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Abstract

In the context of cooperative wireless networks that cordata on slow fading channels, outage
probability P, is the relevant performance index from the point of view dbéimation theory. Derivation
and minimization of this probability with respect to the agihg protocol parameters is of central
importance. However, it is often hard to derive its expm@ssiet alone to find its exact minimum
for all possible values of the Signal to Noise Ratio (SNR)isTgroblem can be simplified by studying
the behavior ofP, in the asymptotic regime where the SNRconverges to infinity. In this regime,
usually pV 1 P, converges to a constagtwhere N is the number of relays. In this paper, a simple
and general method for deriving and minimiziggwith respect to the power distribution between the
source and the relays, and with respect to the durationseo§ltits specified by the relaying protocol,
is developed. While the proposed approach is designed &ohitth SNR regime, simulations show that
outage probability is reduced in a similar proportion at erate SNR.

The method applies to a general class of radio channelsrtblatdies the Rayleigh and the Rice channels
as particular cases. Convexity fwith respect to the design parameters is shown. Decodd~ansard

as well as Amplify-and-Forward protocols are considerethi half duplex mode.
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. INTRODUCTION

In digital wireless communications over fading channefsteana diversity is an efficient means of
mitigating the effect of channel fades. By using multipleeammas at the transmitter and/or at the receiver,
the transmitted message reaches its destination throffghedit weakly correlated channels. It is unlikely
that all these channels are simultaneously subject to dedgsf Hence, the performance improves with
respect to a communication using a single antenna at eaeh sid
Antenna diversity in wireless communications has been §irstlied in the context of point to point
communications where multiple antennas are present ataherhitter or at the receiver. Recently, a new
means of providing this diversity has been considered: éwicinity of the transmitter/receiver link,
radio terminals in an idle state are likely to be present. Byng some of these terminals the ability to
relay the transmitter's signal towards the receiver, orgaters a virtual multiple antenna system which
is capable of providing diversity [1]-[6].

More formally, in the slow channel fading context, the raletperformance measure from the information
theoretic point of view is the so called outage probabilithich is the probability that Shannon’s mutual
information lies beneath a given rate. InN&-relay network with single antenna terminals, the outage
probability P, usually satisfiedim, . (p" ' P,) = ¢ wherep is the Signal to Noise Ratio (SNR) and
¢ is a non zero constant. This equation indicates in particihiat the diversity order of ouN—relay
network isN + 1, which is precisely the diversity order of a Multiple Inpuin§le Output (resp. Single
Input Multiple Output) point-to-point system witlV + 1 antennas at the transmitter (resp. at the receiver).
Different relaying protocols have been studied in the ditere. One well known protocol is the Decode
and Forward (DF) protocol [3]: assume for simplicity theseonly one relay and divide the transmission
frame into two slots. During the first slot, the relay listanghe source signal. At the end of this slot, it
attempts to decode this message then it re-encodes it argirtits the new signal in the second slot. The
Amplify-and-Forward (AF) protocols are simpler than DF foeols: here the relay just applies a gain
(or more generally a linear precoding) to the signal reakihering the first slot before retransmitting it
in the second slot [4].

Beyond the diversity considerations, it is of clear intetesminimize the outage probability of a given
protocol with respect to the protocol parameters such agptiveers and the slot durations. This will
be the subject of this paper. Our general assumptions aréollbeing: we consider half duplex relay
networks,i.e., a given terminal cannot receive and transmit at the same &nd in the same frequency

band. Slow fading channels are considered. These chameedssumed perfectly known at the receivers
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and unknown at the transmitters. DF and AF protocols withrelays will be considered whergy

is some integer. The parameters involved in the outage pilitlgaminimization are the slots relative
durations and the powers given to the source and to the reldys minimization is performed by some
resource allocation unit which relies on a statistical klealge of the source-relays, source-destination
and relays-destination channels.

The exact minimization of the outage probability for anyueabf the SNR is known to be a difficult
task. Mathematical problems appear even for systems adesesppoint to point Multiple Input Single
Output systems [7]. A means to circumvent this difficulty asjaist minimize the constargt introduced
above with respect to powers and slot durations. Whilethtrapeaking this minimization concerns the
high SNR regime, simulations will show that it reduces oatggobability at all SNRs considered in
practice in a similar proportion. In the space-time codiigrature, the counterpart of this constant is
called “coding gain” factor. In parallel with this denomtita, here we call this constant “outage gain”
factor. We show in particular that the outage gain factor isoavex function of the powers and the
slot durations for the considered protocols. We do not mailyeassumption on the channels probability
distributions except for the fact that the probability déas of the channels power gains do not vanish
at zero. This assumption is satisfied in particular by thealted Rayleigh and Rice channels. In order
to perform the outage gain minimization, the resource atioa only needs the values at zero of the
channel gain densities. This information can be sent fragrdifferent receivers to the resource allocation

unit with a negligible cost.

Related Work and paper’s contribution

The subject of outage probability derivation and mininmi@atbegan to attract researchers attention
in the context of multiple antenna point to point commurimas ( [7]-[9] just to name these). In the
context of wireless relay networks, the authors of [10] ms®a power optimization method for a multi
hop system. In [11], the authors optimize the relay powersaf®F protocol by working on an upper
bound of the outage probability. In [12], an AF protocol wihe relay is considered while in [13], AF
and DF are studied, and the optimization is performed by miing the constang. In [14], an AF
protocol with multiple relays is considered. In all theseatributions, the protocols are said orthogonal
in the sense that the relays and the source do not transniitsieals at the same time. Other works
explore the idea of outage optimization in the case wherataineamount of instantaneous channel state
information is available through feedback. In this line bbuaght, let us cite without being exhaustive
[15]-[17].
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The contributions of this paper can be summarized as follows

« A general and novel method for deriving the outage gai lim, .. pNt1P, is proposed. The
derivation of the outage gain is a key-issue in digital comioations as far as performance evaluation
or system optimization is concerned. As in [10]-[14], it ssamed that the information fed back
to the resource allocation unit is only statistical. Our Imoelt is generic in its essence and can thus
be applied to a wide range of relaying protocols, eitheragtimal or nonorthogonal. To the best of
our’s knowledge, no other method in the literature allowséompute the outage gain of relaying
protocols under such a general context. Most of the existioks (e.g.[10]-[14]) restrict the study
to the orthogonal cases which are much simpler to analyza fhee outage gain stand point. The
protocols considered in this paper as study cases are noogortal. While it is perfectly possible
to make a comparison betweeng. an orthogonal protocol with a non orthogonal one from the
stand point of the outage gain, we do not undertake this @slatk of space. The primary concern
of this paper is rather to optimize the parameters of a giveriopol. We note that comparisons
between orthogonal and non orthogonal protocols has beele mathe literature via the so-called
Diversity Multiplexing Tradeoff (DMT). From the point of giv of the DMT, non-orthogonal schemes
outperform orthogonal ones (see for instance [23]).

o Most of the existing worksd.g.[10]-[14]) only consider Rayleigh channels, while the Régh
assumption is not required in this paper. Indeed it is onguated that the densities of the channel
power gains are right continuous and non zero at zero. Thihdsminimum assumption that
guarantees the required diversity order.

« Most of the existing works on optimization of relaying protds only focus on the power distribution.
The time slot durations are never taken into account in thereaces provided above.

« It is proven here thaf is convex with respect to duratiomsd powers, which is a new result. As

is well known, convexity is a strong and sought after resuloptimization problems.

General notations and channel assumptions

In this paper, scalar and vector random variables are repred by upper case letters. The probability
density of a scalar random variable will be denotedfx (x). We also denote bg\ (a, o?) the complex
circular Gaussian distribution with mearand variancer2. Given two eventg; andé&,, i.e., measurable
subsets of a probability spa€k we denote byP[&;] the probability measure &, and byP[&,||E;] the
probability of £; conditional to&s.

Let g : R? — R be a real function andl be a subset oR. We denote byg € A] the subse{x ¢ R? :
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g(x) € A}. The notation1{g(x) € A}(x) or more conciselyl{g € A} refers to the indicator function
of the set[g € AJ.

We denote byV the number of relays in the network. Nodewill coincide with the source, nodesto
N are the relays and nod¥ + 1 is the destination. As the transmitted data frame is dividéal slots,
we shall denote byX;, the random vector that represents the message transmyttedde: during slot
n. The signal received by nodeduring slotn will be denotedY;,,. Moreover, during slot,, node: is
corrupted by an Additive White Gaussian Noise (AWGN) vedigr with unit variance elements.

We denote byff;; the complex random variable representing the Single Injgl& Output radio channel
that conveys data from nodeo nodej. The power gain of this channel will b&;; = |H;;|?. All random
variablesG;; are assumed to have densitigs, () which are right continuous at zero. We denotechy
the limit ¢;; = fe,,(07) and we assume that all these limits are positive. In pagticuh the Rayleigh
case,H;; is complex Gaussian with mean and varianceo—fj. In this case,G;; has the exponential
distribution fg,, (z) = 052 exp(—w/a?j)l{w > 0}, and in particulare;; = aif. More generally, in the

Ricean casé{;; ~ CN (aij, afj) where the mean;; is not necessarily zero, the densfy, . is given by

1 - laij ‘;*1 ..
fou @) = 4 1 (2vE ) 14e > 0)
955 Tij
where [, is the modified zero order Bessel function of the first kind][¥#8s 1,(0") = 1, we have in
this case
1 \ai%\
Cij = —26 7ij

ij
In the paper, all channeld;; within a network are assumed independent and availablecateiteivers
only. Furthermore, the constanig ; }i—1,. ~+1 and{c; y+1}i=1,..~ are assumed to be available to the

resource allocation unit.

Paper Organization

In Section I, the outage gain factor is studied for a clasBBfprotocols. The AF case is considered
in Section lIl. In both Sections Il and Ill, we begin with thengle relay case, then we extend the results
to the N-relay case. Section IV is devoted to some numerical illugtns of the obtained results and to

some simulations. A number of mathematical proofs are puatnimppendix.

I[I. THE DF PROTOCOL

This section is devoted to the outage probability derivattmd minimization in the DF case. For

clarity, we begin by treating the single relay case. Theelay case will follow.

September 2008 SECOND REVISION



OUTAGE PROBABILITY BASED POWER AND TIME OPTIMIZATION FOR REAY NETWORKS 6

A. Outage Probability in the Single Relay case

In this section, we study the following protocol already siiered in [19], [20]: the source (nodg
needs to send information at a ratefdohats per channel use towards the destination (2pdto this end,
the source has as its disposal a frame of leigdnd a dictionary of e/’ | Gaussian independent vectors
with independent NV (0, 1) elements each. Call, the T x 1 vector (dictionary element) transmitted by
the source. The relay (nodg listens to the source message for a durationy@f channel uses where
to is a fixed parameter. At the end of this period of time that wierréo as slot0, the relay attempts
to decode the source message. In case of success, the ratahesein its own dictionary the word
corresponding to the source’s message and it transmitsriiglthe remainder of the frame (slo} to
the destination. The dictionaries of the source and they r@la independent and identically distributed.
Let us partition the wordX, transmitted by the source a& = [XJ,, Xg;|T where the lengths ok
and X(; aretoT andt,T respectively witht; = 1 — tg. The signal of siz&yT received by the relay

during slot0 writes

Y10 = VaopHo1 Xo,0 + Vi

The parametep will represent the total power spent by the source and ttag/ el transmit the message
as we shall see in a moment. The gginy is an amplitude gain applied by the source. Recall that the
random vectorV; o represents the unit variance AWGN received by the relayumasg that the relay
has a perfect knowledge of the chantg};, it will be able to decode the source message if the event
Epy = {w : tolog(l + appGor(w)) > R} is realized. In casé€(y, is realized, the relay will transmit
during slot1 the signal,/a1p X1, of lengtht,;T" where /a1 is the amplitude gain of the relay. In that

case, the destination receives the sigriak [Y55, Y51 T given by the equation

Xoo
Y20 VaoHoo Iy, 0 0 Vao
Yy = =p Xo1 | +
Yo1 0 VoaoHelyr  JarHioly 1 X Vo1
11

Hg,
whereVs, = [V,5, Vot T is the unit variance AWGN received by the destination. Netttat the probability
distribution of the vectofXg,, Xg, X{1]" is CAV(0,1(1,4,)r). Conditionally to the evenf;y, the outage

probability P, ; for the destination is therefore
P,1 = P[logdet(pHg HE +1) < RT || &

)

= Pltolog(l + agpGo2) + t1log(1 + appGoz + a1pG12) < R] .
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In case the relay does not succeed in decoding the sourceageesghich corresponds to the comple-

mentary evenf{l}, the destination simply receives

Yoo VoaoHpl,r 0 Xo0,0 Va0
VP +
Yo1 0 VoaoHols, Xo,1 Va1

Therefore, conditionally t(f{l}, the outage probability?, 5 is
Poo =Pllog(1 + appGoz2) < R] .

In conclusion, the outage probabilify, associated with this protocol is

P, = P071P[8{1}] + P072P[5{1}] = P071(1 — Por) + PO,QP(,r (1)

where P, = P [€13] = P[tolog(1 + appGor) < R] is the relay’s outage probability.

Before analyzing this outage probability, for more clantye compare this DF protocol with the
so-called Dynamic Decode and Forward (DDF) protocol intiest in [21]. A relay which operates
according to the DDF protocol has the knowledge of the chlatfe. With this information at hand,
the relay waits until the momernppr < 1 where the “instantaneous” mutual informatidg (tppr) =
topr log(1 + agpGor) outnumbers the rat& when this is is possible. At this moment, the relay decodes
the information and sends it towards the destination duttirgl — ¢ppe remaining seconds. In the DF
protocol studied in this paper, the momegtdepends on the channel statistics only while in the DDF
protocol, the momentppr depends on the source-relay channel realization. Theseptatocols are

strongly different, both theoretically and practically.

Getting back to our subject, we need to show ¥a®, converges ag — oo and to derive the outage
gain factorépr given by {pr = lim, .o p*P,. We have

Poy = /2 1{tg log(1 4 appxo) + t1log(1 + appro + a1px1) < R}(x0,71) fGe (20) fa,, (21) dxg dr

RL

By making the changes of variables = agpxo andu; = ajpz; we obtain

0,1 =

2/ 1{tolog(1+uo)+11 log(1+ug+u1) < R} fau, <ﬂ> fou <ﬂ> dug duy . (2)
Qo1 p” JR2 Qop aip

The functionp(ug, u1, p) = fao, (uo/(wp)) fa,, (u1/(a1p)) satisfiesp(ug, u1, p) - co2 c12 by the
assumptions of Section I. Assuntg > 0 and letC be the compact subset &2 defined asC =

{(uo,u1) € R%,tglog(1 + ug) + t1log(l 4+ ug +u1) < R}. As fa,, and fg,, are right continuous at
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zero, (up, u1, p) is bounded orC for p large enough. Therefore, we can apply Lebesgue’s Dominated

Convergence Theorem (DCT) to the integral in the right hamanimer of (2) to obtain

lim p?P,; = o212 / 1{tolog(1 4+ up) + t1 log(1l + up + u1) < R} dug duy . (3)
p—00 Qoo JRr2
In a similar manner, we also obtain
lim pPos = -2 [ 1{log(l+u) < R}du and lim pPy = -2 [ 1{tolog(1+u) < R}du . (4)
p—00 [e7s) R, p—00 (67)] Ry

Plugging (3) and (4) into Equation (1) and using the fact that t; = 1, we end up with

Epr = 601202 (/]R+ 1{log(1 4+ u) < R} du> </R+ 1{(1 —t1)log(l +u) < R} du>

agp

+ C(zi—zlf /R 1{(1 — t1) log(1 + ug) + t1log(1 + ug +u1) < R} duo du (5)
Our purpose is to minimizegDp with respect toag, a; and ¢y, this minimization being subject to
t; € (0,1) and to a power constraint. Let us make explicit this constraefore going further. To this
end, let us derive the total energy spent by the network testrét a R7' nat symbol. Whatever is the
behavior of the relay, the source transmits the sigRakopXoo, /xopXo1). Therefore, the energy
spent by the source i8y = agpT" Joules. The energy; spent by the relay i€ = a1pt1TP[E(yy] =
a1pt1T(1 — P,y). As Py, = O(1/p) for large p by (4), the total energy’ used to transmit one symbol
satisfiesE = Ey + E1 = pT (g + aqti(1 — Pyy)) = pT (g + aqty) for large p. Our power constraint
for large SNR is therefore

ag+ait; < 1. (6)

Notice that this constraint becomes tight@s+ oo and is conservative for moderate valuespah the
sense that it fixes a power threshold a little bit smaller ttrenaffordable power for these values @f
Notice also that this constraint is not convexap, a1,t; because the function(a,t1) = ayty is not
convex. It will be convenient to replace it with a convex doaisit by making the change of variables

Bo = ag and B = aqt1. With these new variables, the power constraint becomes

Bo+pB1 <1. (7)

We have the following proposition:
Proposition 1: With respect to the parameters 3, and 3, the outage gain fact@pr (1, 5o, 51) for

the single relay DF protocol described above is given by

épr(ti, Bo, B1) = 60[13202 (exp(R) —1) (eXp (1 fzt1> a 1)
0

co2C12t1 1 th R 1
* Bob <4t1 -2 exp(2R) - 2t -1 P <E> " 5) ' (®)
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Moreover, the functiorgpr(t1, B, 41) is convex in the domairity, 3y, 51) € (0,1) x (0, 00)2.

Equation (8) can be obtained by expanding the integralsdanitiht hand member of (5) and by replacing
a; with 3; for all i. We shall provide details about these derivations and peoveexity directly in the
generalN-relay case. Indeed, Proposition 1 is a particular case gfdition 2 below. We remark that
the outage probability minimization reduces to minimizihg right hand of (8) given the constraint (7).
This reduces to minimizingpr on the line segment dR%r defined bygy + 6, = 1, i.e., the constraint
(7) is met with equality. The functiofipr(t1, 30, 1 — ) defined on the open squa(e, 1)? is convex
as it coincides with the restriction &hr(t1, 5o, 51) to that line segment. Furthermore, it is clear that
¢pr(ti, Bo, 1 — Bo) goes to infinity on the frontier of0,1)2. Therefore, the minimum is in the interior

of (0,1)2, and can be obtained easily, for instance by a suitable deseethod [22].

B. Outage Probability in theV—-Relay case

In this paragraph we turn to the study of a DF protocol in fiierelay case. The protocol we shall
consider is illustrated by Figure 1. We ha¥e+ 1 slots numbered frori to NV, slotn having the duration
t,T. The source transmits during all the frame. Relalyansmits during slot if it succeeds in decoding
the signals sent in slot$ to n — 1 by the source and by those active relays among relatgsn — 1.
Source and relays dictionaries are independent.

Let R be a subset of1,..., N} andR be its complement if{1,..., N}. Denote byfr the event that
we define in a somehow informal manner as “the relays thanigeio R decode successfully the source
message and the relays that belongRtdail to decode this message”. The collection of tHE events
Er whereR spans the subsets ¢f,..., N} is a partition of the probability space. By consequence,
the outage probability?, can be written as

P,= ) Ploutagder] P [Er] - ©)

Rc{l,...,N}

whereP [outagd£r] is the probability of the outage event conditional to therg\&;. Let us give the
expression of this conditional probability. Write = {n1,na, ...,n g} where|R| is the number of ele-
ments ofR. Generalizing the cas¥ = 1, we shall assume that when a relayelongs toR, it will trans-
mit the signal, /&, p Xy, during slotn. Let X = [Xo0, Xo,1,. .. >X0,N+1>Xm,m>--->Xmm,nm]T and

Vnir = Vg Vgn]'- As a result, whem € &g the signalYn i = [Ya, 055 Yo v
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received by the destination can be written as

YNt =
vaoHo, N1l
VoaoHo v+l Vn, Hpy N+11t, 1
NG . X+ VNn

\/ an‘n‘ Hn‘RhN-i-lItn‘R‘T

i VoaoHo LT

During slot0 and slotsm € R, the destination receives a signal from the source onlyingua slot
i € R, the destination receives a signal from the source plus dependent signal sent by relay
With these conditions, it is not difficult to verify that themditional probability? [outagd£z] has the

expression
P [outagdEr| =

P||to+ Y tm | log(1+aopGoni1)+ Y tilog (1 + aopGont1 + aipGing1) < R| . (10)
meR 1ER

We now turn to the derivation df[€z]. Let us denote bgDﬁZf) the event “relaym decodes successfully”
or the event “relaym fails to decode” according to whether € R or m ¢ R respectively. We clearly

havefr = DiR) N DéR) N---N D%z) and therefore
R R)|1y(R R)|1y(R R
P[&R]:P[Dg >]p[pg )| )}---P[D](Quﬂ ‘nnp® ] (11)
Recall that relaym relies on the signal transmitted by the source during dots.,m — 1 and the
signal transmitted by those among relays..,m — 1 which are active. One can therefore verify that
the conditional probability? [fo)HDYz) N---N Dﬁf_)l] is written as

PD@PID® 0 0D ] =

m

meR
P to+ Z tr | log (1 4+ aopGo,m) + Z tilog (14 aopGom + ipGim) = R
kER, k<m 1ER,i<m
meR

(12)
Equations (9—12) provide the expression of the outage pitityafor every value ofp. Our purpose is to

derive the expression of the outage gain fagier given byépr = lim,_ pNt1P) and to minimize it
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with respect to the power@8y;);—o . ~+1 and the slot duration§;);—o... n+1. The constraints on these

parameters are the positivity constraints, the time caigtr
L+ F+itnv <1 (13)

where we puty = 1—(¢t1+- - -+t ), and the power constraint at high SN+t +agte+- - +anty <

1 which generalizes (6). Similarly to the single relay case,make this last constraint convex by putting

Bo = ag and B, = a,t, forn=1,..., N. The power constraint becomes then
Bot+tBr+--+0Bn<1. (14)
Let us write the outage gain factor &sr = {pr(ti, ..., tN, Po,--.,0n). It is given by the following

proposition, which is the main result of this section:

Proposition 2: The outage gain factofpr(t1,...,tn, fo,-..,Bn) for the DF protocol described in

this section is given by

gDF(tla---at]\UﬂOa"wﬂN) =

N+1 co Cm.N41 n—1 R
CON+1Z 1lm=1%0m 1 m <H m ) (H (exp (71_21\[ ; )—1>>In (15)
m=1 k=m 'k

with
N+1 oN N+1
T, = /M"“ {mz;vm < R} exp <E LR vy (N —n+ 2)vN+1> Endvm . (16)
The functionépr(ti, ..., tx, Bo, ..., By) is convex in the convex sey x (0,00)V+! whereSy is the

subset of(0, c0)"V delineated by the constraint (13).

The proof of Proposition 2 is drawn in Appendix II-A. Notideat the result and the proof of Proposition
2 can be rather easily modified and adapted to DF protocokr ¢tfan the one described here such as
the so called repetition or the space-time protocols cemsdlin [3].

In order to obtain{pr in practice, one has to compute the integralsgiven by Equation (16). To

that end, one can use the following lemma:

Lemma 1:Let Jx/(ao,...,ax,R) : RET1 x R, — R, be the function defined as
K
Ji(ag,...,ax,R) = /K+ {xg+ - +2x < R}exp(agzo + - + axrk) H dzxy,. a7)
RYH! k=0
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When parameters,, - - - ,ax are all distinct,Jx (ao, .. .,ax, R) is given by
K
Jr(ag,...,ax, R Z (exp(axR) — 1) (18)
k=0
where(n(0, 1), ..., n(i, i))i—o... i 1S @ triangular array of real numbers given by the followiegurrence:

n(0,0) =1, n(k,i) =n(k,i —1)/(ax —a;) for k=0,...,i—1, andn(i,i) = Zk ok, i)

The proof of this lemma is given in Appendix |. A5, = JNH_n(t]‘Vl, ooty N—n+2, R), Lemma

sty
1 provides an easy way to compute the expressiofpef The result of Lemma 1 is formally suited to
the case where parameters, ..., ax of the functionJx are all different. Notice that expressions for
the cases where at least two of them are equal can be obtajnedntinuous extension. However, in
those cases it is easier to work out directly the expressién (

Generalizing the single relay case, at the minimungf the 5; belong to the hyper plang, + - - - +
By = 1. By consequence, the problem reduces to minimizing the eofunction with2N parameters
Epr(ti, ... tn, Bos- oy BN—1,1 — Zfi‘ol ;) on the constraint sez <1 andzl 0 ; < 1. The
function {pr goes to infinity at the frontier of this set. The minimum is ig interior and can be found

by a descent method [22].

I1l. THE AF PROTOCOL

Similarly to the DF case, we first consider an AF protocol watlsingle relay in order to help the

reader to get some insight on the proposed approach.

A. Outage Probability in the Single Relay case

One AF protocol frequently considered in the literaturehis tollowing [5], [21]: the source transmits
its codeword during the whole frame of lendth The relay saves in its memory the signal it receives
from the source during the first half of the frame. Then thayelpplies a gain to this signal and transmits
it during the second half of the frame. Here, we considerght{i more general model: the relay does
not necessarily consider the signal received from the soduring the firstl’/2 channel uses. Instead,
it just considers a section of this signal of lengtfi” with ¢t; < 1/2, and one of our purposes will be
to find the value oft; that minimizes the outage gain factor. As is shown on figuravigh(N = 1) ,
in general we now have three slots instead of two. The lengthttese slots are)T , t;7 andt;T
respectively, witht{, 4+ 2¢; = 1.

During slots0 and 1, the destination receives,, and Y2; with dimensionst;T" andt,T" respectively.

These signals are given by, = /agpHoaXoi + Vo; for i = 0,1, whereagp is the power spent by
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the source as in the previous sections. During $|ahe relay receives the sign#l; with length¢; T

given by the equatio;; = ,/agpHoi Xo1 + Vi1. During slot2, the relay transmitg/71Y1; towards the
destination wherey; is the power gain applied by the relay. We assume as abovexthat the power
transmitted by the relay. AB[|Y11|?||Ho1] = aopGor + 1, the gainvy, is given by

a1p

. 19
appGor +1 (19)

"=

During slot2, the source transmitXy, and the destination receives the sigial = /agpHos X2 +
vaoyipHo Hio Xo1 + /71 H12V11 + Voo with lengtht T'. Putting the signal received by the destination

in a matrix form, we obtain

Yoo Hplyr O 0 Xoo Vao
Yo | =vaop | 0 Hooly, 7 0 Xor | T | Vau )
Yoo 0 VAtHoiHioly, 7w Hooly, 1 Xo2 Voo + v/ 1H12Vin

an equation that we write compactly Bs = HX,+ V5. Recall that all noise¥;; are white withCA/ (0, 1)
elements. The mutual information conditional to the chésmassociated with this model is then given

by I = log det(RyR‘_/l) whereRy andRy are the covariance matrices

Ry = E[Y2Y|Hoi, Ho, Hio) = HH* + Ry and
L7
Ry = EMV2V5|[Hor, Hiz) = L1
(1 +7Gu2)ly,r
By expanding these expressions and by replaginwith its value in (19), we obtain after some simple

computations

G G 1 G 1 260 G
I =tTlog <1 + agpGoy + 222 02(a0pGoz + 1)(@0pGor + 1) + avanp”Go 12>

14+ appGor + a1pG12
+ T log(1 + agpGo2) - (20)

Our purpose is to obtain the outage gain fager given by éar = lim, .o p*P[I < RT] whereR is
the targeted data rate.

We shall make here a heuristic and non rigorous derivatiar, pf The rigorous mathematical derivations
will be made directly in theV-relay case below. Typically, the outage corresponds tawleexclusive

events€; and &, that we describe roughly (for the moment) as
& I < RT, gainsGy, andGy; are small (of orden /p), andGy, is not small.

& I < RT, gainsGy, and Gy, are small (of order /p), andGy; is not small.
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Typically, the network is in outage when the source-desttnachannel anane of the source-relay or
relay-destination channels are small. The probability tha three channels are small is indeed negligible.
As & N &, =, the outage probability’, satisfiesP, ~ P[] + P[&s].

Let us consider now the fractional expression at the RHS @f. Rorw € &, we have for large

aopGo2(copGoz + 1) (appGor + 1) + apa p>Go1 Gia

~ appGot
1+ appGo1 + a1pG12

while for w € &,

aopGo2(aopGoz + 1) (appGor + 1) + apa1 p?Go1 Gz

~ appGoza(aopGoz + 1) + a1pGia .
1+ aopGor + a1pG12 pGoz(cvop ) P

We therefore have
Pl&] ~  Ptilog(1+ aopGoz + copGor) + tylog(l + aopGoz) < R]

= / 1{t1log (1 + agpx + appy) + tolog(l + appx) < R} fao, () fao, (v)da dy
R2

+

1
= — 2/ 1{t1 log (1 +u+v) + tylog(1 4+ u) < R} fa,, (—u >fG01 (—v >dudv
anp R2 app
0 s

Qop

—o0  C01C02
p— 02,2 /]R2+ 1{t;log (1 + u+v) + tylog(1 + u) < R}dudv (21)

similarly to the DF case above (passage from (2) to (3)). We ahve

]P)[gg] i~ P [tl log ((1 + aopG02)2 + OélpGlg) + t6 log(l + Oé()pG(]Q) < R]

o A / 1{t11og (1 4 u)* + v) + tylog(1 + u) < R}dudv . (22)
Qoa1p” JRr2
As a conclusion{ar is written
Eap = C0(1);02 / 1{t1log (1 +u+v)+tolog(l+u) < R} dudv (23)
0 JRI

+ c12€02/ 1 {751 log ((1 +u)2 —|—v) +t610g(1 +u) < R} du dv
@01 JR

2
We need to develop the RHS of this expression and to minirfiige subject to the time constraints
t1 <1/2, t; +2t; = 1, and the power constraiil, + «;¢; < 1. Similarly to the DF case, we make the
power constraint convex by putting, = «g and 3, = ayt;. We have the following proposition:

Proposition 3: The outage gain factafar for the protocol described in this paragraph is
€01C02 1—t 2R 2t R
t pr— - 1
€ar(ty, Bo, B1) 25 <3t1—1eXp<1—t1> 35 1P <_t1>+ )

+61;§Zt1 <3t1t1— I (exp(gR) - <§>> B % (expl3) = 1)> 0
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Moreover the functiortar (t1, 5, 31) is convex on(0,1/2] x R%.
By expanding the integrals in the RHS of (23) and replacimgtfwith the 3;, we obtain the expression

(24). More generally, Proposition 3 is a particular case mfpBsition 4 below.

B. Outage Probability in theV—-Relay case

Generalizing the single relay protocol studied in the pyasisection, we consider now thé-relay
protocol described by Figure 2. According to this prototbg data frame of lengtii” is divided into
2N + 1 slots. Slot0 has a length equal t¢f7. During this slot, the destination is the only node that
listens to the source. Relay (wheren = 1,..., N) listens to the source during slet — 1 which has
the lengtht,, T. During slot2n which has the same length T, relay n transmits an amplified version
Xn2n = /TnYn2n—1 Of the signalY;, »,_1 received by that relay during sl@» — 1. Here, is the
power gain factor applied by relay.

Before going further, let us note that a version of this protavith ¢{, = 0 andt,, = 1/(2N) has been
considered in [21] from the point of view of the so called Dsity Multiplexing Tradeoff (DMT). More
sophisticated AF protocols for th¥-relay case have also been studied in [23] from that samée pbin
view. The derivation of the outage gain factor for those g@eots, or at least an upper bound on this
gain, is under study.

By a derivation identical to the single relay case, the digaeeived by the destination during the

couple of slots(2n — 1,2n) is given by

YN+1,2n-1 Hon11e, 7 0 Xo,2n—1 VN+1,2n-1
Hhen = Jaop N+ et +1,2n
Yni1,2n VinHoli, 7 Honi1li, T Xo,2n VNt12n + VI Hu N1 Vion—1
Due to the fact that the power transmitted by retais o, p, the gain factory,, satisfiesy, = #ﬂgm

as in (19). In these conditions, by a derivation similar te #ingle relay case, the mutual information
I, = I((Xo2n-1,Xo02n); YN+1,2n—1,YN+1,20)) between the source and the destination during slots
(2n — 1,2n) is shown to be

aopGo,n+1(a0pGon+1 + 1) (opGon + 1) + o p*Gon G, n+1
1+ aopGon + anPGn,N+1

I, =1t,Tlog (1 + aopGo,N+1 +
(25)

Denoting by Xo = [Xqy, ..., Xgon]" @nd Yay1 = [Yy 10,---, Yag1on]" the signals sent by the

source and received by the destination respectively duhiagvhole frame, the mutual informatidnfor

the whole frame is given by

N N
I'=1(Xo0; Yn110) + > In = tgTlog(1 + aopGoni1) + Y In (26)
n=1 n=1
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where thel,, are given by Equation (25). Our purpose is to derive and mi@nthe outage gain factor

Ear = lim, o pVTIP[I < RT] subject to the time and power constraints respectivelytewrias

N N
2y t,<1 and Y B, <1.
n=1 n=0

Heretj =1 — 2227:1 t,, and as usuaby = oy and 3, = a,t, for n > 1. Writing the outage gain

factor aséar = Ear(t1, .., tN, B0, - - -, 0N ), We have the following proposition:

Proposition 4: The outage gain factor for the AF protoc@lr = lim, .. o™ T'P[I < RT) described

in this section is given by

Co,n Cm,N+1 1
gAF(t17"'7tN7/807"'7/8N):CO,N-i-l ;
|

oc{1,..,.N neo

N N
N +1+ 0] T
r;, <R —— 20t — dz; . (27)
/Riurl {Z } ( Zne@ tn zz:; ti) zl})

This function is convex on the convex s&t x (0, 00)V ! whereSy is the subset of0, c0)" delineated
by the constrain__ ¢, < 1/2.

We note that the derivation of the integrals at the RHS of (@7airly simple thanks to Lemma 1
again. Notice also that whelN = 1, the sum ovel© reduces to a sum over the two sés= () and
© = {1}, and recovering Proposition 3 is straightforward. ProoPadposition 4 is reported in Appendix
II-A.

IV. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

In this section, some of the results of Propositions 1 to Jillugtrated. Figure 3 shows an example of
the performance of the DF protocol described above in thglesirelay case. The channel distributions
are the Rice distributions,e., H;; = CN(aij,07;). The decay profile for all channels is described by
the equatlon3aij| = Cldl.j and az. = C2d whered;; is the distance between nodesnd j, and
the constants”; and C, are chosen in such a way thaf y+1|* = UO,N+1 = 1/2. The relay is on
the source-destination line segment at a distance from dhecs equal to two thirds of the source-
destination distance. The sought data rate is equal bis per channel use. The solid lines show the
behavior of¢éprp~! in the following four cases: the powers satigfy = o; = 2/3 andt; = 1/2, powers
are optimized whilet; is kept fixed atl/2, ¢, is optimized while powers are kept equal, and finally,

powers and slot durations are both optimized. The dashedesishow the simulation results. In this
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particular configuration, optimizing powers and slot dimas results in a gain of nearB/dB. This gain
is maintained when we leave the asymptotic regime in the SNR.

Figure 4 shows the performance of the AF protocol. The erpental conditions are identical to those
of Figure 3. Here, the gain due to optimization is abbut dB. Furthermore, by comparing Figures 3
and 4, we notice that in this configuration, the DF outperfothe AF protocol with a gain of abogt4
dB after optimization.

Figure 5 shows the SNR gain due optimizationégf andésr as a function of the distance between
the relay and the source. Here, channels are Rayleigh clsanith afj o di‘j?’. The dashed curves
represent the SNR gain obtained by simulation for an outageapility set tol0~2. We notice that the
optimization is all the more useful as the relay is far frora Hource, and this effect is more pronounced
when the DF protocol is used.

Figure 6 provides an example for the outage performancedncéiseN = 2 relays. The channels
statistical description is identical to the one used forukég3. The relays are at one third and two thirds
of the source-destination distance on the the sourcendgisth line segment. Here also, the merit of

optimization, as well as the merit of using the DF protoc@ elear.

V. CONCLUSION

A technique for outage probability minimization has beeopmsed for wireless relaying protocol with
a statistical knowledge of the channels. The minimizatioobfem is a convex problem with respect to
powers given to the transmitting nodes and to the slot duratiThe proposed method is fairly generic
and works for a large number of relaying protocols. Someré&tasearch directions are the following: it
would be interesting to search for outage minimization méghes suitable for other classes of relaying
protocols such as the Dynamic Decode and Forward [21] or tmgEess and Forward [24]. Another
research direction concerns relay networks with asyncusmelays, and more generally for networks

involving frequency selective channels.

APPENDIX |

PROOF OFLEMMA 1

With the change of variablesy = z¢,v1 = 29 + 21,...,vxk = 20 + 21 + - - - + 2k, the Right Hand

Side (RHS) of (17) can be rewritten

K
JK(QO7 oAk, R) — / e((lk—(lk+1)vk+'“+(a1—CL2)Ul+(ao—l11)Ul H dvk
0

Svo<uv1 <--<vrk <R k=0
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where we putux+; = 0. Define the sequence of functios$(v) asSy(v) = exp((ap — a1)v) and
Si(v) = exp((a; — ai+1)v)/ Si—1(u)du fori=1,...,K . (28)
0

Then we have
R
Jr(ag,...,ax, R) :/ Sk (v)dv (29)
0

The functionsS;(v) can be written as;(v) = 22:0 n(k,1) exp((ax —a;+1)v) wheren(0,0) = 1 and the
n(k, 1) satisfy the recurrence relation. Indeed, injecting thit &pression of thé;(v) into the definition

(28), we obtain

7 i—1 .
Stk iy explos — asen)v = 3 L (o0 — azia)e) — expl(a; — aia)v)
k=0 k=0 &

which leads to the recurrence relation. Now it remains toettgy the integral at the RHS of (29) to

recover (18).

APPENDIX I
PROOFS FOR THEDF N-RELAY CASE (SECTION II-B)

A. Proof of Proposition 2

In the sequel, the notatiom(p) “~° bp~" stands forlim, ., p"a(p) = b. We begin by studying the
behavior of the Right Hand Sides (RHS) of Equations (10) dr&) &sp — oc. By a derivation similar
to the one that was used to obtain (3) from (2) in the previcrsgraph, we notice that the diversity
order associated with the outage probability given by ($0%i| + 1 (indeed,|R| + 1 different channels
are at stake in this expression), and

— CO,N+1 Ci,N+1
P [outagdEr] " — :
[ ¢ER] oop R 216_7[2 ”

X/R 1 (to+ D tm)log (14 20) + Y tilog (14 z0 +x:) < R § dag [ dwi (30)
R meR i€R i€R
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Let us consider now Equation (12). Whene R, it is clear thatP [fof) HD&R) N---N D,(f_)l — 1L

p—00

Alternatively, whenm € R,

(R) (R) o (R) p::oo Com Cim
]P’[Dm Dy N mDm_l] a0p1+{z‘envz’<m}< 11 ;

i€Ri<m

X/RJFHER,Km}H 1 {(to + Z tk) log(l + :L'(]) + Z t; log(l + 20 + 1’2) < R} dxg H dx;

EER k<m iERi<m i€ERi<m
(31)
Getting back to (9) and (11), and considering the asymp®tressions (30) and (31), we obtain

R R R R R R
P, = > Ploutaggcr]P [D{F| P D D] B DD 0 DY,
RC{1,..,N}
Ry p~ (HRIFE,, cr(H{iER<m}D) o (a term independent gf) .
Re(l,..,N}

The dominating terms in this sum are the termg i+, They correspond to the sole s&®s defined

forn=1,...,N+1 by
Rl:{lv"'aN}7"' 7Rn:{n7"'>N}7"' 7RN:{N}7RN+1:®'

We therefore have

n

N+1
"2y Ploutagder, | [P B DI DFV] o [DEV DI 0 D) L (32)
n=1

Notice that for these sef®,,, the right hand member of (31) has a very simple expressionmf< n,

we have

m—1
P [Dgf")ﬂDgR”) a... ﬂpﬁll)] PR ZOT’Z/R 1 {(Z tr)log(1+ ) < R} dx (33)
k=0

Although the solutions of these integrals are immediate shel keep the integrals temporarily in this

form to simplify the proof of Proposition 2. From (30), (32nd (33), we obtain

N+1

. m— C m
fDFZPIEEOpNJrlP —CoN+IZ< 1 0 (H/R { Z_:tk log(1+xz) < R} dgg)
N Ci N1 n—1
i, N+
) ]_ ml 1 tll 1 i é i .
x(H iy )/Mn+2 {(Zt ) log( +:L"0)+Z og(1l+ xo + x;) }dﬂﬂoHd:L")

i=n m=0 i=n
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By replacingty with 1 — Z tn, and theq; with the 3;, this last expression can be rewritten

Epr(ti,te, .. tN, Bos By BN) =
N+1

N
Co,N+1 Z (H COm) <H Cm,N-‘rl) Xn (Tn(t1>t2>"' 7tN7ﬁ0>ﬁn>“' >ﬁN)) (34)

where ., is the function defined o0, c0)?V~"*2 for n < N as

n—1
Xn (U1, un, Bo, By Busts - By) = % (H /]R Hup log(1 +x) < R}de
0 m=1 +

N N N
(H ) /RN s {(1 = wi)log(1 4 x0) + > uilog(l+ zo + ;) < R} dao [] dz; (35)

1=n =n =n

andT,, is the affine transformation
Tn(t1>t2>"' >tN7ﬁ0>ﬁn7"'>ﬁN) =

N N N
(1_Ztk>1_ztk>71_ Z tk>tn>tn+17"'atNaﬁ()?ﬁnv"'>ﬁN> . (36)
k=1 k=2 k=n—1

The following lemma is proven in Appendix II-B:

Lemma 2: The functiony,, defined by (35) can also be written

w= [ TG (Tﬁiexp@m)l{vm [o,Rn>

m=1

N+1 v oN N+1
1 m < oy 22 N — 2 dvy,, . (37
{mg _R}exp<un+ + (N )vNH)ngl o . (37)

Moreover, this function is convex oft), co)?V—"+2,

Equations (15)—(16) in the statement of Proposition 2 flttirectly from (34-37).
Concerning the convexity afpr, recall that the compositiofio T' of a convex functionf and an affine

function T is convex. It results thaipr is convex. This concludes the proof of Proposition 2.

B. Proof of Lemma 2

We begin with the following lemma:
Lemma 3:Let ¢1(z), p2(x),...,¢n(z) be real, positive and twice differentiable functions. leth
functions ¢; satisfy ¢;¢! > (¢;)2 for all = 1,...,n, then the functionf : R" — R, defined as

flx1, ..., xn) =[], ¢i(x;) is convex.
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Proof: Define the sequence of function, : R”™ — R, as fy(x1,...,2m) = [[it; ¢i(zs)
for m = 1,...,n. We shall show by recurrence that the functiofys satisfy the matrix inequality
fuV2fm — VaVTf, > 0 whereV is the gradient and/? is the Hessian matrix of,, with respect
to the variablegzy,...,z,,), and the inequality is with respect to the symmetric nontieganatrices
ordering. Asf = f,,, we will then havefV2f — VfVTf > 0, which implies thatv?f > 0, in other
words, thatf is convex.

By assumptionf; = ¢, satisfiesf; f; > (f{)z. Assume thaff,, satisfiesf,,V2f,, —V V7T f, > 0. Let

us show thayf,,, 1 satisfiesf,, 11V fri1—V me1 VT fme1 > 0. The gradient off,, o1 (21, .. ., Tong1) =
fm(1, - s Tm) Oma1 (Tme1) Writes
¢m 1me
vfm+1 = " ,

and the Hessian matrix’2 f,,,1 writes

m Vz m /m \Y m
P Tf Vi
1V fm o i fm
We therefore have
21 (fm V2 fm = VIV fin 0
Sma1V2 fngt = Vi1V frngr = 1 T ) 2 " r2
0 fm ((bm-l-l(bm-l—l - ((bm—i-l) )
which is a nonnegative matrix by the recurrence assumptiohg, 1 ¢, ., — ( ’er)2 > 0. u
Proof of Lemma 2:We begin by putting the integraﬁtm log(142) <R dx at the RHS of (35) under the
form
R v
/ 1{up log(1+2) < R}dx = / — exp <—> dv (38)
Ry 0 m m

by making the change of variable= u,, log(1 + ). Furthermore, the function

N N
e Uj
I(un,...,uN,ﬁn,...,ﬂN)d:f(HE>/RN+ 1{ }dxo]'[dxi
i=n """ + ’ i=n

(see the RHS of (35)) writes

N N N
Uj T;
I = (HE>/1{Zuilog(l+1+$0)+log(1+xo)gR}dmOdei

i=n
1 N+1 " y N+1
= ~ / 1{2%SR}exp<—"+---+—N+(N—n+2)vN+1>Hdv,-
Hi:n 6Z Rifﬂﬂ& i=n Un uN i=n

(39)
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where the second equality is due to the change of variables

Ly

v; = u,-log<1+ > fori=n,...,N

1+l’0

onNt1 = log(l+mp) .

By using in addition the Identity (38), we recover the exgres (37).

In order to prove the convexity of,, we shall prove that the integrand of the at the RHS of (37) is
convex in the variable$uy, ..., un, 8o, Bn, Bn+1, - - -, Bn) for every value of(vy,...,on41) € Rf“.
This integrand is a product of functions which have thg or the 5,, as parameters. Those functions
are of three sortspy,, (Bm) = Bk~ wherek,, € {1,n}, ¥(vm, um) = exp(vm /uy) Wherev,, > 0, and

O (VU ) = €xp(vp /um) /um Wherev,, > 0. One can easily verify the following identities:

ee(B)en(B) — (2(8)? = k25D >,
2
¢(U,U)82w(v7u) _ <a¢(v7u)> — 2vu—3€2v/u > 0, and

ou? ou
2 2
¢(’u,u)<9 %(;2, u) (8(2522;,@) = w120 S0

It results from these identities that the assumptions of ihan8 are satisfied. By consequence, the
integrand at the RHS of (37) is convex in the parameters. .., un, B0, Bn,---,0n), hencey,, is

convex on(0, 00)2V="+2, Lemma 2 is proven.

APPENDIX I

PROOFS FOR THEAF N-ReLAY CASE (SECTION III-B)
A. Proof of Proposition 4

We use a partition of the probability space where certaimesveithin this partition lead to negligible
outage probabilities and others do not. Choose a real nuinkeb, 1/(N + 1)) and define the indicator

functions1,,; fori =1to 4 as

L1 =1{Gon <" '} 1{Gnni1> 0"}, Loo=1{Gon>p '} 1{Gpns1 <p°'}

(40)
L= 1{Gon > 31 {Guvsr > #571} + Toa =1{Gon € 971} 1{Grunvin < 1)
Asl,1+ 1,2+ 1,35+ 1,4 =1, we have
N
P[I <RT] = E[{I <RTY =E|1{I <RT} [[(Ln1+ Loz + Lo+ 1n4)

n=1
N
vef{1,2,34}N n=1
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with v = (v(1),...,v(N)) is an N-uple of indices.
For instance, in the single relay case, we hB{e< RT] = E[1{] < RT}111] + E[1{I < RT}15] +
E[1{l < RT}113] + E[1{I < RT}114] = x1(p) + x2(p) + x3(p) + x4(p). The exclusive events; and

&y presented in the previous section are more precisely deéised
& = [I<RT,Gy <p’7',Gi2>p’7Y,
52 = [I < RT, G01 > p5_1,G12 < pé_l],

hencey:(p) = P[&1] and x2(p) = P[€2]. When restricted to the casé = 1, the proof below will show
that y3 and x4 are negligible for largep, and thaty; and x, satisfy (21) and (22) respectively.
We now get back to the general case. Equation (41) comes fr@artédion of the probability space
into 4 events, each corresponding taNauple v. Some of these events will result is a negligible or
even null outage probability for large For instance, if there exists a relay for which v(ng) = 3,
the channelss ,, andG,,, ny+1 are “good”, and the probability of the evejit< RT] will be zero for
large p. This is formalized by the following lemma:

Lemma 4:For anyv € {1,2,3,4}" for which 3ng, v(no) = 3, there exists a constapt > 0 such

that N
E|1{I <RT}]] 1,17”(”)] =0 whenp> pp . (42)

n=1
The proof of this lemma is given in Appendix IlI-B.
Thanks to this lemma, we can restrict the range of the adbobésai-uplesrv and write

N
pN+1]P)[I < RT] = Z pN+1E [1{‘[ < RT} H 1n,1/(n) + OP(l)
ve{1,2,4}N

n=1
whereo, (1) converges to zero gs— oo. Other events can be further neglected: assume there axists
relay ny for which v(ng) = 4. The network is in outage when the source-destination atlasrsmall
and for every relay, at least one of the source-relay or rd&stination channels is small. If we count
the source-destination channel and those of the relay eafiable for the outage, we obtain at least
N channels excluding relayy. As v(ng) = 4, both channels of relay,, are furthermore small (see
(40)), and we end up witlv + 2 small channels at least. This happens with a probabilityigiete with
respect top~ (N1, This fact is formalized by the following lemma which prosfin Appendix I1I-C:

Lemma 5:For anyv € {1,2,4}" for which 3ng, v(ng) = 4, the following holds true

N
lim p"*ME |1{T < RT} [ 1nwim| =0 - (43)

—00
r n=1
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Thanks to this lemma, we can wril€ ™' P[I < RT] = 3°, 1) v pV T'E [1{[ < RT}T, 1W(n)]+

0,(1). This equation can be rewritten

N
PHPI<RI] = Y PN /A N FGomar(@) TT (fGon @n) fGn sss (4n)) dedwndyn
n=1

oc{1,..,.N} n=1

+0,(1)
where A(©) is defined as
Vne o, z, <p’~tandy, > pi1,
(,21...xN,y1-..yN) | ¥ €O, z, > po~ 1 andy, < p*~L,

IN+1 N ap px (a0 pr+1) (o pzn+1)+aoam P Tnyn
€ R+ Zn:l tn lOg (1 + Qopx + 1+aopxn+on pyn

A(©) =

+t log(1l + appx) < R
and© is the complementary set & in {1,..., N}. Now we make the change of variables= agpz,

Vn € ©,u, = agpz,, andvm € ©,v,, = a,py, to obtain

1
pPNHIPI<RT] = ) N /zwﬂ To (t; (tns Yn)nce (Tm, vm) e )
oc{1,.. ,N} Hme@ Qm /R

du ] dundyn [] domdvm + 0,(1) (44)
neoe me@
where the functiong/g are given by

Jo =fcon(w/p) [T Hun < p"30{yn > 0" ey (n/p) fa s (vn)
nee

X H 1{$m > p5_1}1{11m S p6}fG0m(xm)me,N+1(,Um/p)
meo

1 n 1 n nJdn
xl{Ztnlog<1—|—u+u(u+ Y up +1) + puy)

neo 14 un + o pyn

1 1
N Z £ log <1 ud u(u + 1) (appxm + 1) —I—ozopznmvm)

- 1+ QOPTm + Um
meo

+ tolog(1 + u) < R} (45)
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One notices thatlg has a limit whernp — oo given by

pll{& J@ = CO,N+1 H CO,nfGn,N+1 (yn) H Cm,N—i—lng,m (ajm)
neoe meo

1 Z tnlog (14 u+u,) + Z tmlog ((1+ u)? + Um) +tolog(l+u) < Ry (46)
neoe mee

We have the following lemma which proof is provided in Appandi-D:

Lemma 6: The following holds true:

11 o, H Cm,N+1
pN-i-l]P)[I < RT] = CoN+1 E : n‘e®@|+1 n ma
m

oc{1,..N} %o mco
/N 1 D talog(I+u+un)+ > tmlog (1+u)?+vm) +tylog(l+u) <R
R neo meo

du [ ] dun J] dom + 0,(1) (47)

neo me@

Recovering Equation (27) from this lemma is a matter of cleaoigvariables. The indicator function

at the RHS of (47) can be rewritten

Unp, Um
AL — <
1 g tnlog<1+1+u>+ E@tmlog<1+(1+u)2>+(1 g tp)log(l+u) <R
me

nee nee

By making the change of variablag = (1 - " g tn)log(1 +u), z, = t,log (1 + I“J:u) for n € ©,

andz,, = t,, log (1 + (lm)z> for m € ©, and by replacingy; with 3; for all 4, we obtain (27).
It remains to prove convexity. Fix a sé and consider the corresponding summand at the RHS of (27).
Putty =1— > cotn. By @a method similar to the one used in the proof of Lemma 3 é@nappendix,
one can easily prove that this summand is convegtints,...,tn, fo,- .., On). Hence, its restriction
to (1 -3 cotn t1,---,tn,0Bo,...,Bn) isS convex. By consequencé,r is a convex function. This

concludes the proof of Proposition 4.

B. Proof of Lemma 4

We recall that if two functiong;; and g» satisfy g1 > g2 then1{g; < R} < 1{g» < R}, a fact that
we shall repeatedly use in this Appendix.

From the Expression (25-26) of the mutual information, itlsar that

2Gon, G
I>t, Tlog <1+ apln, P~ Gon,Gng, N+1 >

1+ aopGony + 0y pGrg, N+1
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whereny is the relay for whichv(ng) = 3 as in the assumption. Therefore, the left hand side of (42)

satisfies

N 2
a0ne P Gony G, N+1 > } }
I <RTY [T 1w | <E|1t0 10 (1 + ’ <R\ 1, yme
{ a } H " )] |: { o8 < 1+ OZOPGOnO + anngno,N—i-l v(no)

E

n=1

2

00y P~ Gong G, N+1 R/t } { 51 51

=E|1 . <eV'mo —1514Gop, > p }1{G0N1>p } .
{ { 1+ appGon, + Qg pGrg,N+1 " no

(48)

Observe that the function

0y, P2y >

x,y) —log | 1+
(@) g< L+ appz + o, py

defined onIR{%r is increasing in the variables andy. Therefore,

20
RHS(48) < E [1{ 20Tl < eRitng — 1}] .
1 + QP + Qp, P

26
Q%P converges to infinity ap — oo, there exists a constap > 0

As the functiong(p) = 515

such that the RHS of the last inequality is zero when py. By consequence, the left hand side of (42)

is zero wherp > py. Lemma 4 is proven.

C. Proof of Lemma 5

We havel > (t6+22’:1 tn)T log (1 + appGo n+1) by inspecting the Expression (25-26) of the mutual

information. By consequence,

N N
1{(th + > tn)log (1 + aopGont1) < B} [ 1nwim

n=1 n=1
N
= pME[L{pGons1 < CH [ Elnpm) (49)

n=1

N
pN+1E l{I < RT} H ln,l/(n)] < pN+1E

n=1

where ¢ = 2R/ (tt3.t.))=1 " anq the equality is due to the independence of the chanimekhe

Qo

remainder of the proofi’ will denote a constant independentofvhich value can change from line to
line. The following facts can be shown as usual by making gkarof variables then using the DCT and

the right continuity of the channel gains densities:
E[1{pGon+1 < C} =P[pGons1 < C] < Kp~!
If v(n) =1, then

E[L,,(m] = PlGon < p° P[Grni1 > p° ] S P[Gopn < pP° 7Y < KPPt
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If v(n) =2, then
E[Lym) = P[Gon > p° ' P[Grni1 < 071 < PlGonsr < p" ] < Kp*t
Finally, if v(n) = 4, then
E[L,, () = P[Gon < p* 1 P[Grnir < p°7 1] < Kp» 72
Plugging these inequalities into (49), we obtain

N
pN+1E 1{] < RT} H ]-n,l/(n) < Kp(N+L)5—L

n=1

whereL is the number of indiceg(n) = 4. AsL > 1 andd < 1/(N+1) by assumption,N+L)é—L < 0

and the RHS of the last inequality converges to zero. Thiglcoles the proof of Lemma 5.

D. Proof of Lemma 6

In view of Equations (44) and (46), we only need to prove tha}_... [ Jo = [lim, .« Jo. To this

end, we shall prove that there exists constdiits- 0 and py > 0 for which

Jo <1 {(u, (un)ne@y (’Um)meg) € [O’K]N+1}

feon@/p) TT fao. (un/p) fer nisn) T] Feon @m)fc v (om/p) - (50)

neoe mee

for all p > pg. Indeed, assume (50) is true. Fprarge enoughfeq, ... (u/p), (fG,.(un/p))nce and
(fGnnir(Vm/p)),,ce @re bounded ofD, K] by right continuity at zero. Therefordg is dominated by
an integrable function fop large enough, and it is possible to excharfgwith lim, ., by the DCT.

We now prove (50). Write the last indicator function at the Rbff (45) asl{Xg < R}. We have

N
Xo > (t'o + Ztn> log(1 + u)

n=1

therefore

1{Xeo < R} < 1{u € [0, Kol} (51)

with Ko = exp(R/(ty + > tn)) — 1.

For any indexn € ©, we have by inspecting the expressionA¥ :

Qp PURYn
Xo > tplog | 1+ 52
6> tylog (14 2t ) 52
hence

Qpn PUnYn <C }
L4+ up + anpyn —

1{Xo < R} < 1{
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whereC,, = exp(R?/t,) — 1. As the functiong(x) = ;7 is increasing orR, if ac > 0, we have

U Pl Y, Uy,

Wyn > "1} > 5 " ~1{y, > p" '}

1+ up + anpyn Up + Opp
hence
5
O PUnYn S—1 P’ Uy sl
<C }1 > < 1{— <C }1 >

) S .
But p2Ltle s < (), & uy, < 2252£20s As the fraction at the RHS convergesdy asp — oo, there

exists a constank’,, > 0 for which

5
anpun
1{—<C}<1 €0, K]} .

Ttu, +anp® = "7 {un € [0, Ku]}

whenp is large enough. In conclusion we have
1{Xo < R}1{y, > p‘s_l} < 1{u, €0, K, ]} 1{y, > p‘s_l} < 1{u, €0, K,]} . (53)
Consider now the indices. € ©. By getting back to the expression &%, we can write for any of these

indicesXg > t,, log (1 + %), an inequality similar to (52). By going over the steps theatd

to (53) again, we obtain fop large enough
1{Xo < R}1{z), > p° 1} < 1{v,, € [0, K]} (54)

where K,,, > 0 is a constant. By combining Inequalities (51), (53) and (54 obtain

1{Xo < R} < 1{u € [0, Ko} [ 1{un € [0, K]} J] 1{vm € [0, K]}

neo meo

< 1{(u, (un)neo; (vm)mep) € [0, K]V}

where K = max({Ko, {K,},{Kn}}). By plugging this inequality into the RHS of (45), we recover

Inequality (50). This concludes the proof of Lemma 6.
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Fig. 1. DF Protocol forN relays
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Fig. 2. AF Protocol forN relays
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Fig. 3. Outage performance of DF protocdl, = 1 relay
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Fig. 4. Outage performance of AF protocdV, = 1 relay
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Fig. 5. Merit of optimization,N = 1 relay
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Fig. 6. Outage performance of DF and AF protocdis= 2 relays
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