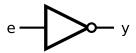


Propriétés physiques des circuits

De l'architecture des portes logiques à l'impact de la nanoélectronique sur l'économie des TICs...

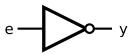
Yves Mathieu, Jean-Luc Danger


Plan

Introduction

Inventaire des éléments nécessaires

Une source d'alimentation:
V_{dd}



- Une source d'alimentation:
 - V_{dd}
- Une convention logique:

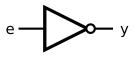
$$0 = V_{ss}, 1 = V_{dd}$$

Inventaire des éléments nécessaires

- Une source d'alimentation:
 V_{dd}
- Une convention logique:

$$0 = V_{ss}, 1 = V_{dd}$$

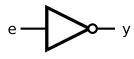
Un interrupteur piloté par une tension mesurée par rapport à V_{ss}:



- Une source d'alimentation:
 V_{dd}
- Une convention logique:

$$0 = V_{ss}, 1 = V_{dd}$$

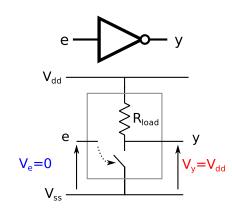
- Un interrupteur piloté par une tension mesurée par rapport à V_{ss}:
 - V_e = 0 Interrupteur ouvert



- Une source d'alimentation:
 V_{dd}
- Une convention logique:

$$0 = V_{ss}, 1 = V_{dd}$$

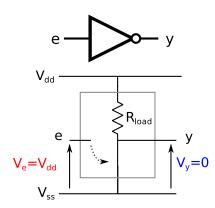
- Un interrupteur piloté par une tension mesurée par rapport à V_{ss}:
 - V_e = 0 Interrupteur ouvert
 - V_e = V_{dd} Interrupteur fermé



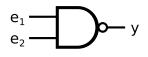
- Une source d'alimentation:
 V_{dd}
- Une convention logique:

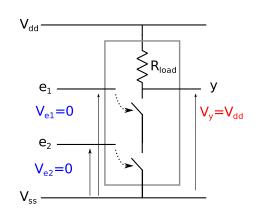
$$0 = V_{ss}, 1 = V_{dd}$$

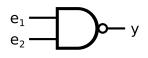
- Un interrupteur piloté par une tension mesurée par rapport à V_{ss}:
 - V_e = 0 Interrupteur ouvert
 - V_e = V_{dd} Interrupteur fermé
- Une charge résistive: R_{load}

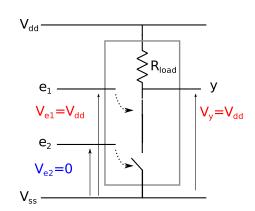


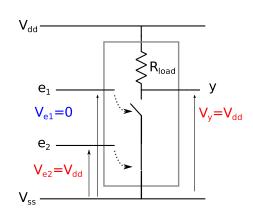
- Une source d'alimentation:
 V_{dd}
- Une convention logique:

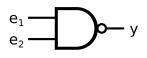

$$0 = V_{ss}, 1 = V_{dd}$$

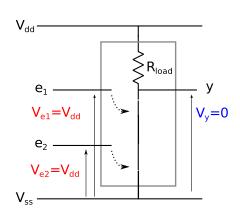

- Un interrupteur piloté par une tension mesurée par rapport à V_{ss}:
 - V_e = 0 Interrupteur ouvert
 - V_e = V_{dd} Interrupteur fermé
- Une charge résistive: R_{load}

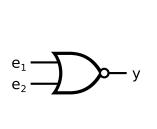


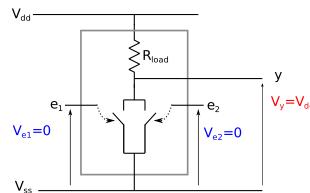

La porte non-et à 2 entrées

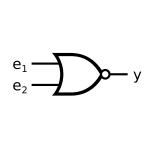


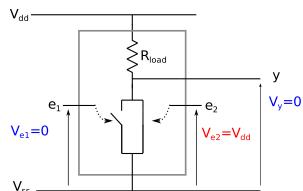


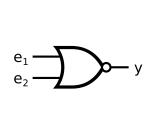

La porte non-et à 2 entrées

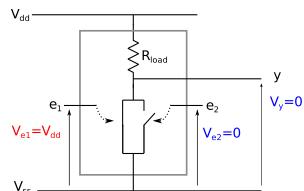


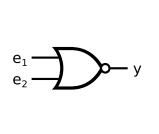


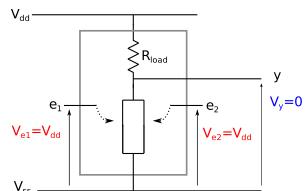












En conclusion, c'est simple...

mais...

- Cette logique consomme en permanence lorsque la sortie de la porte logique est à 0:
 - Nous aimerions réaliser des microprocesseurs qui ne consomment que lorsque l'on a besoin de réaliser un calcul...

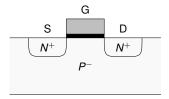
En conclusion, c'est simple...

mais...

- Cette logique consomme en permanence lorsque la sortie de la porte logique est à 0:
 - Nous aimerions réaliser des microprocesseurs qui ne consomment que lorsque l'on a besoin de réaliser un calcul...
- Les physiciens ne savent pas réaliser d'interrupteur «idéal»(à des températures de fonctionnement raisonnables):
 - Le niveau logique $\bf 0$ n'atteint pas V_{ss} . Il n'y a pas de garantie de fonctionnement de la logique

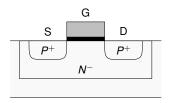
Plan

Introduction


Logique CMOS

Performances de la logique CMOS

Retour sur les lois de Moore



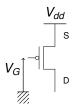
Complementary Metal Oxyde Semiconductor logic

Transistor nMOS

- Canal N
- Courant d'électrons
- Passant si $V_{as} > V_T$

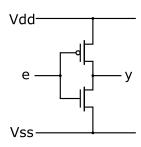
Transistor pMOS

- Canal P
- Courant de trous
- Passant si $V_{qs} < -|V_T|$


Le transistor MOS

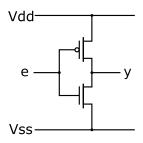
Un interrupteur électronique

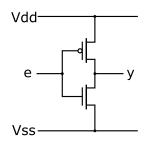
Transistor nMOS


- $V_G = V_{ss} \Leftrightarrow \text{interrupteur}$
- V_G = V_{dd} ⇔ interrupteur fermé

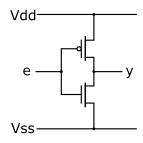
Transistor pMOS

- $V_G = V_{ss} \Leftrightarrow \text{interrupteur fermé}$
- V_G = V_{dd} ⇔ interrupteur ouvert



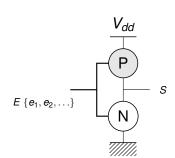


- *e* = 0
 - V_e = 0
 - nMOS bloqué, pMOS passant
 - $V_y = V_{dd}$
 - y = 1



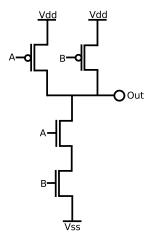
- e = 0
 - V_e = 0
 - nMOS bloqué, pMOS passant
 - $V_y = V_{dd}$
 - *y* = 1
- *e* = 1
 - $V_e = V_{dd}$
 - nMOS passant, pMOS bloqué
 - $V_y = 0$
 - y = 0

- *e* = 0
 - $V_e = 0$
 - nMOS bloqué, pMOS passant
 - $V_y = V_{dd}$
 - *y* = 1
- *e* = 1
 - $V_e = V_{dd}$
 - nMOS passant, pMOS bloqué
 - $V_{v} = 0$
 - y = 0
 - Consommation uniquement à l'occasion de nouveaux calculs (transitions)


Généralisation à une porte complexe

Une porte avec les entrées $\{e_1, e_2, \ldots\}$ et la sortie S.

Deux réseaux duaux:


nMOS: permet la mise à 0 pMOS: permet la mise à 1

- Les deux réseau ne doivent jamais être passants en même temps
- Pour que S soit une fonction logique:
 - Si N est passant P bloqué
 - Si P est passant N bloqué

La porte non-et (NAND)

exerçons nous...

■ La porte non-ou (NOR) à deux entrées.

exerçons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.

exerçons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.
 - Attention, dans la pratique pas plus de 3/4 entrées (modèle trop simpliste du transistor)

exercons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.
 - Attention, dans la pratique pas plus de 3/4 entrées (modèle trop simpliste du transistor)
 - Association de portes plus simples.

exerçons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.
 - Attention, dans la pratique pas plus de 3/4 entrées (modèle trop simpliste du transistor)
 - Association de portes plus simples.
- La fonction : $F(a, b, c) = \overline{a \cdot b + b \cdot c + c \cdot a}$

exerçons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.
 - Attention, dans la pratique pas plus de 3/4 entrées (modèle trop simpliste du transistor)
 - Association de portes plus simples.
- La fonction : $F(a, b, c) = \overline{a \cdot b + b \cdot c + c \cdot a}$
- La porte ou-exclusif à 2 entrées.

exerçons nous...

- La porte non-ou (NOR) à deux entrées.
- La porte non-ou (NOR) à N entrées.
 - Attention, dans la pratique pas plus de 3/4 entrées (modèle trop simpliste du transistor)
 - Association de portes plus simples.
- La fonction : $F(a, b, c) = \overline{a \cdot b + b \cdot c + c \cdot a}$
- La porte ou-exclusif à 2 entrées.
- Toutes les fonctions logiques ne peuvent pas se construire en une porte CMOS unique.

Plan

Introduction

Logique CMOS

Performances de la logique CMOS

Retour sur les lois de Moore

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.
 - Ajustement des dépenses de R&D...
 - Ajustement des investissements dans les usines...

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.
 - Ajustement des dépenses de R&D...
 - Ajustement des investissements dans les usines...
 - ... pour suivre la prédiction.

Le triomphe du "technology push"

15/30

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.
 - Ajustement des dépenses de R&D...
 - Ajustement des investissements dans les usines...
 - ... pour suivre la prédiction.
- Extrapolation à "La fréquence de fonctionnement des... double tous les..."

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.
 - Ajustement des dépenses de R&D...
 - Ajustement des investissements dans les usines...
 - ... pour suivre la prédiction.
- Extrapolation à "La fréquence de fonctionnement des... double tous les..."
- Extrapolation à "La consommation des... est divisée par deux tous les..."

Loi(s) de Moore

- Gordon Moore, cofondateur d'Intel.
- 1966 : "La complexité des semiconducteurs double tous les ans à coûts constants"
- Constatation devenue par la suite auto-prédictive.
 - Ajustement des dépenses de R&D...
 - Ajustement des investissements dans les usines...
 - ... pour suivre la prédiction.
- Extrapolation à "La fréquence de fonctionnement des... double tous les..."
- Extrapolation à "La consommation des... est divisée par deux tous les..."

Le triomphe du "technology push"

ELECINF102

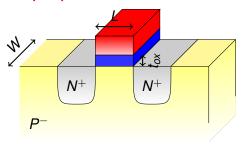
Critères de performances

- La **surface**: Plus le circuit est petit, meilleur est le rendement de fabrication et donc plus faible est le coût de fabrication.
 - Réduire la taille des transistors (technologue)
 - Réduire le nombre de transistors (architecte)

16/30

Critères de performances

- La surface: Plus le circuit est petit, meilleur est le rendement de fabrication et donc plus faible est le coût de fabrication.
 - Réduire la taille des transistors (technologue)
 - Réduire le nombre de transistors (architecte)
- La vitesse: Plus la logique est rapide, plus on peut effectuer de calculs dans la même durée de temps.
 - Comment augmenter la fréquence d'horloge ?

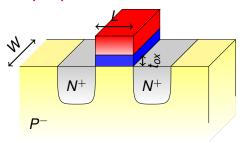

Critères de performances

- La surface: Plus le circuit est petit, meilleur est le rendement de fabrication et donc plus faible est le coût de fabrication.
 - Réduire la taille des transistors (technologue)
 - Réduire le nombre de transistors (architecte)
- La vitesse: Plus la logique est rapide, plus on peut effectuer de calculs dans la même durée de temps.
 - Comment augmenter la fréquence d'horloge ?
- La consommation: Le "calcul" implique une consommation d'énergie
 - Comment minimiser cette consommation ? (objets connectés...)
 - Comment évacuer la chaleur dissipée ? (serveurs pour le cloud...)

Le transistor MOS

Une vision plus précise

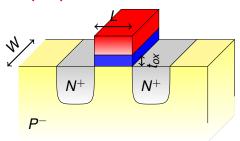
Le courant dans le transistor "passant"


$$I_{DS_{max}} = K_n \cdot (V_{dd} - V_{TN})^2$$

17/30

Le transistor MOS

Une vision plus précise


Le courant dans le transistor "passant"

$$I_{DS_{max}} = K_n \cdot \left(V_{dd} - V_{TN} \right)^2$$
 avec $K_n = \frac{1}{2} \mu_{0N} \cdot C_{ox}' rac{W_N}{L_N}$

Le transistor MOS

Une vision plus précise

Le courant dans le transistor "passant"

$$I_{DS_{max}} = K_n \cdot (V_{dd} - V_{TN})^2$$
 avec $K_n = \frac{1}{2} \mu_{0N} \cdot C_{ox}' \frac{W_N}{L_N}$

La capacité parasite de la grille du transistor

$$C_{ox} = C'_{ox} W_N \cdot L_N$$

ELECINF102

Capacité parasite

■ La sortie d'une porte en logique CMOS est reliée:

Capacité parasite

- La sortie d'une porte en logique CMOS est reliée:
 - · A des fils de connection

18/30

- La sortie d'une porte en logique CMOS est reliée:
 - A des fils de connection
 - A des entrées de portes CMOS (grilles de transistors)

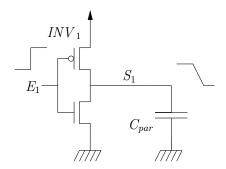
Capacité parasite

- La sortie d'une porte en logique CMOS est reliée:
 - A des fils de connection
 - A des entrées de portes CMOS (grilles de transistors)
- Ses éléments sont équivalents à une unique capacité parasite C_{par}:

18/30

- La sortie d'une porte en logique CMOS est reliée:
 - A des fils de connection
 - A des entrées de portes CMOS (grilles de transistors)
- Ses éléments sont équivalents à une unique capacité parasite C_{par}:
 - qui doit être chargée dans les transitions montantes de la sortie de la porte

- La sortie d'une porte en logique CMOS est reliée:
 - A des fils de connection
 - A des entrées de portes CMOS (grilles de transistors)
- Ses éléments sont équivalents à une unique capacité parasite C_{par}:
 - qui doit être chargée dans les transitions montantes de la sortie de la porte
 - qui doit être déchargée dans les transitions descendantes de la sortie de la porte



- La sortie d'une porte en logique CMOS est reliée:
 - A des fils de connection
 - A des entrées de portes CMOS (grilles de transistors)
- Ses éléments sont équivalents à une unique capacité parasite C_{par}:
 - qui doit être chargée dans les transitions montantes de la sortie de la porte
 - qui doit être déchargée dans les transitions descendantes de la sortie de la porte
- Le temps de calcul d'une porte logique est directement lié à ce temps de charge et de décharge

Cas d'une transition montante à l'entrée d'un inverseur

Le courant traversé par les transistors pour la charge ou la décharge de la capacités parasite C_{par} est I_{DS_{max}}

Temps de calcul d'un inverseur

Relation courant/tension dans la capacité parasite

$$I_{C_{par}} = C_{par} dV_{C_{par}} / dt$$

Temps de calcul d'un inverseur

Relation courant/tension dans la capacité parasite

$$I_{C_{par}} = C_{par} dV_{C_{par}}/dt$$

Courant de décharge constant identique au courant du transistor NMOS

$$I_{C_{par}} pprox I_{DSmax} = K_n \cdot (V_{dd} - V_{tn})^2$$

Temps de calcul d'un inverseur

Relation courant/tension dans la capacité parasite

$$I_{C_{par}} = C_{par} dV_{C_{par}} / dt$$

Courant de décharge constant identique au courant du transistor NMOS

$$I_{C_{par}} pprox I_{DSmax} = K_n \cdot (V_{dd} - V_{tn})^2$$

Décharge de V_{dd} à 0

$$t_{calc} = C_{par} rac{\Delta V}{I_{DSmax}} = C_{par} rac{V_{dd}}{K_n \cdot (V_{dd} - V_{tn})^2}$$

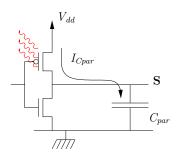
Temps de calcul d'un inverseur

Relation courant/tension dans la capacité parasite

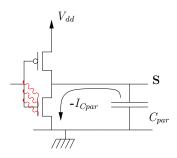
$$I_{C_{par}} = C_{par} dV_{C_{par}} / dt$$

Courant de décharge constant identique au courant du transistor NMOS

$$I_{C_{par}} pprox I_{DSmax} = K_n \cdot (V_{dd} - V_{tn})^2$$


Décharge de V_{dd} à 0

$$t_{calc} = C_{par} rac{\Delta V}{I_{DSmax}} = C_{par} rac{V_{dd}}{K_n \cdot (V_{dd} - V_{tn})^2}$$


Augmenter la tension d'alimentation pour augmenter la vitesse (overclocking) ? (pas recommandé: voir consommation)

Energie dissipée et énergie stockée

Transition montante

Transition descendante

Bilan d'énergie

Charge: Énergie fournie par l'alimentation

$$E_{Vdd} = C_{par} \int_0^{V_{dd}} V_{dd} \mathrm{d}V_s = C_{par} V_{dd}^2$$

Bilan d'énergie

Charge: Énergie fournie par l'alimentation

$$E_{Vdd} = C_{par} \int_0^{V_{dd}} V_{dd} \mathrm{d}V_s = C_{par} V_{dd}^2$$

Charge: Énergie potentielle stockée dans la capacité

$$E_{Cpar} = C_{par} \int_0^{V_{dd}} V_{
m s} {
m d}V_{
m s} = C_{par} rac{V_{dd}^2}{2}$$

22/30

Bilan d'énergie

Charge: Énergie fournie par l'alimentation

$$E_{Vdd} = C_{par} \int_0^{V_{dd}} V_{dd} \mathrm{d}V_s = C_{par} V_{dd}^2$$

Charge: Énergie potentielle stockée dans la capacité

$$E_{Cpar} = C_{par} \int_0^{V_{dd}} V_s \mathsf{d}V_s = C_{par} rac{V_{dd}^2}{2}$$

En moyenne $C_{par} \frac{V_{od}^2}{2}$ dissipée (ou consommée) à chaque transition de la sortie de la porte

Extrapolation à un circuit intégré

Extrapolation à un circuit intégré

■ Soit *F_h* la fréquence de fonctionnement du circuit

Extrapolation à un circuit intégré

- Soit *F_h* la fréquence de fonctionnement du circuit
- Soit T_{act} la probabilité de transition des portes à chaque cycle d'horloge ($T_{act} \approx 0.3$)

Extrapolation à un circuit intégré

- Soit *F_h* la fréquence de fonctionnement du circuit
- Soit T_{act} la probabilité de transition des portes à chaque cycle d'horloge ($T_{act} \approx 0.3$)
- Soit *C*_{total} la capacité parasite totale du circuit

Extrapolation à un circuit intégré

- Soit *F_h* la fréquence de fonctionnement du circuit
- Soit T_{act} la probabilité de transition des portes à chaque cycle d'horloge ($T_{act} \approx 0.3$)
- Soit *C*_{total} la capacité parasite totale du circuit

Puissance consommée par le circuit:

$$P_{circuit} \approx T_{act} F_h C_{total} V_{dd}^2$$

Extrapolation à un circuit intégré

- Soit *F_h* la fréquence de fonctionnement du circuit
- Soit T_{act} la probabilité de transition des portes à chaque cycle d'horloge ($T_{act} \approx 0.3$)
- Soit *C*_{total} la capacité parasite totale du circuit

Puissance consommée par le circuit:

$$P_{circuit} \approx T_{act} F_h C_{total} V_{dd}^2$$

Que pensez vous de l'impact de l'overclocking sur la consommation ?

Plan

Introduction

Logique CMOS

Performances de la logique CMOS

Retour sur les lois de Moore

"Downsizing théorique"

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)
- On utilise un facteur de réduction $\beta = \sqrt{2}$

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)
- On utilise un facteur de réduction $\beta = \sqrt{2}$
 - division par β de la largeur W et la longueur L des transistors

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)
- On utilise un facteur de réduction $\beta = \sqrt{2}$
 - division par β de la largeur W et la longueur L des transistors
 - division par β de l'épaisseur d'oxyde de grille T_{OX}

"Downsizing théorique"

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)
- On utilise un facteur de réduction $\beta = \sqrt{2}$
 - division par β de la largeur W et la longueur L des transistors
 - division par β de l'épaisseur d'oxyde de grille T_{OX}
 - division par β de la tension d'alimentation V_{dd} des circuits

"Downsizing théorique"

- Génération technologique
 - Les fondeurs visent une réduction en surface d'un facteur 2 à chaque génération.
 - Les "fondeurs" investissent les milliards nécessaires pour cela..
 - La longueur de grille minimale est caractéristique d'une génération technologique (90nm, 65nm, 40nm, 28nm...)
- On utilise un facteur de réduction $\beta = \sqrt{2}$
 - division par β de la largeur W et la longueur L des transistors
 - division par β de l'épaisseur d'oxyde de grille T_{OX}
 - division par β de la tension d'alimentation V_{dd} des circuits
 - division par β de la tension de seuil V_T des transistors

Conséquences sur les performances

Conséquences sur les performances

Évolution des capacités parasites

$$C_{ extstyle par}(eta) = (W/eta)(L/eta)(eta C_{ extstyle ox}') = rac{C_{ extstyle par}}{eta}$$

Conséquences sur les performances

Évolution des capacités parasites

$$C_{ extsf{par}}(eta) = (W/eta)(L/eta)(eta C_{ extsf{ox}}') = rac{C_{ extsf{par}}}{eta}$$

Évolution de l'énergie consommée par une porte

$$E_{porte}(eta) = rac{C_{par}}{eta}(rac{V_{dd}}{eta})^2 = rac{E_{porte}}{eta^3}$$

Conséquences sur les performances

Évolution des capacités parasites

$$C_{par}(\beta) = (W/\beta)(L/\beta)(\beta C'_{ox}) = \frac{C_{par}}{\beta}$$

Évolution de l'énergie consommée par une porte

$$E_{porte}(eta) = rac{C_{par}}{eta}(rac{V_{dd}}{eta})^2 = rac{E_{porte}}{eta^3}$$

Évolution du temps de calcul des fonctions combinatoires

$$t_{calc}(eta) = rac{t_{calc}}{eta}$$

Diminuer "en théorie" les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$

Diminuer "en théorie" les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$
- Le gain en surface fait diminuer les prix
 - $Surf(\beta) = \frac{Surf}{\beta^2}$

Diminuer "en théorie" les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$
- Le gain en surface fait diminuer les prix
 - $Surf(\beta) = \frac{Surf}{\beta^2}$
- La consommation diminue.
 - $P_{circuit}(eta) = T_{act}(F_h) rac{E_{circuit}}{eta^3} = rac{P_{circuit}}{eta^3}$

Diminuer "en théorie" les coûts et la consommation

- On n'exploite pas le gain en vitesse
 - $F_h(\beta) = F_h$
- Le gain en surface fait diminuer les prix
 - $Surf(\beta) = \frac{Surf}{\beta^2}$
- La consommation diminue.
 - $P_{circuit}(\beta) = T_{act}(F_h) \frac{E_{circuit}}{\beta^3} = \frac{P_{circuit}}{\beta^3}$
- Cette stratégie est particulièrement intéressante dans l'embarqué:
 - Transition du "haut de gamme" vers le milieu, puis bas de gamme (smartphones)
 - Ouverture à de nouvelles utilisations (objets connectés).

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta \dot{F}_h$

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta \dot{F}_h$
- On profite du gain en taille des transistors pour accroître la complexité du circuit
 - $Surf(\beta) = Surf$

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta \dot{F}_h$
- On profite du gain en taille des transistors pour accroître la complexité du circuit
 - $Surf(\beta) = Surf$
- La consommation ne change pas
 - $P_{circuit}(\beta) = P_{circuit}$

- On exploite le gain en vitesse
 - $F_h(\beta) = \beta \dot{F}_h$
- On profite du gain en taille des transistors pour accroître la complexité du circuit
 - $Surf(\beta) = Surf$
- La consommation ne change pas
 - $P_{circuit}(\beta) = P_{circuit}$
- Cette stratégie est particulièrement pour les processeurs de serveurs:
 - La puissance de calcul profite de l'augmentation de fréquence
 - La puissance de calcul profite de l'augmentation du parallélisme

Dans la pratique

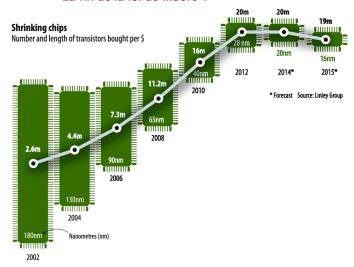
Les vitesses maximum stagnent depuis le début des années 2000 (3 à 4 Ghz) à cause des problèmes de dissipation thermique.

Dans la pratique

- Les vitesses maximum stagnent depuis le début des années 2000 (3 à 4 Ghz) à cause des problèmes de dissipation thermique.
- On ne peut diminuer sans cesse la tension d'alimentation sans s'éloigner du modèle d'interrupteur idéal : les circuits ont des courants de fuite de moins en moins négligeables

Dans la pratique

- Les vitesses maximum stagnent depuis le début des années 2000 (3 à 4 Ghz) à cause des problèmes de dissipation thermique.
- On ne peut diminuer sans cesse la tension d'alimentation sans s'éloigner du modèle d'interrupteur idéal : les circuits ont des courants de fuite de moins en moins négligeables
- Les technologues doivent jongler avec des procédés de fabrication de plus en plus complexes pour continuer à suivre la "loi de Moore".


Dans la pratique

- Les vitesses maximum stagnent depuis le début des années 2000 (3 à 4 Ghz) à cause des problèmes de dissipation thermique.
- On ne peut diminuer sans cesse la tension d'alimentation sans s'éloigner du modèle d'interrupteur idéal : les circuits ont des courants de fuite de moins en moins négligeables
- Les technologues doivent jongler avec des procédés de fabrication de plus en plus complexes pour continuer à suivre la "loi de Moore".
- On a plusieur fois prédit la fin de la loi de Moore pour des raisons "scientifiques" (physique du transistor) mais il semble en 2014 que le plus grave problème soit économique...

Evolution technologique

La fin de la loi de Moore ?

