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Abstract

In the context of cooperative wireless networks that conveydata on slow fading channels, outage

probabilityPo is the relevant performance index from the point of view of information theory. Derivation

and minimization of this probability with respect to the relaying protocol parameters is of central

importance. However, it is often hard to derive its expression, let alone to find its exact minimum

for all possible values of the Signal to Noise Ratio (SNR). This problem can be simplified by studying

the behavior ofPo in the asymptotic regime where the SNRρ converges to infinity. In this regime,

usually ρN+1Po converges to a constantξ whereN is the number of relays. In this paper, a simple

and general method for deriving and minimizingξ with respect to the power distribution between the

source and the relays, and with respect to the durations of the slots specified by the relaying protocol,

is developed. While the proposed approach is designed for the high SNR regime, simulations show that

outage probability is reduced in a similar proportion at moderate SNR.

The method applies to a general class of radio channels that includes the Rayleigh and the Rice channels

as particular cases. Convexity ofξ with respect to the design parameters is shown. Decode-and-Forward

as well as Amplify-and-Forward protocols are considered inthe half duplex mode.
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I. INTRODUCTION

In digital wireless communications over fading channels, antenna diversity is an efficient means of

mitigating the effect of channel fades. By using multiple antennas at the transmitter and/or at the receiver,

the transmitted message reaches its destination through different weakly correlated channels. It is unlikely

that all these channels are simultaneously subject to deep fades. Hence, the performance improves with

respect to a communication using a single antenna at each side.

Antenna diversity in wireless communications has been firststudied in the context of point to point

communications where multiple antennas are present at the transmitter or at the receiver. Recently, a new

means of providing this diversity has been considered: in the vicinity of the transmitter/receiver link,

radio terminals in an idle state are likely to be present. By giving some of these terminals the ability to

relay the transmitter’s signal towards the receiver, one creates a virtual multiple antenna system which

is capable of providing diversity [1]–[6].

More formally, in the slow channel fading context, the relevant performance measure from the information

theoretic point of view is the so called outage probability,which is the probability that Shannon’s mutual

information lies beneath a given rate. In aN–relay network with single antenna terminals, the outage

probabilityPo usually satisfieslimρ→∞

(
ρN+1Po

)
= ξ whereρ is the Signal to Noise Ratio (SNR) and

ξ is a non zero constant. This equation indicates in particular that the diversity order of ourN–relay

network isN + 1, which is precisely the diversity order of a Multiple Input Single Output (resp. Single

Input Multiple Output) point-to-point system withN+1 antennas at the transmitter (resp. at the receiver).

Different relaying protocols have been studied in the literature. One well known protocol is the Decode

and Forward (DF) protocol [3]: assume for simplicity there is only one relay and divide the transmission

frame into two slots. During the first slot, the relay listensto the source signal. At the end of this slot, it

attempts to decode this message then it re-encodes it and transmits the new signal in the second slot. The

Amplify-and-Forward (AF) protocols are simpler than DF protocols: here the relay just applies a gain

(or more generally a linear precoding) to the signal received during the first slot before retransmitting it

in the second slot [4].

Beyond the diversity considerations, it is of clear interest to minimize the outage probability of a given

protocol with respect to the protocol parameters such as thepowers and the slot durations. This will

be the subject of this paper. Our general assumptions are thefollowing: we consider half duplex relay

networks,i.e., a given terminal cannot receive and transmit at the same time and in the same frequency

band. Slow fading channels are considered. These channels are assumed perfectly known at the receivers
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and unknown at the transmitters. DF and AF protocols withN relays will be considered whereN

is some integer. The parameters involved in the outage probability minimization are the slots relative

durations and the powers given to the source and to the relays. This minimization is performed by some

resource allocation unit which relies on a statistical knowledge of the source-relays, source-destination

and relays-destination channels.

The exact minimization of the outage probability for any value of the SNR is known to be a difficult

task. Mathematical problems appear even for systems as simple as point to point Multiple Input Single

Output systems [7]. A means to circumvent this difficulty is to just minimize the constantξ introduced

above with respect to powers and slot durations. While strictly speaking this minimization concerns the

high SNR regime, simulations will show that it reduces outage probability at all SNRs considered in

practice in a similar proportion. In the space-time coding literature, the counterpart of this constant is

called “coding gain” factor. In parallel with this denomination, here we call this constant “outage gain”

factor. We show in particular that the outage gain factor is aconvex function of the powers and the

slot durations for the considered protocols. We do not make any assumption on the channels probability

distributions except for the fact that the probability densities of the channels power gains do not vanish

at zero. This assumption is satisfied in particular by the so-called Rayleigh and Rice channels. In order

to perform the outage gain minimization, the resource allocation only needs the values at zero of the

channel gain densities. This information can be sent from the different receivers to the resource allocation

unit with a negligible cost.

Related Work and paper’s contribution

The subject of outage probability derivation and minimization began to attract researchers attention

in the context of multiple antenna point to point communications ( [7]–[9] just to name these). In the

context of wireless relay networks, the authors of [10] propose a power optimization method for a multi

hop system. In [11], the authors optimize the relay powers for a DF protocol by working on an upper

bound of the outage probability. In [12], an AF protocol withone relay is considered while in [13], AF

and DF are studied, and the optimization is performed by minimizing the constantξ. In [14], an AF

protocol with multiple relays is considered. In all these contributions, the protocols are said orthogonal

in the sense that the relays and the source do not transmit their signals at the same time. Other works

explore the idea of outage optimization in the case where a certain amount of instantaneous channel state

information is available through feedback. In this line of thought, let us cite without being exhaustive

[15]–[17].
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The contributions of this paper can be summarized as follows:

• A general and novel method for deriving the outage gainξ = limρ→∞ ρN+1Po is proposed. The

derivation of the outage gain is a key-issue in digital communications as far as performance evaluation

or system optimization is concerned. As in [10]–[14], it is assumed that the information fed back

to the resource allocation unit is only statistical. Our method is generic in its essence and can thus

be applied to a wide range of relaying protocols, either orthogonal or nonorthogonal. To the best of

our’s knowledge, no other method in the literature allows tocompute the outage gain of relaying

protocols under such a general context. Most of the existingworks (e.g.[10]–[14]) restrict the study

to the orthogonal cases which are much simpler to analyze from the outage gain stand point. The

protocols considered in this paper as study cases are non orthogonal. While it is perfectly possible

to make a comparison betweene.g. an orthogonal protocol with a non orthogonal one from the

stand point of the outage gain, we do not undertake this task for lack of space. The primary concern

of this paper is rather to optimize the parameters of a given protocol. We note that comparisons

between orthogonal and non orthogonal protocols has been made in the literature via the so-called

Diversity Multiplexing Tradeoff (DMT). From the point of view of the DMT, non-orthogonal schemes

outperform orthogonal ones (see for instance [23]).

• Most of the existing works (e.g. [10]–[14]) only consider Rayleigh channels, while the Rayleigh

assumption is not required in this paper. Indeed it is only assumed that the densities of the channel

power gains are right continuous and non zero at zero. This isthe minimum assumption that

guarantees the required diversity order.

• Most of the existing works on optimization of relaying protocols only focus on the power distribution.

The time slot durations are never taken into account in the references provided above.

• It is proven here thatξ is convex with respect to durationsand powers, which is a new result. As

is well known, convexity is a strong and sought after result in optimization problems.

General notations and channel assumptions

In this paper, scalar and vector random variables are represented by upper case letters. The probability

density of a scalar random variableX will be denotedfX(x). We also denote byCN (a, σ2) the complex

circular Gaussian distribution with meana and varianceσ2. Given two eventsE1 andE2, i.e., measurable

subsets of a probability spaceΩ, we denote byP[E1] the probability measure ofE1 and byP[E1‖E2] the

probability of E1 conditional toE2.

Let g : R
d → R be a real function andA be a subset ofR. We denote by[g ∈ A] the subset{x ∈ R

d :
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g(x) ∈ A}. The notation1{g(x) ∈ A}(x) or more concisely1{g ∈ A} refers to the indicator function

of the set[g ∈ A].

We denote byN the number of relays in the network. Node0 will coincide with the source, nodes1 to

N are the relays and nodeN + 1 is the destination. As the transmitted data frame is dividedinto slots,

we shall denote byXin the random vector that represents the message transmitted by nodei during slot

n. The signal received by nodei during slotn will be denotedYin. Moreover, during slotn, nodei is

corrupted by an Additive White Gaussian Noise (AWGN) vectorVin with unit variance elements.

We denote byHij the complex random variable representing the Single Input Single Output radio channel

that conveys data from nodei to nodej. The power gain of this channel will beGij = |Hij |2. All random

variablesGij are assumed to have densitiesfGij
(x) which are right continuous at zero. We denote bycij

the limit cij = fGij
(0+) and we assume that all these limits are positive. In particular, in the Rayleigh

case,Hij is complex Gaussian with mean0 and varianceσ2
ij . In this case,Gij has the exponential

distribution fGij
(x) = σ−2

ij exp(−x/σ2
ij)1{x ≥ 0}, and in particularcij = σ−2

ij . More generally, in the

Ricean caseHij ∼ CN (aij , σ
2
ij) where the meanaij is not necessarily zero, the densityfGij

is given by

fGij
(x) =

1

σ2
ij

e
−

|aij |2+x

σ2
ij I0

(

2
√
x
|aij |
σ2

ij

)

1{x ≥ 0}

whereI0 is the modified zero order Bessel function of the first kind [18]. As I0(0+) = 1, we have in

this case

cij =
1

σ2
ij

e
−

|aij |2

σ2
ij .

In the paper, all channelsHij within a network are assumed independent and available at the receivers

only. Furthermore, the constants{c0,i}i=1,...,N+1 and{ci,N+1}i=1,...,N are assumed to be available to the

resource allocation unit.

Paper Organization

In Section II, the outage gain factor is studied for a class ofDF protocols. The AF case is considered

in Section III. In both Sections II and III, we begin with the single relay case, then we extend the results

to theN -relay case. Section IV is devoted to some numerical illustrations of the obtained results and to

some simulations. A number of mathematical proofs are put inan appendix.

II. T HE DF PROTOCOL

This section is devoted to the outage probability derivation and minimization in the DF case. For

clarity, we begin by treating the single relay case. TheN -relay case will follow.
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A. Outage Probability in the Single Relay case

In this section, we study the following protocol already considered in [19], [20]: the source (node0)

needs to send information at a rate ofR nats per channel use towards the destination (node2). To this end,

the source has as its disposal a frame of lengthT and a dictionary of⌊eRT ⌋ Gaussian independent vectors

with independentCN (0, 1) elements each. CallX0 theT × 1 vector (dictionary element) transmitted by

the source. The relay (node1) listens to the source message for a duration oft0T channel uses where

t0 is a fixed parameter. At the end of this period of time that we refer to as slot0, the relay attempts

to decode the source message. In case of success, the relay searches in its own dictionary the word

corresponding to the source’s message and it transmits it during the remainder of the frame (slot1) to

the destination. The dictionaries of the source and the relay are independent and identically distributed.

Let us partition the wordX0 transmitted by the source asX0 = [XT
00,X

T
01]

T where the lengths ofX00

andX01 are t0T and t1T respectively witht1 = 1 − t0. The signal of sizet0T received by the relay

during slot0 writes

Y1,0 =
√
α0ρH01X0,0 + V1,0

The parameterρ will represent the total power spent by the source and the relay to transmit the message

as we shall see in a moment. The gain
√
α0 is an amplitude gain applied by the source. Recall that the

random vectorV1,0 represents the unit variance AWGN received by the relay. Assuming that the relay

has a perfect knowledge of the channelH01, it will be able to decode the source message if the event

E{1} = {ω : t0 log(1 + α0ρG01(ω)) > R} is realized. In caseE{1} is realized, the relay will transmit

during slot1 the signal
√
α1ρX11 of length t1T where

√
α1 is the amplitude gain of the relay. In that

case, the destination receives the signalY2 = [Y T
20, Y

T
21]

T given by the equation

Y2 =




Y20

Y21



 =
√
ρ





√
α0H02It0T 0 0

0
√
α0H02It1T

√
α1H12It1T





︸ ︷︷ ︸

HE1








X00

X01

X11








+




V20

V21





whereV2 = [V T
20, V

T
21]

T is the unit variance AWGN received by the destination. Notice that the probability

distribution of the vector[XT
00,X

T
01X

T
11]

T is CN (0, I(1+t1)T ). Conditionally to the eventE{1}, the outage

probabilityPo,1 for the destination is therefore

Po,1 = P
[
log det(ρHE1

H
∗
E1

+ I) ≤ RT ‖ E1

]

= P [t0 log(1 + α0ρG02) + t1 log(1 + α0ρG02 + α1ρG12) ≤ R] .
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In case the relay does not succeed in decoding the source message, which corresponds to the comple-

mentary eventE{1}, the destination simply receives

Y2 =




Y2,0

Y2,1



 =
√
ρ





√
α0H02It0T 0

0
√
α0H02It1T








X0,0

X0,1



+




V2,0

V2,1



 .

Therefore, conditionally toE{1}, the outage probabilityPo,2 is

Po,2 = P [log(1 + α0ρG02) ≤ R] .

In conclusion, the outage probabilityPo associated with this protocol is

Po = Po,1P[E{1}] + Po,2P[E{1}] = Po,1(1 − Por) + Po,2Por (1)

wherePor = P
[
E{1}

]
= P [t0 log(1 + α0ρG01) ≤ R] is the relay’s outage probability.

Before analyzing this outage probability, for more claritywe compare this DF protocol with the

so-called Dynamic Decode and Forward (DDF) protocol introduced in [21]. A relay which operates

according to the DDF protocol has the knowledge of the channel G01. With this information at hand,

the relay waits until the momenttDDF < 1 where the “instantaneous” mutual informationI01(tDDF) =

tDDF log(1+α0ρG01) outnumbers the rateR when this is is possible. At this moment, the relay decodes

the information and sends it towards the destination duringthe 1 − tDDF remaining seconds. In the DF

protocol studied in this paper, the momentt0 depends on the channel statistics only while in the DDF

protocol, the momenttDDF depends on the source-relay channel realization. These twoprotocols are

strongly different, both theoretically and practically.

Getting back to our subject, we need to show thatρ2Po converges asρ→ ∞ and to derive the outage

gain factorξDF given byξDF = limρ→∞ ρ2Po. We have

Po,1 =

∫

R
2
+

1{t0 log(1 + α0ρx0) + t1 log(1 + α0ρx0 + α1ρx1) ≤ R}(x0, x1)fG02
(x0)fG12

(x1) dx0 dx1

By making the changes of variablesu0 = α0ρx0 andu1 = α1ρx1 we obtain

Po,1 =
1

α0α1ρ2

∫

R
2
+

1{t0 log(1+u0)+t1 log(1+u0+u1) ≤ R} fG02

(
u0

α0ρ

)

fG12

(
u1

α1ρ

)

du0 du1 . (2)

The functionϕ(u0, u1, ρ) = fG02
(u0/(α0ρ)) fG12

(u1/(α1ρ)) satisfiesϕ(u0, u1, ρ) −−−→
ρ→∞

c02 c12 by the

assumptions of Section I. Assumet1 > 0 and let C be the compact subset ofR2
+ defined asC =

{(u0, u1) ∈ R
2
+, t0 log(1 + u0) + t1 log(1 + u0 + u1) ≤ R}. As fG02

and fG12
are right continuous at
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zero,ϕ(u0, u1, ρ) is bounded onC for ρ large enough. Therefore, we can apply Lebesgue’s Dominated

Convergence Theorem (DCT) to the integral in the right hand member of (2) to obtain

lim
ρ→∞

ρ2Po,1 =
c02c12
α0α1

∫

R
2
+

1{t0 log(1 + u0) + t1 log(1 + u0 + u1) ≤ R} du0 du1 . (3)

In a similar manner, we also obtain

lim
ρ→∞

ρPo,2 =
c02
α0

∫

R+

1{log(1+u) ≤ R} du and lim
ρ→∞

ρPor =
c01
α0

∫

R+

1{t0 log(1+u) ≤ R} du . (4)

Plugging (3) and (4) into Equation (1) and using the fact thatt0 + t1 = 1, we end up with

ξDF =
c01c02
α2

0

(∫

R+

1{log(1 + u) ≤ R} du
)(∫

R+

1{(1 − t1) log(1 + u) ≤ R} du
)

+
c02c12
α0α1

∫

R
2
+

1{(1 − t1) log(1 + u0) + t1 log(1 + u0 + u1) ≤ R} du0 du1 (5)

Our purpose is to minimizeξDF with respect toα0, α1 and t1, this minimization being subject to

t1 ∈ (0, 1) and to a power constraint. Let us make explicit this constraint before going further. To this

end, let us derive the total energy spent by the network to transmit aRT nat symbol. Whatever is the

behavior of the relay, the source transmits the signal(
√
α0ρX00,

√
α0ρX01). Therefore, the energyE0

spent by the source isE0 = α0ρT Joules. The energyE1 spent by the relay isE1 = α1ρt1TP[E{1}] =

α1ρt1T (1 − Por). As Por = O(1/ρ) for largeρ by (4), the total energyE used to transmit one symbol

satisfiesE = E0 + E1 = ρT (α0 + α1t1(1 − Por)) ≈ ρT (α0 + α1t1) for largeρ. Our power constraint

for large SNR is therefore

α0 + α1t1 ≤ 1 . (6)

Notice that this constraint becomes tight asρ→ ∞ and is conservative for moderate values ofρ in the

sense that it fixes a power threshold a little bit smaller thanthe affordable power for these values ofρ.

Notice also that this constraint is not convex inα0, α1, t1 because the functiong(α1, t1) = α1t1 is not

convex. It will be convenient to replace it with a convex constraint by making the change of variables

β0 = α0 andβ1 = α1t1. With these new variables, the power constraint becomes

β0 + β1 ≤ 1 . (7)

We have the following proposition:

Proposition 1: With respect to the parameterst1, β0 andβ1, the outage gain factorξDF(t1, β0, β1) for

the single relay DF protocol described above is given by

ξDF(t1, β0, β1) =
c01c02
β2

0

(exp(R) − 1)

(

exp

(
R

1 − t1

)

− 1

)

+
c02c12t1
β0β1

(
1

4t1 − 2
exp(2R) − t1

2t1 − 1
exp

(
R

t1

)

+
1

2

)

. (8)

September 2008 SECOND REVISION



OUTAGE PROBABILITY BASED POWER AND TIME OPTIMIZATION FOR RELAY NETWORKS 9

Moreover, the functionξDF(t1, β0, β1) is convex in the domain(t1, β0, β1) ∈ (0, 1) × (0,∞)2.

Equation (8) can be obtained by expanding the integrals in the right hand member of (5) and by replacing

αi with βi for all i. We shall provide details about these derivations and proveconvexity directly in the

generalN -relay case. Indeed, Proposition 1 is a particular case of Proposition 2 below. We remark that

the outage probability minimization reduces to minimizingthe right hand of (8) given the constraint (7).

This reduces to minimizingξDF on the line segment ofR2
+ defined byβ0 + β1 = 1, i.e., the constraint

(7) is met with equality. The functionξDF(t1, β0, 1 − β0) defined on the open square(0, 1)2 is convex

as it coincides with the restriction ofξDF(t1, β0, β1) to that line segment. Furthermore, it is clear that

ξDF(t1, β0, 1 − β0) goes to infinity on the frontier of(0, 1)2. Therefore, the minimum is in the interior

of (0, 1)2, and can be obtained easily, for instance by a suitable descent method [22].

B. Outage Probability in theN–Relay case

In this paragraph we turn to the study of a DF protocol in theN–relay case. The protocol we shall

consider is illustrated by Figure 1. We haveN+1 slots numbered from0 toN , slotn having the duration

tnT . The source transmits during all the frame. Relayn transmits during slotn if it succeeds in decoding

the signals sent in slots0 to n − 1 by the source and by those active relays among relays1 to n − 1.

Source and relays dictionaries are independent.

Let R be a subset of{1, . . . , N} andR be its complement in{1, . . . , N}. Denote byER the event that

we define in a somehow informal manner as “the relays that belong toR decode successfully the source

message and the relays that belong toR fail to decode this message”. The collection of the2N events

ER whereR spans the subsets of{1, . . . , N} is a partition of the probability spaceΩ. By consequence,

the outage probabilityPo can be written as

Po =
∑

R⊂{1,...,N}

P [outage‖ER] P [ER] . (9)

whereP [outage‖ER] is the probability of the outage event conditional to the event ER. Let us give the

expression of this conditional probability. WriteR = {n1, n2, . . . , n|R|} where|R| is the number of ele-

ments ofR. Generalizing the caseN = 1, we shall assume that when a relayn belongs toR, it will trans-

mit the signal
√
αnρXnn during slotn. Let X = [X0,0,X0,1, . . . ,X0,N+1,Xn1,n1

, . . . ,Xn|R|,n|R|
]T and

VN+1 = [V T
N+1,0, . . . , V

T
N+1,N ]T. As a result, whenω ∈ ER the signalYN+1 = [Y T

N+1,0, . . . , Y
T
N+1,N ]T
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received by the destination can be written as

YN+1 =

√
ρ











√
α0H0,N+1It0T

√
α0H0,N+1It1T

√
αn1

Hn1,N+1Itn1
T

. . . √
αn|R|

Hn|R|,N+1Itn|R|
T

√
α0H0,N+1ItN T











X + VN+1

During slot 0 and slotsm ∈ R, the destination receives a signal from the source only. During a slot

i ∈ R, the destination receives a signal from the source plus an independent signal sent by relayi.

With these conditions, it is not difficult to verify that the conditional probabilityP [outage‖ER] has the

expression

P [outage‖ER] =

P







t0 +
∑

m∈R

tm



 log (1 + α0ρG0,N+1) +
∑

i∈R

ti log (1 + α0ρG0,N+1 + αiρGi,N+1) ≤ R



 . (10)

We now turn to the derivation ofP[ER]. Let us denote byD(R)
m the event “relaym decodes successfully”

or the event “relaym fails to decode” according to whetherm ∈ R or m 6∈ R respectively. We clearly

haveER = D(R)
1 ∩ D(R)

2 ∩ · · · ∩ D(R)
N and therefore

P [ER] = P

[

D(R)
1

]

P

[

D(R)
2 ‖D(R)

1

]

· · ·P
[

D(R)
N ‖D(R)

1 ∩ · · · ∩ D(R)
N−1

]

. (11)

Recall that relaym relies on the signal transmitted by the source during slots0, . . . ,m − 1 and the

signal transmitted by those among relays1, . . . ,m − 1 which are active. One can therefore verify that

the conditional probabilityP
[

D(R)
m ‖D(R)

1 ∩ · · · ∩ D(R)
m−1

]

is written as

P

[

D(R)
m ‖D(R)

1 ∩ · · · ∩ D(R)
m−1

]

=

P










t0 +
∑

k∈R,k<m

tk



 log (1 + α0ρG0,m) +
∑

i∈R,i<m

ti log (1 + α0ρG0,m + αiρGi,m)

m∈R

⋚

m∈R

R







.

(12)

Equations (9–12) provide the expression of the outage probability for every value ofρ. Our purpose is to

derive the expression of the outage gain factorξDF given byξDF = limρ→∞ ρN+1Po and to minimize it
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with respect to the powers(αi)i=0,...,N+1 and the slot durations(ti)i=0,...,N+1. The constraints on these

parameters are the positivity constraints, the time constraint

t1 + · · · + tN < 1 (13)

where we putt0 = 1−(t1+· · ·+tN), and the power constraint at high SNRα0+α1t1+α2t2+· · ·+αN tN ≤
1 which generalizes (6). Similarly to the single relay case, we make this last constraint convex by putting

β0 = α0 andβn = αntn for n = 1, . . . , N . The power constraint becomes then

β0 + β1 + · · · + βN ≤ 1 . (14)

Let us write the outage gain factor asξDF = ξDF(t1, . . . , tN , β0, . . . , βN ). It is given by the following

proposition, which is the main result of this section:

Proposition 2: The outage gain factorξDF(t1, . . . , tN , β0, . . . , βN ) for the DF protocol described in

this section is given by

ξDF(t1, . . . , tN , β0, . . . , βN ) =

c0,N+1

N+1∑

n=1

∏n−1
m=1 c0,m

βn
0

(
N∏

m=n

cm,N+1

βm

)(
n−1∏

m=1

(

exp

(

R

1 −∑N
k=m tk

)

− 1

))

In (15)

with

In =

∫

R
N−n+2

+

1

{
N+1∑

m=n

vm ≤ R

}

exp

(
vn

tn
+ · · · + vN

tN
+ (N − n+ 2)vN+1

) N+1∏

m=n

dvm . (16)

The functionξDF(t1, . . . , tN , β0, . . . , βN ) is convex in the convex setSN × (0,∞)N+1 whereSN is the

subset of(0,∞)N delineated by the constraint (13).

The proof of Proposition 2 is drawn in Appendix II-A. Notice that the result and the proof of Proposition

2 can be rather easily modified and adapted to DF protocols other than the one described here such as

the so called repetition or the space-time protocols considered in [3].

In order to obtainξDF in practice, one has to compute the integralsIn given by Equation (16). To

that end, one can use the following lemma:

Lemma 1:Let JK(a0, . . . , aK , R) : R
K+1 × R+ → R+ be the function defined as

JK(a0, . . . , aK , R) =

∫

R
K+1

+

1{x0 + · · · + xK ≤ R} exp(a0x0 + · · · + aKxK)

K∏

k=0

dxk. (17)
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When parametersa0, · · · , aK are all distinct,JK(a0, . . . , aK , R) is given by

JK(a0, . . . , aK , R) =
K∑

k=0

η(k,K)

ak
(exp(akR) − 1) (18)

where(η(0, i), . . . , η(i, i))i=0,...,K is a triangular array of real numbers given by the following recurrence:

η(0, 0) = 1, η(k, i) = η(k, i − 1)/(ak − ai) for k = 0, . . . , i− 1, andη(i, i) = −∑i−1
k=0 η(k, i).

The proof of this lemma is given in Appendix I. AsIn = JN+1−n(t−1
N , . . . , t−1

n , N−n+2, R), Lemma

1 provides an easy way to compute the expression ofξDF. The result of Lemma 1 is formally suited to

the case where parametersa0, . . . , aK of the functionJK are all different. Notice that expressions for

the cases where at least two of them are equal can be obtained by continuous extension. However, in

those cases it is easier to work out directly the expression (16).

Generalizing the single relay case, at the minimum ofξDF theβi belong to the hyper planeβ0 + · · ·+
βN = 1. By consequence, the problem reduces to minimizing the convex function with2N parameters

ξDF(t1, . . . , tN , β0, . . . , βN−1, 1 −∑N−1
i=0 βi) on the constraint set

∑N
i=1 ti < 1 and

∑N−1
i=0 βi < 1. The

function ξDF goes to infinity at the frontier of this set. The minimum is in its interior and can be found

by a descent method [22].

III. T HE AF PROTOCOL

Similarly to the DF case, we first consider an AF protocol witha single relay in order to help the

reader to get some insight on the proposed approach.

A. Outage Probability in the Single Relay case

One AF protocol frequently considered in the literature is the following [5], [21]: the source transmits

its codeword during the whole frame of lengthT . The relay saves in its memory the signal it receives

from the source during the first half of the frame. Then the relay applies a gain to this signal and transmits

it during the second half of the frame. Here, we consider a slightly more general model: the relay does

not necessarily consider the signal received from the source during the firstT/2 channel uses. Instead,

it just considers a section of this signal of lengtht1T with t1 ≤ 1/2, and one of our purposes will be

to find the value oft1 that minimizes the outage gain factor. As is shown on figure 2 (with N = 1) ,

in general we now have three slots instead of two. The lengthsof these slots aret′0T , t1T and t1T

respectively, witht′0 + 2t1 = 1.

During slots0 and 1, the destination receivesY20 andY21 with dimensionst′0T and t1T respectively.

These signals are given byY2i =
√
α0ρH02X0i + V2i for i = 0, 1, whereα0ρ is the power spent by
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the source as in the previous sections. During slot1, the relay receives the signalY11 with length t1T

given by the equationY11 =
√
α0ρH01X01 +V11. During slot2, the relay transmits

√
γ1Y11 towards the

destination whereγ1 is the power gain applied by the relay. We assume as above thatα1ρ is the power

transmitted by the relay. AsE[|Y11|2‖H01] = α0ρG01 + 1, the gainγ1 is given by

γ1 =
α1ρ

α0ρG01 + 1
. (19)

During slot 2, the source transmitsX02 and the destination receives the signalY22 =
√
α0ρH02X02 +

√
α0γ1ρH01H12X01 +

√
γ1H12V11 + V22 with lengtht1T . Putting the signal received by the destination

in a matrix form, we obtain







Y20

Y21

Y22








=
√
α0ρ








H02It′0T 0 0

0 H02It1T 0

0
√
γ1H01H12It1T H02It1T















X00

X01

X02








+








V20

V21

V22 +
√
γ1H12V11







,

an equation that we write compactly asY2 = HX0+V2. Recall that all noisesVij are white withCN (0, 1)

elements. The mutual information conditional to the channels associated with this model is then given

by I = log det(RY R
−1
V ) whereRY andRV are the covariance matrices

RY = E[Y2Y
∗
2 ‖H01,H02,H12] = HH

∗ + RV and

RV = E[V2V
∗
2 ‖H01,H12] =








It′0T

It1T

(1 + γ1G12)It1T







.

By expanding these expressions and by replacingγ1 with its value in (19), we obtain after some simple

computations

I = t1T log

(

1 + α0ρG02 +
α0ρG02(α0ρG02 + 1)(α0ρG01 + 1) + α0α1ρ

2G01G12

1 + α0ρG01 + α1ρG12

)

+ t′0T log(1 + α0ρG02) . (20)

Our purpose is to obtain the outage gain factorξAF given by ξAF = limρ→∞ ρ2
P[I ≤ RT ] whereR is

the targeted data rate.

We shall make here a heuristic and non rigorous derivation ofξAF. The rigorous mathematical derivations

will be made directly in theN -relay case below. Typically, the outage corresponds to thetwo exclusive

eventsE1 andE2 that we describe roughly (for the moment) as

E1 : I ≤ RT , gainsG02 andG01 are small (of order1/ρ), andG12 is not small.

E2 : I ≤ RT , gainsG02 andG12 are small (of order1/ρ), andG01 is not small.
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Typically, the network is in outage when the source-destination channel andoneof the source-relay or

relay-destination channels are small. The probability that the three channels are small is indeed negligible.

As E1 ∩ E2 = ∅, the outage probabilityPo satisfiesPo ≈ P[E1] + P[E2].

Let us consider now the fractional expression at the RHS of (20). Forω ∈ E1, we have for largeρ

α0ρG02(α0ρG02 + 1)(α0ρG01 + 1) + α0α1ρ
2G01G12

1 + α0ρG01 + α1ρG12
≈ α0ρG01

while for ω ∈ E2

α0ρG02(α0ρG02 + 1)(α0ρG01 + 1) + α0α1ρ
2G01G12

1 + α0ρG01 + α1ρG12
≈ α0ρG02(α0ρG02 + 1) + α1ρG12 .

We therefore have

P[E1] ≈ P
[
t1 log (1 + α0ρG02 + α0ρG01) + t′0 log(1 + α0ρG02) ≤ R

]

=

∫

R
2
+

1{t1 log (1 + α0ρx+ α0ρy) + t′0 log(1 + α0ρx) ≤ R}fG02
(x)fG01

(y)dx dy

=
1

α2
0ρ

2

∫

R
2
+

1{t1 log (1 + u+ v) + t′0 log(1 + u) ≤ R}fG02

(
u

α0ρ

)

fG01

(
v

α0ρ

)

du dv

ρ→∞∼ c01c02
α2

0ρ
2

∫

R
2
+

1{t1 log (1 + u+ v) + t′0 log(1 + u) ≤ R}du dv (21)

similarly to the DF case above (passage from (2) to (3)). We also have

P[E2] ≈ P
[
t1 log

(
(1 + α0ρG02)

2 + α1ρG12

)
+ t′0 log(1 + α0ρG02) ≤ R

]

ρ→∞∼ c12c02
α0α1ρ2

∫

R
2
+

1{t1 log
(
(1 + u)2 + v

)
+ t′0 log(1 + u) ≤ R}du dv . (22)

As a conclusion,ξAF is written

ξAF =
c01c02
α2

0

∫

R
2
+

1
{
t1 log (1 + u+ v) + t′0 log(1 + u) ≤ R

}
du dv (23)

+
c12c02
α0α1

∫

R
2
+

1
{
t1 log

(
(1 + u)2 + v

)
+ t′0 log(1 + u) ≤ R

}
du dv

We need to develop the RHS of this expression and to minimizeξAF subject to the time constraints

t1 ≤ 1/2, t′0 + 2t1 = 1, and the power constraintα0 + α1t1 ≤ 1. Similarly to the DF case, we make the

power constraint convex by puttingβ0 = α0 andβ1 = α1t1. We have the following proposition:

Proposition 3: The outage gain factorξAF for the protocol described in this paragraph is

ξAF(t1, β0, β1) =
c01c02
2β2

0

(
1 − t1
3t1 − 1

exp

(
2R

1 − t1

)

− 2t1
3t1 − 1

exp

(
R

t1

)

+ 1

)

+
c12c02t1
β0β1

(
t1

3t1 − 1

(

exp(3R) − exp

(
R

t1

))

− 1

3
(exp(3R) − 1)

)

(24)
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Moreover the functionξAF(t1, β0, β1) is convex on(0, 1/2] × R
2
+.

By expanding the integrals in the RHS of (23) and replacing theαi with theβi, we obtain the expression

(24). More generally, Proposition 3 is a particular case of Proposition 4 below.

B. Outage Probability in theN–Relay case

Generalizing the single relay protocol studied in the previous section, we consider now theN -relay

protocol described by Figure 2. According to this protocol,the data frame of lengthT is divided into

2N + 1 slots. Slot0 has a length equal tot′0T . During this slot, the destination is the only node that

listens to the source. Relayn (wheren = 1, . . . , N ) listens to the source during slot2n − 1 which has

the lengthtnT . During slot2n which has the same lengthtnT , relay n transmits an amplified version

Xn,2n =
√
γnYn,2n−1 of the signalYn,2n−1 received by that relay during slot2n − 1. Here γn is the

power gain factor applied by relayn.

Before going further, let us note that a version of this protocol with t′0 = 0 andtn = 1/(2N) has been

considered in [21] from the point of view of the so called Diversity Multiplexing Tradeoff (DMT). More

sophisticated AF protocols for theN -relay case have also been studied in [23] from that same point of

view. The derivation of the outage gain factor for those protocols, or at least an upper bound on this

gain, is under study.

By a derivation identical to the single relay case, the signal received by the destination during the

couple of slots(2n− 1, 2n) is given by



YN+1,2n−1

YN+1,2n



 =
√
α0ρ




H0,N+1ItnT 0

√
γnH0nItnT H0,N+1ItnT








X0,2n−1

X0,2n



+




VN+1,2n−1

VN+1,2n +
√
γnHn,N+1Vn,2n−1



 .

Due to the fact that the power transmitted by relayn is αnρ, the gain factorγn satisfiesγn = αnρ
1+α0ρG0,n

as in (19). In these conditions, by a derivation similar to the single relay case, the mutual information

In = I ((X0,2n−1,X0,2n); (YN+1,2n−1, YN+1,2n)) between the source and the destination during slots

(2n − 1, 2n) is shown to be

In = tnT log

(

1 + α0ρG0,N+1 +
α0ρG0,N+1(α0ρG0,N+1 + 1)(α0ρG0n + 1) + α0αnρ

2G0nGn,N+1

1 + α0ρG0n + αnρGn,N+1

)

.

(25)

Denoting byX0 = [XT
00, . . . ,X

T
0,2N ]T and YN+1 = [Y T

N+1,0, . . . , Y
T
N+1,2N ]T the signals sent by the

source and received by the destination respectively duringthe whole frame, the mutual informationI for

the whole frame is given by

I = I(X00;YN+1,0) +

N∑

n=1

In = t′0T log(1 + α0ρG0,N+1) +

N∑

n=1

In (26)
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where theIn are given by Equation (25). Our purpose is to derive and minimize the outage gain factor

ξAF = limρ→∞ ρN+1
P[I ≤ RT ] subject to the time and power constraints respectively written as

2

N∑

n=1

tn ≤ 1 and
N∑

n=0

βn ≤ 1 .

Here t′0 = 1 − 2
∑N

n=1 tn, and as usualβ0 = α0 and βn = αntn for n ≥ 1. Writing the outage gain

factor asξAF = ξAF(t1, . . . , tN , β0, . . . , βN ), we have the following proposition:

Proposition 4: The outage gain factor for the AF protocolξAF = limρ→∞ ρN+1
P[I ≤ RT ] described

in this section is given by

ξAF(t1, . . . , tN , β0, . . . , βN ) = c0,N+1

∑

Θ⊂{1,...,N}

1

β
|Θ|+1
0

∏

n∈Θ

c0,n

tn

∏

m∈Θ

cm,N+1

βm

1

1 −∑n∈Θ tn

∫

R
N+1

+

1

{
N∑

i=0

xi ≤ R

}

exp

(

N + 1 + |Θ|
1 −∑n∈Θ tn

x0 +

N∑

i=1

xi

ti

)
N∏

i=0

dxi . (27)

This function is convex on the convex setSN ×(0,∞)N+1 whereSN is the subset of(0,∞)N delineated

by the constraint
∑N

n=1 tn ≤ 1/2.

We note that the derivation of the integrals at the RHS of (27)is fairly simple thanks to Lemma 1

again. Notice also that whenN = 1, the sum overΘ reduces to a sum over the two setsΘ = ∅ and

Θ = {1}, and recovering Proposition 3 is straightforward. Proof ofProposition 4 is reported in Appendix

III-A.

IV. N UMERICAL ILLUSTRATIONS AND SIMULATIONS

In this section, some of the results of Propositions 1 to 4 areillustrated. Figure 3 shows an example of

the performance of the DF protocol described above in the single relay case. The channel distributions

are the Rice distributions,i.e., Hij = CN (aij , σ
2
ij). The decay profile for all channels is described by

the equations|aij|2 = C1d
−2
ij and σ2

ij = C2d
−3
ij wheredij is the distance between nodesi and j, and

the constantsC1 andC2 are chosen in such a way that|a0,N+1|2 = σ2
0,N+1 = 1/2. The relay is on

the source-destination line segment at a distance from the source equal to two thirds of the source-

destination distance. The sought data rate is equal to2 bits per channel use. The solid lines show the

behavior ofξDFρ
−1 in the following four cases: the powers satisfyα0 = α1 = 2/3 andt1 = 1/2, powers

are optimized whilet1 is kept fixed at1/2, t1 is optimized while powers are kept equal, and finally,

powers and slot durations are both optimized. The dashed curves show the simulation results. In this
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particular configuration, optimizing powers and slot durations results in a gain of nearly2 dB. This gain

is maintained when we leave the asymptotic regime in the SNR.

Figure 4 shows the performance of the AF protocol. The experimental conditions are identical to those

of Figure 3. Here, the gain due to optimization is about1.4 dB. Furthermore, by comparing Figures 3

and 4, we notice that in this configuration, the DF outperforms the AF protocol with a gain of about2.4

dB after optimization.

Figure 5 shows the SNR gain due optimization ofξDF andξAF as a function of the distance between

the relay and the source. Here, channels are Rayleigh channels with σ2
ij ∝ d−3

ij . The dashed curves

represent the SNR gain obtained by simulation for an outage probability set to10−3. We notice that the

optimization is all the more useful as the relay is far from the source, and this effect is more pronounced

when the DF protocol is used.

Figure 6 provides an example for the outage performance in the caseN = 2 relays. The channels

statistical description is identical to the one used for Figure 3. The relays are at one third and two thirds

of the source-destination distance on the the source-destination line segment. Here also, the merit of

optimization, as well as the merit of using the DF protocol are clear.

V. CONCLUSION

A technique for outage probability minimization has been proposed for wireless relaying protocol with

a statistical knowledge of the channels. The minimization problem is a convex problem with respect to

powers given to the transmitting nodes and to the slot durations. The proposed method is fairly generic

and works for a large number of relaying protocols. Some future research directions are the following: it

would be interesting to search for outage minimization techniques suitable for other classes of relaying

protocols such as the Dynamic Decode and Forward [21] or th Compress and Forward [24]. Another

research direction concerns relay networks with asynchronous relays, and more generally for networks

involving frequency selective channels.

APPENDIX I

PROOF OFLEMMA 1

With the change of variablesv0 = x0, v1 = x0 + x1, . . . , vK = x0 + x1 + · · · + xK , the Right Hand

Side (RHS) of (17) can be rewritten

JK(a0, . . . , aK , R) =

∫

0≤v0≤v1≤···≤vK≤R
e(aK−aK+1)vK+···+(a1−a2)v1+(a0−a1)v1

K∏

k=0

dvk
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where we putaK+1 = 0. Define the sequence of functionsSi(v) asS0(v) = exp((a0 − a1)v) and

Si(v) = exp((ai − ai+1)v)

∫ v

0
Si−1(u)du for i = 1, . . . ,K . (28)

Then we have

JK(a0, . . . , aK , R) =

∫ R

0
SK(v)dv (29)

The functionsSi(v) can be written asSi(v) =
∑i

k=0 η(k, i) exp((ak−ai+1)v) whereη(0, 0) = 1 and the

η(k, i) satisfy the recurrence relation. Indeed, injecting this last expression of theSi(v) into the definition

(28), we obtain

i∑

k=0

η(k, i) exp(ak − ai+1)v =

i−1∑

k=0

η(k, i − 1)

ak − ai
(exp((ak − ai+1)v) − exp((ai − ai+1)v))

which leads to the recurrence relation. Now it remains to develop the integral at the RHS of (29) to

recover (18).

APPENDIX II

PROOFS FOR THEDF N -RELAY CASE (SECTION II-B)

A. Proof of Proposition 2

In the sequel, the notationa(ρ)
ρ→∞∼ bρ−n stands forlimρ→∞ ρna(ρ) = b. We begin by studying the

behavior of the Right Hand Sides (RHS) of Equations (10) and (12) asρ→ ∞. By a derivation similar

to the one that was used to obtain (3) from (2) in the previous paragraph, we notice that the diversity

order associated with the outage probability given by (10) is |R|+ 1 (indeed,|R|+ 1 different channels

are at stake in this expression), and

P [outage‖ER]
ρ→∞∼ c0,N+1

α0ρ|R|+1

(
∏

i∈R

ci,N+1

αi

)

×
∫

R
|R|+1

+

1






(t0 +

∑

m∈R

tm) log (1 + x0) +
∑

i∈R

ti log (1 + x0 + xi) ≤ R






dx0

∏

i∈R

dxi (30)
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Let us consider now Equation (12). Whenm ∈ R, it is clear thatP
[

D(R)
m ‖D(R)

1 ∩ · · · ∩ D(R)
m−1

]

−−−→
ρ→∞

1.

Alternatively, whenm ∈ R,

P

[

D(R)
m ‖D(R)

1 ∩ · · · ∩ D(R)
m−1

]
ρ→∞∼ c0m

α0ρ1+|{i∈R,i<m}|




∏

i∈R,i<m

cim
αi





×
∫

R
|{i∈R,i<m}|+1

+

1






(t0 +

∑

k∈R,k<m

tk) log(1 + x0) +
∑

i∈R,i<m

ti log(1 + x0 + xi) ≤ R






dx0

∏

i∈R,i<m

dxi

(31)

Getting back to (9) and (11), and considering the asymptoticexpressions (30) and (31), we obtain

Po =
∑

R⊂{1,...,N}

P [outage‖ER] P
[

D(R)
1

]

P

[

D(R)
2 ‖D(R)

1

]

· · · P
[

D(R)
N ‖D(R)

1 ∩ · · · ∩ D(R)
N−1

]

ρ→∞∼
∑

R∈{1,...,N}

ρ−(1+|R|+
P

m∈R(1+|{i∈R,i<m}|)) × (a term independent ofρ) .

The dominating terms in this sum are the terms inρ−(N+1). They correspond to the sole setsRn defined

for n = 1, . . . , N + 1 by

R1 = {1, . . . , N}, · · · ,Rn = {n, . . . ,N}, · · · ,RN = {N},RN+1 = ∅ .

We therefore have

Po
ρ→∞∼

N+1∑

n=1

P [outage‖ERn
] P
[

D(Rn)
1

]

P

[

D(Rn)
2 ‖D(Rn)

1

]

· · ·P
[

D(Rn)
n−1 ‖D(Rn)

1 ∩ · · · ∩ D(Rn)
n−2

]

. (32)

Notice that for these setsRn, the right hand member of (31) has a very simple expression : for m < n,

we have

P

[

D(Rn)
m ‖D(Rn)

1 ∩ · · · ∩ D(Rn)
m−1

]
ρ→∞∼ c0m

α0ρ

∫

R+

1

{

(
m−1∑

k=0

tk) log(1 + x) ≤ R

}

dx (33)

Although the solutions of these integrals are immediate, weshall keep the integrals temporarily in this

form to simplify the proof of Proposition 2. From (30), (32),and (33), we obtain

ξDF = lim
ρ→∞

ρN+1Po = c0,N+1

N+1∑

n=1

(∏n−1
m=1 c0,m

αn
0

(
n−1∏

m=1

∫

R+

1

{

(

m−1∑

k=0

tk) log(1 + x) ≤ R

}

dx

)

×
(

N∏

i=n

ci,N+1

αi

)
∫

R
N−n+2

+

1

{

(

n−1∑

m=0

tm) log(1 + x0) +

N∑

i=n

ti log(1 + x0 + xi) ≤ R

}

dx0

N∏

i=n

dxi

)

.
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By replacingt0 with 1 −∑N
n=1 tn, and theαi with the βi, this last expression can be rewritten

ξDF(t1, t2, . . . , tN , β0, βn, . . . , βN ) =

c0,N+1

N+1∑

n=1

(
n−1∏

m=1

c0,m

)(
N∏

m=n

cm,N+1

)

χn (Tn(t1, t2, . . . , tN , β0, βn, . . . , βN )) (34)

whereχn is the function defined on(0,∞)2N−n+2 for n ≤ N as

χn(u1, . . . , uN , β0, βn, βn+1, . . . , βN ) =
1

βn
0

(
n−1∏

m=1

∫

R+

1{um log(1 + x) ≤ R}dx
)

×
(

N∏

i=n

ui

βi

)
∫

R
N−n+2

+

1

{

(1 −
N∑

i=n

ui) log(1 + x0) +

N∑

i=n

ui log(1 + x0 + xi) ≤ R

}

dx0

N∏

i=n

dxi (35)

andTn is the affine transformation

Tn(t1, t2, . . . , tN , β0, βn, . . . , βN ) =
(

1 −
N∑

k=1

tk, 1 −
N∑

k=2

tk, . . . , 1 −
N∑

k=n−1

tk, tn, tn+1, . . . , tN , β0, βn, . . . , βN

)

. (36)

The following lemma is proven in Appendix II-B:

Lemma 2:The functionχn defined by (35) can also be written

χn =

∫

R
N+1

+

1

βn
0

∏N
i=n βi

(
n−1∏

m=1

1

um
exp

(
vm

um

)

1{vm ∈ [0, R]}
)

1

{
N+1∑

m=n

vm ≤ R

}

exp

(
vn

un
+ · · · + vN

uN
+ (N − n+ 2)vN+1

)N+1∏

m=1

dvm . (37)

Moreover, this function is convex on(0,∞)2N−n+2.

Equations (15)–(16) in the statement of Proposition 2 follow directly from (34–37).

Concerning the convexity ofξDF, recall that the compositionf ◦ T of a convex functionf and an affine

functionT is convex. It results thatξDF is convex. This concludes the proof of Proposition 2.

B. Proof of Lemma 2

We begin with the following lemma:

Lemma 3:Let φ1(x), φ2(x), . . . , φn(x) be real, positive and twice differentiable functions. If the

functionsφi satisfy φiφ
′′
i ≥ (φ′i)

2 for all i = 1, . . . , n, then the functionf : R
n → R+ defined as

f(x1, . . . , xn) =
∏n

i=1 φi(xi) is convex.
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Proof: Define the sequence of functionsfm : R
m → R+ as fm(x1, . . . , xm) =

∏m
i=1 φi(xi)

for m = 1, . . . , n. We shall show by recurrence that the functionsfm satisfy the matrix inequality

fm∇2fm − ∇fm∇Tfm ≥ 0 where∇ is the gradient and∇2 is the Hessian matrix offm with respect

to the variables(x1, . . . , xm), and the inequality is with respect to the symmetric nonnegative matrices

ordering. Asf ≡ fn, we will then havef∇2f − ∇f∇Tf ≥ 0, which implies that∇2f ≥ 0, in other

words, thatf is convex.

By assumption,f1 ≡ φ1 satisfiesf1f
′′
1 ≥ (f ′1)

2. Assume thatfm satisfiesfm∇2fm−∇fm∇Tfm ≥ 0. Let

us show thatfm+1 satisfiesfm+1∇2fm+1−∇fm+1∇Tfm+1 ≥ 0. The gradient offm+1(x1, . . . , xm+1) =

fm(x1, . . . , xm)φm+1(xm+1) writes

∇fm+1 =




φm+1∇fm

fmφ
′
m+1





and the Hessian matrix∇2fm+1 writes

∇2fm+1 =




φm+1∇2fm φ′m+1∇fm

φ′m+1∇Tfm φ′′m+1fm



 .

We therefore have

fm+1∇2fm+1 −∇fm+1∇Tfm+1 =




φ2

m+1

(
fm∇2fm −∇fm∇Tfm

)
0

0
T f2

m

(
φm+1φ

′′
m+1 − (φ′m+1)

2
)





which is a nonnegative matrix by the recurrence assumption and φm+1φ
′′
m+1 −

(
φ′m+1

)2 ≥ 0.

Proof of Lemma 2:We begin by putting the integrals
∫

um log(1+x)≤R dx at the RHS of (35) under the

form
∫

R+

1{um log(1 + x) ≤ R}dx =

∫ R

0

1

um
exp

(
v

um

)

dv (38)

by making the change of variablev = um log(1 + x). Furthermore, the function

I(un, . . . , uN , βn, . . . , βN )
def
=

(
N∏

i=n

ui

βi

)
∫

R
N−n+2

+

1

{ }

dx0

N∏

i=n

dxi

(see the RHS of (35)) writes

I =

(
N∏

i=n

ui

βi

)
∫

1

{
N∑

i=n

ui log(1 +
xi

1 + x0
) + log(1 + x0) ≤ R

}

dx0

N∏

i=n

dxi

=
1

∏N
i=n βi

∫

R
N−n+2

+

1{
N+1∑

i=n

vi ≤ R} exp

(
vn

un
+ · · · + vN

uN
+ (N − n+ 2)vN+1

)N+1∏

i=n

dvi

(39)
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where the second equality is due to the change of variables

vi = ui log

(

1 +
xi

1 + x0

)

for i = n, . . . ,N

vN+1 = log(1 + x0) .

By using in addition the Identity (38), we recover the expression (37).

In order to prove the convexity ofχn, we shall prove that the integrand of the at the RHS of (37) is

convex in the variables(u1, . . . , uN , β0, βn, βn+1, . . . , βN ) for every value of(v1, . . . , vN+1) ∈ R
N+1
+ .

This integrand is a product of functions which have theum or the βm as parameters. Those functions

are of three sorts:ϕkm
(βm) = β−km

m wherekm ∈ {1, n}, ψ(vm, um) = exp(vm/um) wherevm ≥ 0, and

φ(vm, um) = exp(vm/um)/um wherevm ≥ 0. One can easily verify the following identities:

ϕk(β)ϕ′′
k(β) −

(
ϕ′

k(β)
)2

= kβ−2(k+1) > 0,

ψ(v, u)
∂2ψ(v, u)

∂u2
−
(
∂ψ(v, u)

∂u

)2

= 2vu−3e2v/u > 0, and

φ(v, u)
∂2φ(v, u)

∂u2
−
(
∂φ(v, u)

∂u

)2

= u−4
(
1 + 2vu−1

)
e2v/u > 0 .

It results from these identities that the assumptions of Lemma 3 are satisfied. By consequence, the

integrand at the RHS of (37) is convex in the parameters(u1, . . . , uN , β0, βn, . . . , βN ), henceχn is

convex on(0,∞)2N−n+2. Lemma 2 is proven.

APPENDIX III

PROOFS FOR THEAF N -RELAY CASE (SECTION III-B)

A. Proof of Proposition 4

We use a partition of the probability space where certain events within this partition lead to negligible

outage probabilities and others do not. Choose a real numberδ ∈ (0, 1/(N +1)) and define the indicator

functions1n,i for i = 1 to 4 as

1n,1 = 1
{
G0n ≤ ρδ−1

}
1
{
Gn,N+1 > ρδ−1

}
, 1n,2 = 1

{
G0n > ρδ−1

}
1
{
Gn,N+1 ≤ ρδ−1

}

1n,3 = 1
{
G0n > ρδ−1

}
1
{
Gn,N+1 > ρδ−1

}
, 1n,4 = 1

{
G0n ≤ ρδ−1

}
1
{
Gn,N+1 ≤ ρδ−1

} (40)

As 1n,1 + 1n,2 + 1n,3 + 1n,4 = 1, we have

P[I ≤ RT ] = E[1{I ≤ RT}] = E

[

1{I ≤ RT}
N∏

n=1

(1n,1 + 1n,2 + 1n,3 + 1n,4)

]

=
∑

ν∈{1,2,3,4}N

E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

(41)
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with ν = (ν(1), . . . , ν(N)) is anN -uple of indices.

For instance, in the single relay case, we haveP[I ≤ RT ] = E[1{I ≤ RT}111] + E[1{I ≤ RT}112] +

E[1{I ≤ RT}113] + E[1{I ≤ RT}114] = χ1(ρ) + χ2(ρ) + χ3(ρ) + χ4(ρ). The exclusive eventsE1 and

E2 presented in the previous section are more precisely definedas

E1 = [I ≤ RT,G01 ≤ ρδ−1, G12 > ρδ−1],

E2 = [I ≤ RT,G01 > ρδ−1, G12 ≤ ρδ−1],

henceχ1(ρ) = P[E1] andχ2(ρ) = P[E2]. When restricted to the caseN = 1, the proof below will show

thatχ3 andχ4 are negligible for largeρ, and thatχ1 andχ2 satisfy (21) and (22) respectively.

We now get back to the general case. Equation (41) comes from apartition of the probability space

into 4N events, each corresponding to aN -uple ν. Some of these events will result is a negligible or

even null outage probability for largeρ. For instance, if there exists a relayn0 for which ν(n0) = 3,

the channelsG0,n0
andGn0,N+1 are “good”, and the probability of the event[I < RT ] will be zero for

largeρ. This is formalized by the following lemma:

Lemma 4:For anyν ∈ {1, 2, 3, 4}N for which ∃n0, ν(n0) = 3, there exists a constantρ0 > 0 such

that

E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

= 0 whenρ > ρ0 . (42)

The proof of this lemma is given in Appendix III-B.

Thanks to this lemma, we can restrict the range of the admissible N -uplesν and write

ρN+1
P[I ≤ RT ] =

∑

ν∈{1,2,4}N

ρN+1
E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

+ oρ(1)

whereoρ(1) converges to zero asρ → ∞. Other events can be further neglected: assume there existsa

relay n0 for which ν(n0) = 4. The network is in outage when the source-destination channel is small

and for every relay, at least one of the source-relay or relay-destination channels is small. If we count

the source-destination channel and those of the relay channels liable for the outage, we obtain at least

N channels excluding relayn0. As ν(n0) = 4, both channels of relayn0 are furthermore small (see

(40)), and we end up withN +2 small channels at least. This happens with a probability negligible with

respect toρ−(N+1). This fact is formalized by the following lemma which proof is in Appendix III-C:

Lemma 5:For anyν ∈ {1, 2, 4}N for which ∃n0, ν(n0) = 4, the following holds true

lim
ρ→∞

ρN+1
E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

= 0 . (43)
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Thanks to this lemma, we can writeρN+1
P[I ≤ RT ] =

∑

ν∈{1,2}N ρN+1
E

[

1{I ≤ RT}∏N
n=1 1n,ν(n)

]

+

oρ(1). This equation can be rewritten

ρN+1
P[I ≤ RT ] =

∑

Θ⊂{1,...,N}

ρN+1

∫

∆(Θ)
fG0,N+1

(x)
N∏

n=1

(
fG0n

(xn)fGn,N+1
(yn)

)
dx

N∏

n=1

dxndyn

+oρ(1)

where∆(Θ) is defined as

∆(Θ) =







(x, x1 . . . xN , y1 . . . yN )

∈ R
2N+1
+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀n ∈ Θ, xn ≤ ρδ−1 andyn > ρδ−1,

∀n ∈ Θ, xn > ρδ−1 andyn ≤ ρδ−1,
∑N

n=1 tn log
(

1 + α0ρx+ α0ρx(α0ρx+1)(α0ρxn+1)+α0αnρ2xnyn

1+α0ρxn+αnρyn

)

+t′0 log(1 + α0ρx) ≤ R







andΘ is the complementary set ofΘ in {1, . . . , N}. Now we make the change of variablesu = α0ρx,

∀n ∈ Θ, un = α0ρxn, and∀m ∈ Θ, vm = αmρym to obtain

ρN+1
P[I ≤ RT ] =

∑

Θ⊂{1,...,N}

1

α
|Θ|+1
0

∏

m∈Θ αm

∫

R
2N+1

+

JΘ

(
u, (un, yn)n∈Θ, (xm, vm)m∈Θ, ρ

)

du
∏

n∈Θ

dun dyn

∏

m∈Θ

dxm dvm + oρ(1) (44)

where the functionsJΘ are given by

JΘ =fG0,N+1
(u/ρ)

∏

n∈Θ

1{un ≤ ρδ}1{yn > ρδ−1}fG0n
(un/ρ)fGn,N+1

(yn)

×
∏

m∈Θ

1{xm > ρδ−1}1{vm ≤ ρδ}fG0m
(xm)fGm,N+1

(vm/ρ)

× 1

{
∑

n∈Θ

tn log

(

1 + u+
u(u+ 1)(un + 1) + αnρunyn

1 + un + αnρyn

)

+
∑

m∈Θ

tm log

(

1 + u+
u(u+ 1)(α0ρxm + 1) + α0ρxmvm

1 + α0ρxm + vm

)

+ t′0 log(1 + u) ≤ R

}

(45)
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One notices thatJΘ has a limit whenρ→ ∞ given by

lim
ρ→∞

JΘ = c0,N+1

∏

n∈Θ

c0,nfGn,N+1
(yn)

∏

m∈Θ

cm,N+1fG0,m
(xm)

1







∑

n∈Θ

tn log (1 + u+ un) +
∑

m∈Θ

tm log
(
(1 + u)2 + vm

)
+ t′0 log(1 + u) ≤ R






(46)

We have the following lemma which proof is provided in Appendix III-D:

Lemma 6:The following holds true:

ρN+1
P[I ≤ RT ] = c0,N+1

∑

Θ⊂{1,...,N}

∏

n∈Θ c0,n

α
|Θ|+1
0

∏

m∈Θ

cm,N+1

αm

∫

R
N+1

+

1







∑

n∈Θ

tn log (1 + u+ un) +
∑

m∈Θ

tm log
(
(1 + u)2 + vm

)
+ t′0 log(1 + u) ≤ R







du
∏

n∈Θ

dun

∏

m∈Θ

dvm + oρ(1) (47)

Recovering Equation (27) from this lemma is a matter of change of variables. The indicator function

at the RHS of (47) can be rewritten

1







∑

n∈Θ

tn log

(

1 +
un

1 + u

)

+
∑

m∈Θ

tm log

(

1 +
vm

(1 + u)2

)

+ (1 −
∑

n∈Θ

tn) log(1 + u) ≤ R






.

By making the change of variablesx0 = (1 −∑n∈Θ tn) log(1 + u), xn = tn log
(

1 + un

1+u

)

for n ∈ Θ,

andxm = tm log
(

1 + vm

(1+u)2

)

for m ∈ Θ, and by replacingαi with βi for all i, we obtain (27).

It remains to prove convexity. Fix a setΘ and consider the corresponding summand at the RHS of (27).

Put t0 = 1 −∑n∈Θ tn. By a method similar to the one used in the proof of Lemma 3 in the appendix,

one can easily prove that this summand is convex in(t0, t1, . . . , tN , β0, . . . , βN ). Hence, its restriction

to (1 −∑n∈Θ tn, t1, . . . , tN , β0, . . . , βN ) is convex. By consequence,ξAF is a convex function. This

concludes the proof of Proposition 4.

B. Proof of Lemma 4

We recall that if two functionsg1 andg2 satisfyg1 ≥ g2 then1{g1 ≤ R} ≤ 1{g2 ≤ R}, a fact that

we shall repeatedly use in this Appendix.

From the Expression (25-26) of the mutual information, it isclear that

I ≥ tn0
T log

(

1 +
α0αn0

ρ2G0n0
Gn0,N+1

1 + α0ρG0n0
+ αn0

ρGn0,N+1

)
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wheren0 is the relay for whichν(n0) = 3 as in the assumption. Therefore, the left hand side of (42)

satisfies

E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

≤ E

[

1

{

tn0
log

(

1 +
α0αn0

ρ2G0n0
Gn0,N+1

1 + α0ρG0n0
+ αn0

ρGn0,N+1

)

≤ R

}

1n0,ν(n0)

]

= E

[

1

{
α0αn0

ρ2G0n0
Gn0,N+1

1 + α0ρG0n0
+ αn0

ρGn0,N+1
≤ eR/tn0 − 1

}

1

{

G0n0
> ρδ−1

}

1

{

Gn0,N+1 > ρδ−1
}]

.

(48)

Observe that the function

(x, y) 7→ log

(

1 +
α0αn0

ρ2xy

1 + α0ρx+ αn0
ρy

)

defined onR
2
+ is increasing in the variablesx andy. Therefore,

RHS(48) ≤ E

[

1

{
α0αn0

ρ2δ

1 + α0ρδ + αn0
ρδ

≤ eR/tn0 − 1

}]

.

As the functiong(ρ) =
α0αn0

ρ2δ

1+α0ρδ+αn0
ρδ converges to infinity asρ → ∞, there exists a constantρ0 > 0

such that the RHS of the last inequality is zero whenρ > ρ0. By consequence, the left hand side of (42)

is zero whenρ > ρ0. Lemma 4 is proven.

C. Proof of Lemma 5

We haveI ≥ (t′0+
∑N

n=1 tn)T log (1 + α0ρG0,N+1) by inspecting the Expression (25-26) of the mutual

information. By consequence,

ρN+1
E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

≤ ρN+1
E

[

1{(t′0 +
N∑

n=1

tn) log (1 + α0ρG0,N+1) ≤ R}
N∏

n=1

1n,ν(n)

]

= ρN+1
E[1{ρG0,N+1 ≤ C}]

N∏

n=1

E[1n,ν(n)] (49)

whereC = exp(R/(t′0+
P

tn))−1
α0

, and the equality is due to the independence of the channels.In the

remainder of the proof,K will denote a constant independent ofρ which value can change from line to

line. The following facts can be shown as usual by making changes of variables then using the DCT and

the right continuity of the channel gains densities:

E[1{ρG0,N+1 ≤ C}] = P[ρG0,N+1 ≤ C] ≤ Kρ−1

If ν(n) = 1, then

E[1n,ν(n)] = P[G0,n ≤ ρδ−1]P[Gn,N+1 > ρδ−1] ≤ P[G0,n ≤ ρδ−1] ≤ Kρδ−1 .
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If ν(n) = 2, then

E[1n,ν(n)] = P[G0,n > ρδ−1]P[Gn,N+1 ≤ ρδ−1] ≤ P[G0,N+1 ≤ ρδ−1] ≤ Kρδ−1 .

Finally, if ν(n) = 4, then

E[1n,ν(n)] = P[G0,n ≤ ρδ−1]P[Gn,N+1 ≤ ρδ−1] ≤ Kρ2δ−2 .

Plugging these inequalities into (49), we obtain

ρN+1
E

[

1{I ≤ RT}
N∏

n=1

1n,ν(n)

]

≤ Kρ(N+L)δ−L

whereL is the number of indicesν(n) = 4. AsL ≥ 1 andδ < 1/(N+1) by assumption,(N+L)δ−L < 0

and the RHS of the last inequality converges to zero. This concludes the proof of Lemma 5.

D. Proof of Lemma 6

In view of Equations (44) and (46), we only need to prove thatlimρ→∞

∫
JΘ =

∫
limρ→∞ JΘ. To this

end, we shall prove that there exists constantsK > 0 andρ0 > 0 for which

JΘ ≤ 1
{
(u, (un)n∈Θ, (vm)m∈Θ) ∈ [0,K]N+1

}

fG0,N+1
(u/ρ)

∏

n∈Θ

fG0n
(un/ρ)fGn,N+1

(yn)
∏

m∈Θ

fG0m
(xm)fGm,N+1

(vm/ρ) . (50)

for all ρ > ρ0. Indeed, assume (50) is true. Forρ large enough,fG0,N+1
(u/ρ), (fG0n

(un/ρ))n∈Θ and

(fGm,N+1
(vm/ρ))m∈Θ are bounded on[0,K] by right continuity at zero. Therefore,JΘ is dominated by

an integrable function forρ large enough, and it is possible to exchange
∫

with limρ→∞ by the DCT.

We now prove (50). Write the last indicator function at the RHS of (45) as1{XΘ ≤ R}. We have

XΘ ≥
(

t′0 +

N∑

n=1

tn

)

log(1 + u)

therefore

1{XΘ ≤ R} ≤ 1{u ∈ [0,K0]} (51)

with K0 = exp(R/(t′0 +
∑
tn)) − 1.

For any indexn ∈ Θ, we have by inspecting the expression ofXΘ :

XΘ ≥ tn log

(

1 +
αnρunyn

1 + un + αnρyn

)

(52)

hence

1{XΘ ≤ R} ≤ 1

{ αnρunyn

1 + un + αnρyn
≤ Cn

}
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whereCn = exp(R/tn) − 1. As the functiong(x) = ax
c+bx is increasing onR+ if ac > 0, we have

αnρunyn

1 + un + αnρyn
1{yn > ρδ−1} ≥ αnρ

δun

1 + un + αnρδ
1{yn > ρδ−1}

hence

1

{ αnρunyn

1 + un + αnρyn
≤ Cn

}

1{yn > ρδ−1} ≤ 1

{ αnρ
δun

1 + un + αnρδ
≤ Cn

}

1{yn > ρδ−1}

But αnρδun

1+un+αnρδ ≤ Cn ⇔ un ≤ αnCnρδ+Cn

αnρδ−Cn
. As the fraction at the RHS converges toCn asρ→ ∞, there

exists a constantKn > 0 for which

1

{ αnρ
δun

1 + un + αnρδ
≤ Cn

}

≤ 1{un ∈ [0,Kn]} .

whenρ is large enough. In conclusion we have

1{XΘ ≤ R}1{yn > ρδ−1} ≤ 1{un ∈ [0,Kn]}1{yn > ρδ−1} ≤ 1{un ∈ [0,Kn]} . (53)

Consider now the indicesm ∈ Θ. By getting back to the expression ofXΘ we can write for any of these

indicesXΘ ≥ tm log
(

1 + α0ρxmvm

1+vm+α0ρxm

)

, an inequality similar to (52). By going over the steps that lead

to (53) again, we obtain forρ large enough

1{XΘ ≤ R}1{xm > ρδ−1} ≤ 1{vm ∈ [0,Km]} (54)

whereKm > 0 is a constant. By combining Inequalities (51), (53) and (54), we obtain

1{XΘ ≤ R} ≤ 1{u ∈ [0,K0]}
∏

n∈Θ

1{un ∈ [0,Kn]}
∏

m∈Θ

1{vm ∈ [0,Km]}

≤ 1
{
(u, (un)n∈Θ, (vm)m∈Θ) ∈ [0,K]N+1

}

whereK = max({K0, {Kn}, {Km}}). By plugging this inequality into the RHS of (45), we recover

Inequality (50). This concludes the proof of Lemma 6.
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Fig. 1. DF Protocol forN relays
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Fig. 2. AF Protocol forN relays
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Fig. 3. Outage performance of DF protocol,N = 1 relay
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Fig. 4. Outage performance of AF protocol,N = 1 relay
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Fig. 5. Merit of optimization,N = 1 relay
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Fig. 6. Outage performance of DF and AF protocols,N = 2 relays
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