate sources. Next, P12 compares logs with
existing models (> characterise) based on multiple criteria,
in order to produce a trust score. P12 then tries to identify the
new changes required to update their database (> reason), for
instance, adding a new path that has emerged in the forest due
to incidents. If the changes are important and P12 is unsure, a
surveyor is sent to the field to acquire data. P12 goes through
the identification process again, and then finally saves the data
(> manipulate data) along with a trust score. Finally, the new
data and the computed/modelled uncertainty are presented to
decision makers. Based on this information, decision makers
create new policies and construction plans.

Next, we go deeper into the analysis of uncertainty pro-
cesses, by considering how data workers combine operations
to achieve goals with respect to uncertainty management.

Strategies to Cope with Uncertainty
The analysis of our data revealed two categories of uncertainty
coping strategies: active and tacit. Active strategies involve
methods that participants employed to understand, minimise
or exploit the underlying uncertainties. We add to this cate-
gory the ignore strategy, where participants chose to explicitly
ignore uncertainty either because it was not relevant to the
analysis or business need, or because it was difficult to con-
trol. Tacit strategies reflect accepted domain practices and
perceptions with regards to uncertainty.
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Figure 3. A simplified process diagram of participant P12. The coloured line under the sketch corresponds to the steps of the flow diagram analysis for
that participant. Yellow bubbles represent the analysis steps affected by uncertainty information, as reported in our participant’s scenario.

In the following sections we summarise active user strategies
for coping with uncertainty at the data level, before discussing
tacit coping strategies. We do not discuss active strategies
relating to non-data levels as we do not have enough notes
related to this aspect of analysis. For each strategy, we discuss
key component tasks and relate them to the five analysis pro-
cesses (Acquire, Manipulate, Characterise, Reason, Present),
as well as uncertainty types and sources.
Active Data-Level Strategies
All participants used one or more active strategies for their
analysis scenario. What is noticeable is that all participants
deal with more than one category of uncertainty (min 2, max
6), with nine participants dealing with four or more types and
sources of data uncertainty (Table 3).

Ignoring Uncertainty: Although seven participants declared
having ignored a known uncertainty in their data at some
point during the analysis, this is not a common strategy
(P2,4,5,6,7,11,12). Our participants ignored known uncertain-
ties when the category of uncertainty itself was not relevant to
the analysis or when dealing with it was outside the scope of
their role or expertise. There are also cases where uncertainty
was too difficult to control, e.g. or due to technical limitations,
e.g. “We cannot do anything with the first [technical bias],
which is the viewpoint of the camera.” (P11†).

Ignoring ambiguity in data can involve taking actions such as
excluding all ambiguous objects from the analysis, or dupli-
cating objects: “... may be that [name of a historical person]
in my database is the right one. I prefer to make a duplicate ...
It is always yes or no. There is never a middle ground. And
this is what I really need.” (P2†). For inconsistency due to
conflicting data sources, the ignore strategy involves propagat-
ing the conflict down the analysis pipeline rather than dealing
with it at the source. Ignoring missing data, refers to making
hypotheses or assumptions about an incomplete dataset.

We noticed that ignoring uncertainty at later stages of the anal-
sis does not mean that the data worker did not deploy active
strategies to understand, minimise or exploit this uncertainty
earlier (e.g. at acquisition). Even within the same analysis
stage, participants could choose to ignore uncertainty in one
aspect of their data and try to minimise it for others. For in-
stance, P7 who needed to send a marketing campaign based
on a customer database having missing data: “Knowing where
the person is based is primordial to the business [...]. The age
and the postal address are the two subjects that interest us.
For the rest, there is missing data but we don’t care.” (P7†).

Understanding Uncertainty: This category of strategies aims
primarily to improve participants’ understanding as well as
others awareness of uncertainty. It does not necessarily act

as an immediate step before minimising or exploiting uncer-
tainty. Seven participants reported scenarios where they used
nderstanding as their primary coping strategy for the uncer-
tainty types they were dealing with (P1,2,7,8,9,10,12). Both
application users and programmers deploy this strategy. Un-
derstanding uncertainty might be an end in itself, rather than a
means, for different reasons similar to those behind the ignore
strategies, i.e. low priority at a particular stage of the analysis,
or difficulty in taking the analysis further due to the intrinsic
nature of uncertainty or technical limitations.

The understand strategies are important for bookkeeping, mon-
itoring and communication purposes. Apart from acquire,
all analysis processes feature in this category. However, un-
certainty characterisation was the most frequently applied,
including all three levels (ordered by frequency): annotate,
compute and model. Annotate often involved adding free text
or comments to describe participant’s confidence in the data
or its quality, e.g. P10†: “there are things which are uncertain
[...] we created a column to put our comments [...] when we
have comments, kind of a doubt about an application that is
impacted, or a document, we try to put a comment.”. Charac-
terise: involved computing summary statistics or algorithms
to quality of quantify the uncertainty, e.g. P9†: “we have our
four positions and our 20 measurements per position, and
so we will do classical things, like average, and standard
deviation, or median before showing histograms, to have an
idea of whether what we did are reproducible or not [... ] ”.
Modelling involved using theory to formalise the uncertainty,
e.g. P12†: “[...] there are fuzzy logic theories, probability and
evidence theory that will allow us to store these imprecisions
and even to present them afterwards.”.

Unsurprisingly, participants who modelled data/uncertainty
or computed a quality measure (P1,8,9,12) had higher tech-
nical expertise, whereas annotations were added by both
groups (P1,2,7,10,12). These processes appeared sometimes
in chained pairs. More frequent however, was the reason-
characterise sequence. We also had cases where participants
used uncertainty characterisation tasks in a row, for instance
computing the variability of data then writing notes about
the confidence in the results. There are understand strategies
for each uncertainty category except for bias. Coincidently,
this is the least handled uncertainty category amongst our par-
ticipants (together with inconsistency). Bias as a source of
uncertainty, appears to be well understood by our participants
(e.g. camera setting bias reported by P10 above) or well docu-
mented by trusted parties who generated the data, e.g. P3 who
receives a document explaining data provenance including
transformations and known biases at data acquisition.
Minimising Uncertainty: This is by far the most widely used
strategy, with all participants deploying one or more uncer-



tainty minimisation processes at some point in their analysis.
Processes used in this strategy are, in order of frequency:
manipulate, characterise uncertainty, reason, and acquire. In-
terestingly, the present process was not used for the aim of
minimising uncertainty. The manipulate process applies to
all uncertainty categories. Common data manipulation tasks
include filtering of outliers, removal of (uncertain) data, correc-
tions of known errors, data aggregation to reduce imprecisions,
and data enrichments from algorithmic or external data sources.
The characterise process, as part of a minimisation strategy,
applies to all uncertainty categories with the exception of bias
and imprecision. Typically participants used annotations to
reduce ambiguity, e.g. P2†: “Uncertainty comes to mind au-
tomatically in my secondary sources. In my case, when I
transcribe, my transcription becomes a secondary source [...]
here I try to put a link to the digitised register [...] to reduce
this uncertainty [referring to ambiguity in the identity of peo-
ple, dates and places]”. Specifically for ambiguity, modelling,
which can also be used as an understand strategy, is consid-
ered a minimisation strategy as it addressed the problem of
fuzzy object classification (P12). This process, however, was
more often used in combination with other tasks, typically
with an acquisition process when data is missing, in order to
record provenance or confidence in the new data, e.g. P7†: “all
those who bought a train ticket without telling us their age, we
estimate age, and then we put a low probability/confidence.”.
In other cases, uncertainty characterisation was followed by a
data manipulation process to filter noise and errors, or remove
erroneous models. However, only half the participants stated
that they removed uncertain data (P4,6,8,9,11,12). P7†noted:
“For each type of data [estimated values from tests] we add a
new column [to the database]. We never remove data.”.

The reason process affected six out of eight uncertainty
sources and types and were mostly to compare and contrast
different data sources and to validate with colleagues and other
experts. Participants always followed this process with a data
manipulation or uncertainty characterisation tasks. Finally, the
acquire process affects primarily three types of uncertainty
categories: missing data, error and variability. This process
was sometimes followed by a characterisation task (often an-
notation) or a data manipulation (e.g. data correction).

Exploiting Uncertainty: In some cases, uncertainty was not
considered as a burden, instead, it was viewed as a valuable
source of information. Only P12 used this strategy for missing
and imprecise data. This participant was technically skilled
and familiar with formal theories to quantify and represent
uncertainty. P12’s approach was to extract value from un-
certainties in the data using inferences, model building and
testing: “[...] For example, two objects that do not have an
attribute, but the fact that there is no attribute gives me an
information. May be that this object, [...], in our database,
objects who are not important do not have attributes [...] so re-
ally, the lack of information, could be a source of information.
I exploited this like that.” (P12†).

Tacit Strategies
Besides the active strategies that participants articulated, there
were overarching perceptions that appear to come from ac-

cepted domain practices. We call these, tacit strategies and
loosely place them on a continuous uncertainty scale from
attitudes considering uncertainty to be permanently present
(P2,5,7), to the other extreme where relevant aspects of the
analysis undertaken by the participant are regarded free of un-
certainty (P3,4,9). P4, on the high uncertainty end, considers
uncertainty to be not pertinent to her task. Considering the
overall context, this participant (a biologist) receives data that
has been already cleaned to remove known biases and reduce
variability. P2†, on the other end of the scale, a historian who
is confronted with uncertainty all the time: “in social history,
uncertainty is present all the time.”, her general method in-
volves making hypotheses and trusting authoritative sources
(and conversely, being skeptical about less reliable ones).

Some participants appear to be on or close to both ends of
the scale. This can be attributed to the variety of uncertainty
categories that data workers are confronted with at the same
time, necessitating different practices. For instance, P7, a data
officer, considers current automatic tools to handle missing
postal addresses for their customers too error-prone, and there-
fore a huge source of uncertainty. In the other direction, other
attributes in their database are not sensitive (or important to the
business) and thus their related uncertainties can be ignored.
We observed that most participants take a nuanced, and less
extreme, attitude towards uncertainty (seven participants), e.g.
P1, a medical surgeon, takes a general accepting attitude since
uncertainty is intrinsic to their domain, improvising when nec-
essary as advanced planning is not always possible, combined
with being explicit when communicating uncertainty to others.

Human and Technical Factors
The uncertainty coping strategies adopted by our participants
involve both manual and automatic processes. It appears that
expertise plays an important role in deciding what types and
sources of uncertainty to ignore, and how to help understand,
minimise or exploit them. For example, P1: “The 2-D tech-
nique [for surgery planification] seems to be not accurate
enough, [...] and in this case it is better to deal with an ex-
perienced surgeon who may be able to find solutions at the
time of surgery, to improvise something at the time of surgery”.
With regards to manually judging the source and date of a
manuscript, P5†commented: “We know well if a manuscript
has an Italian writing, done in Rome, Venice or Naples”. More-
over, data analysis workflows often involve multiple actors.
For analysis under uncertainty, we observed a strong link be-
tween our participants, data providers and facilitators. This
was particularly true for validation processes, where some
participants lacked specific expertise to evaluate the output
of their analysis (e.g. P8), or direct access to primary data
sources (e.g. P6). In such collaborative settings, human ex-
pertise plays an important role in explaining, validating and
communicating known uncertainties. However, coordination
sometimes comes at a cost, e.g. P8†noted: “we cannot just
look at [our model/results] and say, this is OK. We have to ask,
verify etc. This takes time.”.

Visualization tools were used by nine participants to support
different tasks, e.g. P2 used Jigsaw [24] to explore entity rela-
tionships; P7 used Tableau to communicate analysis findings
to the marketing team, and P8 used open source tools to visu-



Ignore Understand Minimise

Ambiguity
(11 participants)

M: duplicate or remove
ambiguous object from
analysis; do nothing
(P2,4,5,6,11)

C: annotate, e.g. references and confidence; R:
evaluate source reliability or quality; R: make
a hypothesis ^ M: test (P1,2,8,10)

C: annotate to disambiguate; R: compare to other sources ^ M:
enrich _ M: correct ; R: discuss with experts to decide on identity or
class ^ C: annotate _ M: remove; C: compute a quality threshold ^
M: remove; C: model uncertainty (P2,5,6,7,8,9,12)

Inconsistency
(3 participants)

M: propagate conflict
(P12)

R: compare to other sources; C: annotate
provenance of data and versioning (P2,10)

M: data fusion ^ C: compute a quality threshold ^ R: create and
apply rules for data fusion (P12)

Missing data
(8 participants)

R: hypothesise (P6,7) C: compute data quality measures; C: model
missingness (P1,8)

A: new experiment; R: compare to related sources ^ M: data fusion;
M: estimate or extrapolate; A: collect data ^ C: annotate confi-
dence _ M: correct; R: infer from surrogate model ^ M: enrich
(P1,2,3,5,6,7,8,12)

Bias
(3 participants)

do nothing (P11) f M: apply statistical transformation, e.g. normalise; M: filter uncer-
tain data (P3,4)

Variability
(6 participants)

f C: compute variability ^ P: plot; R: interpret
^ C: annotate (P7,9,12)

A: take new measurements; C: identify a quality threshold ^ M: filter
(P1,4,6,12)

Error
(8 participants)

do nothing (P7) C: annotate to prevent data usage of erroneous
records (P7)

M: filter uncertain data; M: delete model that generates errors; A:
improve acquisition source and tools; A: acquire data from multiple
sources; R: group discussions ^ M: manual correction; C: set task
constraints (P1,3,5,6,7,8,11,12)

Imprecision
(8 participants)

do nothing (P5) C: model uncertainty ; C: annotate data qual-
ity, confidence or possible range; R: com-
pare to literature ^ C: set quality threshold
(P1,2,9,12)

M: filter imprecise data; M: enrich with better quality data ^ A:
improve acquisition ^ R: human expertise; M: aggregate data; R:
prevent error propagation (P1,3,7,9,11,12)

Noise
(4 participants)

f P: plot data with uncertainty (P9) R: discuss with experts to identify noise ^ M: remove noise; C:
compute threshold level ^ M: remove noise (P4,6,9,11)

Table 3. Data uncertainty coping strategies by high level goals: Ignore, Understand and Minimise (Exploit is not shown as it only applies to missing
data & imprecision). Strategies can combine multiple processes and are exemplified using process_label:task notation, where process_label is A, M, C,
R or P for Acquire, Manipulate, Characterise, Reason and Present. Symbol ^ denotes a chained process and _ an alternative process.

alise large metabolic networks for presentations and research
publications. We note that some participants constructed their
own visualizations, sometimes manually, such as P5 using
post-it notes and highlighter pens (to show plagiarism patterns
in a historical manuscript). Apart from P2 who did some ex-
ploration, visualization was mostly used for presentation and
communication purposes. However, a number of participants
expressed their need for advanced visualization tools to better
present, explore and exploit uncertainty information.

Relating The Various Aspects of Uncertainty Analysis
So far, we have identified categories of uncertainty and strate-
gies used in analysis under uncertainty. Drawing upon these
observations, we have proposed a five-block process model of
how data workers analyse uncertain data in their own domains.
In this section, we try to link these categories, processes, and
strategies (Table 3). Our aim is not to find correlations, but to
highlight some trends based on the intuition that the studied
aspects of analysis are not independent.

What strategies are used for which categories of uncertainty?
Our participants generally employed different coping strate-
gies for different categories of uncertainty. For example, we
only observed participants attempting to exploit uncertainty
with missing or imprecise data. When confronted with ambigu-
ity, participants tried to understand it more often than for any
other category of uncertainty. For all other categories, partici-
pants tried to minimise uncertainty more than they attempted
to ignore, understand, or exploit it (in that order).

How do strategies relate to the identified processes?
There is also evidence in our data that participants used differ-
ent analysis processes depending on their uncertainty coping
strategies. No single strategy involves all of our analysis
processes. The strategy that involves the most processes is
understand (MCRP). Ignore (MR) and exploit (AR) involve
only two processes each. Reason is employed by all types of

strategies, which indicates the importance of human-thinking
and intervention in data analysis. We note that participants
who tried to ignore uncertainty primarily used the manipulate
process and, to a much lesser extent, the reason process. The
understand strategy involves all processes except for acquire.
It is also the strategy where the characterise process is used ex-
tensively. The minimise strategy involves all processes except
for present. Finally, exploiting uncertainty seems to primarily
involve the reason and acquire processes.

Which processes operate on what categories of uncertainty?
Looking at Table 3, it appears that variability is the only uncer-
tainty category where all analysis processes are employed by
our participants (AMCRP). Moreover, variability and noise
are the only uncertainty categories that our participants tried
to present. Missing data, error and imprecision are fairly com-
mon types of uncertainty within our participants pool (eight
participants each). For these categories, participants employed
four processes (AMCR), but surprisingly, they never tried to
present the uncertainty. Finally, ambiguity is the least anal-
ysed category of uncertainty, with only three processes (MCR),
albeit the most common uncertainty category (11 participants).
DISCUSSION
In this section, we compare the different aspects of our findings
and results to prior work. Our study supports existing findings,
in particular the idea that uncertainty is multifaceted [27, 26,
31, 3]. Our participants deal with a variety of sources and
types of uncertainty related to the data, models, interfaces and
cognition. What we contribute are new observations on how
real-world data workers adopt one or more strategies aiming
to ignore, understand, minimise or exploit these uncertainties.
A subset of the uncertainty strategies we identified have been
observed by other researchers who did similar studies. The
two strategies mentioned by Schunn and Trafton’s [31] for
the diagnosis and reduction of uncertainty, directly map to
our understand and minimise strategies. Moreover, Skeel’s



et al. [32] strategies to ‘live with the uncertainty’and ‘try to
become more certain’, correspond to our ignore and minimise
strategies. Our exploit strategy, however, is a new addition to
the list of existing strategies and highlights the potential of
making useful inferences from imperfect data.

Pirolli and Card [28] provide a high-level model of human
activity called the “Sense-Making Cycle” where the goal is to
gain insights from data with regards to a given task. This
model includes five main components: foraging for data,
searching for a schema, instantiating a schema, problem solv-
ing, and authoring, deciding or acting. Processes from this
model relate well to our components, for example, “foraging
for data” maps to our acquire process and “solving a problem”
refers to our data manipulation process. We also share the
same interactive approach. However, such general models
do not specifically focus on the analysis of uncertain data.
Our framework is more specific to uncertainty analytics as it
exposes the different notions of uncertainty through a “char-
acterisation” process. We think our framework would enrich
existing models with the observed evidence from our study.
DESIGN IMPLICATIONS AND FUTURE DIRECTIONS
We discuss design implications and future directions for
uncertainty-aware analytics, promoting tools and studies that
consider uncertainty at various stages of the sensemaking loop:

1. Support different uncertainty strategies and processes:
Our study showed that data workers adopt different strate-
gies depending on the uncertainty categories they are working
with. As data workers often deal with many sources and types
of uncertainty at the same time, there is need for tools that
combine different types of uncertainty analysis and processes,
whether aiming to ignore, understand, minimise or exploit the
uncertainty. In particular, we highlight the need to develop
tools that exploit uncertainty, making it an additional valuable
source of information.

2. Capture and exploit analysts’ uncertainty: We found
that a great deal of uncertainty characterisation was manual.
Data workers used domain knowledge to asses data quality,
disambiguate objects and remove outliers or errors in their
data. We join McEachren [25] and Kandel et al.’s [16] calls to
create tools that capture and encode analysts’ annotations, par-
ticularly with regards to uncertainty. Some of our participants
already noted that there is no value in using an annotation tool
if it does not provide the means to exploit annotations (P2†: “it
is interesting [referring to annotating uncertainty]. However,
it should not just stay an annotation [...] because often this
gets lost if we do not have a way to exploit it.”).

3. Support uncertainty propagation in an integrated reasoning
process: In our study, participants did not always have ade-
quate tools to handle the complexity of uncertain data analysis.
They often used separate tools in different parts of the anal-
ysis. Integrating the results of this conjoint processes, often
manually, could in itself add uncertainty. We saw that passing
provenance information from one step of the analysis to the
next was rarely supported by existing tools. Tools that support
uncertainty analysis should be integrated to the iterative pro-
cess of sense-making, taking into account the different types,
sources and levels of uncertainty (i.e. data, model, interface

and cognitive) and uncertainty propagation. In real world con-
texts, where uncertainty has a high, often measurable, impact
on decision making, the biggest challenge is to make sure that
the analysis tools we build enable reasoning processes.

4. Support uncertainty-aware collaboration: Data workers
rarely work in isolation. They are usually part of a team, co-
located or remote. Their part of the analysis fits in a larger
organisational context. They collaborate with other data work-
ers, data providers, managers, and other parties. Each of them
has a different role in the analysis workflow. Responsibilities
are assigned with regards to processes, tasks and data. Such
collaborations could help reduce uncertainty, but could also
generate new ones due to compounded cognitive and relational
factors. We envision uncertainty-aware data analysis tools that
facilitate collaborative analysis of uncertain data by taking
into account sources of uncertainty in the data as well as at the
cognitive and relational levels.

5. Support decision makers through visualization: We saw a
need for advanced visualization tools to better present, explore,
and exploit uncertainty information, taking into account the
various categories of uncertainty. More importantly, these
visualizations need to support decision makers, e.g. P12†:
“[decision makers] are not used to [uncertainty visualization].
And it makes the interpretation task heavy-weight”.

6. Investigate the effect of tacit strategies on the analy-
sis: Kahneman and Tversky [15] found that the perceived
source or reason for uncertainty determines the selected coping
strategy. In our study we observed some differences between
participants who came from domains where uncertainty is
the ‘norm’, and participants where uncertainty is more ‘con-
trolled’using formal theory and modelling. More studies are
needed to understand the effect of domain practices and user
perceptions on the analysis of uncertain data.

Study Limitations
Our participants have different technical skill levels which
may have had an impact on their behaviour and coping strate-
gies. Moreover, our recruitment scheme may have introduced
potential bias due to snowball and social network effects (e.g.
11 participants out of 12 were based in France).

CONCLUSION
This paper presented the results of interviews with 12 domain
experts within commercial and academic organisations. For
our participants, data analysis was not their primary job. We
presented findings that characterise how this type of “ana-
lysts”, we coined data workers, explore uncertain data. Our
participants had to deal with heterogeneous uncertainty cat-
egories operating at the data, model, interface and cognitive
levels. They deployed four uncertainty management strategies:
ignore, understand, minimise and exploit, at various stages of
the analysis. Our study allowed to identify five key high level
tasks which were the building blocks of a process model for
uncertainty-aware data analysis. Finally, we proposed future
directions for further research.
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