
Eurographics Symposium on Rendering 2016
E. Eisemann and E. Fiume
(Guest Editors)

Volume 35 (2016), Number 4

Forward Light Cuts:
A Scalable Approach to Real-Time Global Illumination

Gilles LAURENT+,∗ Cyril DELALANDRE+ Grégoire de LA RIVIÈRE+ Tamy BOUBEKEUR∗

+ Dassault Systèmes ∗ LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay

Figure 1: Real-time rendering with the first bounce of indirect lighting using Forward Light Cuts. The scene is composed of 7M triangles and
is rendered in 16 ms at 1024×512 pixels resolution, without any precomputation and accounting for occluded yet contributing surfaces and
long range light bounces.

Abstract
We present Forward Light Cuts, a novel approach to real-time global illumination using forward rendering techniques. We focus
on unshadowed diffuse interactions for the first indirect light bounce in the context of large models such as the complex scenes
usually encountered in CAD application scenarios. Our approach efficiently generates and uses a multiscale radiance cache by
exploiting the geometry-specific stages of the graphics pipeline, namely the tessellator unit and the geometry shader. To do so,
we assimilate virtual point lights to the scene’s triangles and design a stochastic decimation process chained with a partitioning
strategy that accounts for both close-by strong light reflections, and distant regions from which numerous virtual point lights
collectively contribute strongly to the end pixel. Our probabilistic solution is supported by a mathematical analysis and a
number of experiments covering a wide range of application scenarios. As a result, our algorithm requires no precomputation
of any kind, is compatible with dynamic view points, lighting condition, geometry and materials, and scales to tens of millions
of polygons on current graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Radiosity

1. Introduction

Light transport simulation is an important component of realistic
image synthesis. Beyond direct lighting, global illumination, de-
spite its well known physics laws, remains a challenging problem
due to its high computational cost, with even more critical conse-
quences for fully dynamic real-time scenarios involving large ob-
jects. Hidden behind the recursive nature of the rendering equa-
tion [Kaj86], global illumination simulation has been addressed
in a number of approaches with applications ranging from visual
special effects to scientific visualization, through animated pictures
and video games. Currently, we can distinguish two lines of re-
search: offline rendering, which targets a solution as close as pos-
sible to physics and interactive rendering, which aims at quickly

providing a visually convincing approximation of global illumina-
tion. While significant progress have been recently made for the
former using the Monte Carlo rendering framework, we focus on
the latter and the set of constraints induced by real-time scenarios.

Due to the low-pass filtering nature of diffuse material reflec-
tion [RH01, BJ03], most real-time global illumination methods ex-
ploit the reasonable assumption that indirect radiance can be de-
scribed by a low frequency function, especially when the emitter
is far from the receiver (Sec. 2). In particular, numerous radiance
caching methods [WFA∗05, REG∗09] compute a hierarchical spa-
tial structure over the geometry of the scene and use it to model
a multiscale radiance function, later queried to illuminate the pix-
els of the final image. The leaves of this tree structure are typically

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

formed by so-called virtual point lights (or VPLs), which are sam-
pled on the scene surfaces that are visibile from the primary light
emitters at caching time. Every internal node of this tree is then set
with a representative response that approximates the radiance of its
related subtree. At shading time, a set of nodes, called light cut,
is adaptively gathered from the tree to evaluate the incoming radi-
ance at a given point. Although it may contain leaves (i.e., original
VPLs) for close-by elements, it is typically mostly formed of inter-
nal nodes that act as economic substitutes to represent the incoming
radiance from distant locations, saving both time and memory.

For this category of methods, a fully dynamic scenario, in-
volving large objects, induces at least two limitations. First, the
caching structure needs to be recomputed at each frame, as detect-
ing changes under fully dynamic conditions ends up being just as
costly as recomputing the whole cache, in particular regarding the
limitation of the fine-grained parallel nature of modern graphics
hardware. Second, the initial set of VPLs may be too large to cope
with real time constraints, in particular when their generation can-
not be amortized over time.

In this paper, we adopt a forward strategy to address these prob-
lems (Sec. 3). First, we observe that the scene polygons themselves
can trigger the VPL generation process and propose a tessella-
tion/decimation GPU pipeline that uses both the geometry shader
and the tesselator unit to generate an initial set of VPLs (Sec. 4),
refining the geometry of the scene wherever it is too coarse to ac-
curately capture the radiance, and simplifying it where the polygon
distribution is too dense. Second, we propose a stochastic cluster-
ing scheme that associates subsets of the resulting VPLs to bounded
regions of influence for which they act as radiance representatives
to shade points. This yields a multiscale representation of indi-
rect lighting free from any explicit tree structure used to efficiently
shade receivers (Sec. 5). Moreover, we designed both the caching
and shading stages to efficiently map on modern graphics architec-
tures (Sec. 6). As a result, our entire algorithm runs from scratch
at every frame and preserves real-time performance even for large
scenes, capturing diffuse unshadowed indirect illumination under
dynamic conditions, while naturally accounting for long range in-
direct illumination and hidden geometry (Sec. 7).

2. Previous Work

A full survey of real-time global illumination methods is be-
yond the scope of this paper and we refer the reader to the re-
cent manuscripts by Ritschel et al. [RDGK12] for an up-to-date
overview of real-time global illumination methods and Dachs-
bacher et al. [DKH∗14] for a complete overview of the many-lights
framework. As we target diffuse GI for large dynamic scenes, we
focus on the most relevant prior art in the following, namely screen-
space and object-space diffuse global illumination solutions.

Mittring et al. [Mit07] introduced an ambient occlusion approx-
imation method using the depth-buffer as an economic, random-
accessible substitute to the actual (potentially large) geometry of
the scene, and parameterizing the light cache in screen-space. Later,
Ritschel et al. [RGS09] extended this approach to simulate diffuse
color bleeding in a similar setting. A large variety of other meth-
ods [RDGK12] exploit screen-space approximations to lower the

computational complexity of some lighting effects. However, de-
spite their real-time and dynamic performances, such approaches
rely on depth peeling and multiple views rendering to account for
the full geometry of the scene i.e., beyond the first depth layer and
outside the view frustum, which quickly impacts negatively their
native speed. Recently, Mara et al. [MMNL14] proposed to take
advantage of temporal coherency to build a multi-layered sampling
strategy and remove most of hidden surface issues – e.g. view de-
pendent ghosting artifacts. This approach is effective in a number of
cases, but still suffers from grazing angle geometry undersampling
issues.

In contrast to screen-space approaches, solving for indirect il-
lumination in object-space avoids such view-dependent artifacts, at
the cost of less GPU-friendly light caches. For instance, Instant Ra-
diosity (IR) methods [Kel97] work with VPLs, a set of secondary
point light sources, directly generated on the geometry illuminated
by the primary sources. Thus, a VPL set acts as a discrete repre-
sentation of the scene’s indirect lighting and allows to reduce com-
putations drastically when approximating light bounces. Reflective
Shadow Maps (RSM) [DS05, DS06] provide an efficient VPL gen-
eration mechanism by sampling the scene in light-view space. This
method has been improved by adding a clustering strategy over the
RSM pixels which allows to reduce the number of VPLs by keeping
the relevant ones only [PKD12]. However, scaling up to massive
data requires huge amounts of VPLs. This is challenging as both
generation and shading costs of so many VPLs is prohibitive in dy-
namic scenes. This problem is typically addressed with hierarchical
methods such as Lightcuts [WFA∗05] or Point-Based Global Illu-
mination [Chr08, REG∗09], which aim at managing massive sets
of VPLs using multiple level-of-details of the point-sampled light
field. In this context, ManyLODs [HREB11] reached interactive
rendering time by computing in parallel many coherent cuts in the
VPL tree. To reach real-time performances on complex scenes with
up to millions of lights, Olsson et al. [OBA12] chose to address fill-
rate issues by clustering the GBuffer pixels using an extension of
tiled shading [OA11]. However, these techniques are based on a
tree structure which requires amortizing its construction over time,
preventing full dynamism in the scene.

A challenging issue while simulating indirect illumination with
IR is to compute visibility between VPLs and pixels. Numer-
ous approaches have been developed to this end, such as the Im-
perfect Shadow Maps (or ISMs) [RGK∗08] which are generated
quickly and in droves from on a point sampling of the scene, and
queried during shading to approximate indirect visibility. Virtual
Area Lights (or VALs) [DGR∗09] allow to reduce the number of
visibility queries by clustering light emitters into small surfaces,
with the visibility being approximated by computing soft shadows
from VALs shadow maps. In order to amortize VPLs shadow com-
putation, Laine et al. [LSK∗07] proposed to select at each frame a
subset of VPLs for which shadow maps are computed or updated.
To improve temporal coherency, Barák et al. [BBH13] used a RSM
to sample preferably the scene in region with high radiance. Re-
cently, Hedman et al. [HKL16] developed a technique which gener-
ates a temporally coherent VPL sampling of large scenes by memo-
rizing their position from frame to frame and only invalidating them
when they no longer influence framebuffer pixels. Indirect visibil-
ity is then implicitly solved by using ray tracing to sample VPLs.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Raw Geometry

Indirect Draw Buffer

GBuffer

Randomly chooses
a function support

Computes VPL to pixels
radiance transfer

Computes VPL
unbiasing factor

Splats screen space
bounding elementTessellation Stage

Geometry
Stage

Oversized
Triangles

Randomly discards
or generates one VPL

Figure 2: Forward Light Cuts. The raw geometry is sent to the geometry shader where it is split into regular and divergent triangles.
Divergent triangles – i.e. with an area greater than a certain threshold – are used to fill an indirect draw buffer and then subdivided such that
every new triangle may be considered as regular. Regular and subdivided triangles are then randomly distributed over N+2 subsets including
one which is discarded. The surviving triangles are classified among subsets according to a probability distribution depending on their size.
Finally, for each of these triangles, a single VPL is created whose power depends on the subset it belongs to and its support function is
computed accordingly.

Note that our proposed algorithm does not address indirect visibil-
ity, as it is an orthogonal problem to the one we target: efficiently
balancing VPL distribution to focus computations where needed.

Finally, the Deep Screen Space (DSS) approach [NRS14] pro-
poses to exploit the advantages of both screen-space and object-
space radiance caching. The same way as object-space strategies,
this method generates on-surface VPLs, even on occluded geome-
try that may still impact the image; and similarly to screen-space
approaches, it benefits from a native GPU support, with the tes-
sellator unit – instead of the rasterizer – being used as a surface
sampler to generate the VPLs. Still, although DSS can successfully
be used for rendering small to medium size scenes, it cannot cope
with larger ones, where the real-time constraint imposes decimat-
ing geometry rather than refining it. Our technique makes a step
forward in this direction, by proposing a diffuse GI pipeline which
can both refine and simplify the set of geometry-driven VPLs in a
two-pass strategy. Exploiting both the tessellator unit and the ge-
ometry shader to adjust the resolution of an object-space radiance
cache in the context of scenes with a massive number of triangles.
In particular, we also reach real-time performance by using a multi-
scale representation of the light field but, contrary to the aforemen-
tioned techniques, our method is fully dynamic and does not resort
to any tree structure, nor imposes to maintain any data structure
among frames.

3. Algorithm Overview

Our algorithm, illustrated in Fig. 2, has the structure of typical VPL
based pipelines, composed of three main stages: VPL generation,
indirect light caching and lighting with VPLs. Our contributions

mainly focus on VPL generation and their usage during lighting,
and can be summarized as follows:

• at loading time, we associate a single random integer to each
vertex; this number will be used at rendering time to generate
per-triangle random numbers consistently, even under dynamic
geometry transformations (see Sec. 6);

• the full set of triangles L is then randomly partitioned according
to a probability distribution (Sec. 4, Fig. 3); for each triangle,
a VPL is stochastically generated and its outgoing radiance is
computed based solely on its related partition (L0 . . .LN); in or-
der to balance computations, we distribute many samples with
small influence distance in L0 and decrease the number of sam-
ples while increasing the influence distance in Lk when k grows;
this leads to a functional equation on the VPLs radiance that we
derived in Sec. 5;

• in addition, to significantly reduce the number of triangles to
manage while optimizing the amount of sampling information, a
special set – mainly composed of small triangles – is completely
discarded;

• furthermore, to properly cope with hardware restrictions when it
comes to dynamic data amplification, we create exactly one VPL
per triangle; as such, large triangles – that we call “divergent”
(Sec. 4) – are not well sampled by the aforementioned strategy
and may introduce important lighting artifacts in the final im-
age; consequently, we reroute them through the tessellation unit,
where they are subdivided to reach the proper resolution (see
Sec. 6);

• last, we splat indirect illumination in a typical deferred shad-
ing process, with the splatted function supports depending on
the VPL partition, reserving powerful VPLs to carry on distant
lighting using crescent-shaped support (Sec. 5, Fig. 3).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

+ +

Figure 3: Multi-scale radiance cache. In our approach, VPLs
are distributed among different subsets, each of which having a
bounded region of influence (in yellow). The final illumination com-
puted at a given point uses samples from the different clusters to
reconstruct the incoming radiance at shading time.

4. VPLs Generation

Our VPL generation method is based on the standard hardware ras-
terization pipeline and is designed to exploit the GPU fine-grained
parallelism by generating each VPL independently from the oth-
ers. Moreover, our algorithm only implies a single draw pass of
the geometry, enabling its use with scenes featuring a high polygon
count. To do so, we distinguish regular triangles from divergent
ones, i.e. the set of triangles {ti} with surface area A(ti) greater
than a certain threshold S0. We set

S0 = 4π
D2

near
Navg

, (1)

which is a heuristic aiming at lighting pixels with approximately
Navg VPLs at least Dnear far from them. Let Rscene be the scene ra-
dius, we typically set Dnear = 0.2×Rscene and Navg between 64 and
1024 depending on the desired quality/speed tradeoff. We discuss
how we handle divergent triangles in Sec. 6 and assume triangles
to be regular in the remaining of this section.

Triangle decimation Small triangles contribute weakly to the fi-
nal rendering for diffuse indirect lighting [DKH∗14] and we tend
to favor their removal in our pipeline. However, we cannot just dis-
card every triangle smaller than a given threshold, since groups of
small triangles may collectively have an important impact in the
light transport reaching a distant point. We address this problem by
adopting a stochastic decimation approach: we retain the contribu-
tion of heavily tesselated geometry by computing, for each triangle,
a uniform random value uti lying between 0 and 1. We then keep
this triangle if A(ti) > utiS0. Because every triangle is assumed to
be regular, the probability for a triangle to be kept boils down to:

∀ti ∈ L, P(ti ∈ L∗) =
A(ti)
S0

, (2)

where L denotes the set of all triangles and L∗ the set of kept trian-
gles. This means that the smaller a triangle is, the greater its chance
to be discarded becomes. At the same time, this partitioning trans-
lates into a uniform distribution of samples over the entire scene
surface, such that the expectation of the surviving triangle count is
E[Nsample] =

AScene
S0

, with AScene the total scene area.

Triangle multiscale partitioning Once small triangles have been
discarded, we randomly dispatch the remaining ones (L∗) in a par-

tition (L0, . . . ,LN) such that LN contains a few triangles and Lk is
more and more populated when k gets closer to 0. To do so, we in-
troduce the sequence of N + 1 increasing values {S0 < · · ·< SN}
representing the desired VPL partitioning. By further defining in
Alg. 1:

∀k ∈ [0 . . .N], S̃k =
1

∑
k
j=0

1
S j

,

a multiscale partitioning of representative scene triangles emerges
from our decimation strategy (Fig. 3), with the probability for a
triangle to lie in the subset Lk being:

∀k ∈ [0 . . .N], P(ti ∈ Lk) =
A(ti)
Sk

. (3)

Note that, with this definition, a triangle is considered as diver-
gent if its area is greater than S̃N .

In such a way, the key property of our approach at this stage is
that we do not generate, maintain or manage any kind of explicit
hierarchy – because we affect a triangle to a certain subset inde-
pendently from the choice made for any other – while still being
able to later gather an adaptive multiscale light cut. This clearly fa-
vors parallel execution, however, this also means that a given trian-
gle, located in a given subset, does not capture any coarse-grained
information carried by finer triangles. This issue is discussed and
partially addressed in Sec. 5.

Algorithm 1 Multiscale Partition

1: procedure COMPUTELEVEL(uti , ti)
2: for k← 0 . . .N do
3: if uti <

A(ti)
S̃k

then
4: return k
5: end if
6: end for
7: DISCARDTRIANGLE()
8: end procedure

5. Lighting with VPLs

x, ρx

~nx

t0

. . .

. . .

ti
yi, ρi, A(ti)

H(t i,x
)

~ni

Figure 4: VPL illumination at point x

In the many-lights framework, the indirect outgoing radiance
L(x,~nx) of a point x with normal~nx is approximated by LML(x,~nx)
which is defined as the discrete sum of the radiance coming from a
set of VPLs:

LML(x,~nx) = ∑
ti∈L

H(ti,x,~nx)A(ti), (4)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

where L represents the set of all triangles in the scene and
H(ti,x,~nx) stands for the incoming radiance transfer function start-
ing from ti toward the receiver x oriented by ~nx (Fig. 4). For a dif-
fuse receiver with albedo ρx, this function is defined as:

H(ti,x,~nx) = L(ti, ¯yix)
ρx

π

〈~nx, ¯xyi〉+〈~ni, ¯yix〉+

d2
i

, (5)

where ū = ~u
‖~u‖ , 〈~u,~v〉+ = max(0,〈~u,~v〉), L(ti, ¯yix) is the radiance

leaving the VPL centered at yi ∈ ti toward the direction ¯yix and di =
max(ε,‖ ~xyi‖) is the distance between yi and x clamped to a user
parameter ε to avoid singularities. We model the first diffuse bounce
of light with the following VPL outgoing radiance expression:

L(ti, ¯yix) = ρiE(ti)
3

2π
〈~ni, ¯yix〉+ , (6)

where E(ti) is the direct irradiance falling to the triangle ti. Note
that because of the term 〈~ni, ¯yix〉+, these reflectors cannot be con-
sidered as perfectly lambertian anymore. Although light is there-
fore preferably reflected in the direction of the geometric normal,
our experiments show that no important changes appear, while this
greatly alleviates upcoming computations. The term 3

2π
comes to

ensure energy conservation, with the radiosity B(ti) and the irradi-
ance E(ti) being related by:

B(ti) =
∫

Ω

L(ti,ω)〈~ni,ω〉+ dω = ρiE(ti)

Approximating VPL lighting We propose to approximate the
computation of LML(x,~nx) by summing the contribution of a subset
of VPLs (Fig. 3), i.e. the ones lying in (L0, . . . ,LN). Thus, we de-
fine K(x,~nx) an estimator of LML(x,~nx) as follows:

K(x,~nx) =
N

∑
k=0

∑
ti∈Lk

H(ti,x,~nx)Fk(ti,x), (7)

Fk(ti,x) is an unknown function of the position x, the emitter ti and
the index k. Its equation is derived below.

By computing the expectation of K(x,~nx) over the set of every
possible partition (L0, . . . ,LN), we get:

E [K(x,~nx)] = E

[
N

∑
k=0

∑
ti∈Lk

H(tk
i ,x,~nx)Fk(tk

i ,x)

]

= ∑
ti∈L

H(ti,x,~nx)E

[
N

∑
k=0

Fk(ti,x)1[ti∈Lk]

]

= ∑
ti∈L

H(ti,x,~nx)
N

∑
k=0

Fk(ti,x)P(ti ∈ Lk), (8)

where 1[ti∈Lk] is the indicator function, that equals to 1 if ti ∈ Lk

and 0 otherwise. If we want K(x,~nx) to represent an unbiased es-
timator of the incoming radiance LML(x,~nx), we have to verify the
following functional equation on Fk:

∀x, ∑
k

Fk(ti,x)P(ti ∈ Lk) =A(ti). (9)

According to our VPL partitioning strategy (see Eqn. 3), we define

D0

D1

D2

D3

0
f 0(ti,x) f 1(ti,x) f 2(ti,x)

Figure 5: Visualization of our support functions f k(ti,x) on a pla-
nar section, for values ranging from 0 (black) to 1 (white). Bh(ti)
are the isolevels of these functions.

Fk as:

Fk(ti,x) = Sk f k(ti,x),∀[0 . . .N], (10)

which translates the unbiased condition (Eqn. 9) to a partition of
unity problem, seeking for a set of functions (f k)k such that:

∀x, ∑
k

f k(ti,x) = 1. (11)

Choice of partition of unity Inspired from PBGI tree cuts strate-
gies [Chr08], we introduce a family of nested balls Bh(ti) charac-
terized by h > 0. For a given h, Bh(ti) represents the set of points
for which the contribution of the VPL is significant. This means
that for each point x outside of Bh(ti), the function H(ti,x,~nx) has
a smaller value than h, whatever the orientation of the receiver~nx:

∀h ∈ R∗, Bh(ti) =
{

x ∈ R3 s.t. max
~n

H(ti,x,~n)≥ h
}

. (12)

Furthermore, H(ti,x,~n) (Eqn. 5) is maximal when the receiver is
front facing the emitter, i.e. ~n = ¯xyi. Thus, with our VPL radiance
distribution model, we can write:

Bh(ti) =
{

x ∈ R3 s.t.
‖x− yi‖
〈~ni, ¯xyi〉+

≤ D(h)
}

,

where

D(h) =
1
π

√
3ρxρiE(ti)

2h
.

(13)

Hence, as D(h) does not depend on x, (Bh(ti))h∈R∗ is a family
of nested balls whose frontier owns yi and center lies on the line
(yi,ni) (Fig. 5). We impose that our 3D unit partition (f k)k is con-
stant over the spheres being the frontier of a Bh(ti). Then, by defin-
ing the following mapping from R3 to R:

∀x ∈ R3, d(ti,x) =
‖x− yi‖
〈~ni, ¯xyi〉+

, (14)

our problem boils down to a 1D partition of unity (f̃ k)k:

∀x ∈ R3, f k(ti,x) = f̃ k(d(ti,x)). (15)

Since (f k)k will be used as splatting functions during rendering,
we aim at making them as smooth as possible while keeping them

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

f̃ 0 f̃ 1 f̃ 2 f̃ 3
1

0

0 D0 D1 D2 D3

d

Figure 6: One dimensional partition of unity

easy to compute and define them as the following set of continuous
piecewise affine functions with compact support:

∀d ∈R, f̃ k(d)=

1 if k = 0 and d ∈]0,D1]
d−Dk−1

Dk−Dk−1
if k > 0 and d ∈]Dk−1,Dk]

Dk+1−d
Dk+1−Dk

if k > 0 and d ∈]Dk,Dk+1]

0 otherwise

. (16)

Where {Dk} allow to specify the influence distance of each level
(Fig. 5, 6).

Parameters setting In order to mimic the traditional hierarchi-
cal representations used with light fields, we generate our partition
with subsets size expectation that decreases geometrically. Further-
more, while Sk may be understood as the average surface of trian-
gles lying in the level Lk, we define them by:

Sk = S0µk, (17)

where µ > 1 is a user-defined real number. Depending on the scene
and the number of levels, we typically set µ between 1.4 and 5. In
addition, still by mimicking the hierarchical approaches, we pro-
pose to define the distance of VPLs influence such that each point
in space is reached by a controlled number of VPLs, which may be
translated into: {

Dk =
√
S0µk, ∀k ∈ [0 . . .N]

DN+1 = DN
, (18)

6. Implementation details

We implemented our method with the OpenGL 4.4 API.

Pipeline description As depicted in Fig. 2, our pipeline only con-
tains two geometry draw passes of the entire scene: one to generate
the GBuffer and one to generate and splat the VPLs. This moder-
ate use of the raw geometry is an important metric for our appli-
cation scenarios because we aim at managing scenes with a large
number of polygons. In fact, a third geometry draw pass occurs,
but involves only a fraction of the scene: the divergent triangles.
As the divergence criterion is set such that the number of diver-
gent triangles remains small, this last pass is not computationally
prohibitive. Our algorithm exploits intensively the geometry shader
stage to perform computations on a per-triangle basis rather than a
per-fragment or a per-vertex one. Fortunately, for recent GPU archi-
tecture, the formally prohibitive overhead of the geometry shader
stage has been greatly reduced, enabling polygon-wise computa-
tions for large streams.

Figure 7: FLC on the Crytek Sponza. Top: without the divergent
pipeline, only the heavy tessellated geometry (green flowers and
arc hessian) cast indirect lighting. Bottom: With the full pipeline,
the ground (4 triangles) light bounce reveals much of the scene.

Divergent triangle management Current hardware tessellation
units are not designed to manage massive triangle sets as input,
inducing a noticeable overhead while processing a triangle even if
this triangle does not require any subdivision. At the same time,
the geometry stage of these architectures are extremely efficient at
discarding or letting polygons pass trough, i.e. when no geometry
amplification is mandatory. This motivates us to design our indirect
lighting pipeline with the two following passes. In the first pass, the
entire scene geometry is processed but the tesselation stage is dis-
abled. Divergent triangles are detected at the geometry stage and
stored in a separate buffer, while regular ones are stochastically
sampled. In order to manage scenes with numerous materials and
textures, we also store a per-triangle material index, used in the fol-
lowing pass to fetch information from a material or texture atlas.

Using the OpenGL “glDrawArrayIndirect” feature, the divergent
buffer is subsequently directly used as input geometry for the sec-
ond pass without any CPU synchronization. The tessellation stage
is solely activated for this particular pass and used to subdivide the
triangles such that their area becomes small enough to be processed
by our regular pipeline. In general, the number of large triangles is
relatively small compared to the total triangle count. Consequently,
the overhead induced by the divergent buffer filling and vertex pro-
cessing is negligible compared to the visual effect improvement
(see Fig. 7 for instance).

Per-triangle random number generation To evaluate Alg. 1 for
each triangle, we use a pseudo-random value for the variable uti .
The generation of this value only requires the mesh to own an addi-
tional per-vertex uint32 attribute – v_rand. This attribute is initial-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Algorithm 2 Per-triangle random value computation

1: uniform uint32 u_rand
2: uniform texture2D noise
3: function REGULARRAND(ivec3 v_rand)
4: return u_rand xor v_rand.x xor v_rand.y xor v_rand.z
5: end function
6: function DIVERGENTRAND(ivec3 v_rand, vec2

tess_coord[3])
7: ivec3 v_tess_rand
8: v_rand_tess.x = TEXTURE(noise, tess_coord[0])
9: v_rand_tess.y = TEXTURE(noise, tess_coord[1])

10: v_rand_tess.z = TEXTURE(noise, tess_coord[2])
11: return REGULARRAND(v_rand xor v_tess_rand)
12: end function

v_rand_tess[0]
v_rand[0]

v_rand[1]

v_rand[2]
v_rand_tess[2]

v_rand_tess[1]

tess
_co

ord[i]

NOISE

noise[tess_coord[i]]

(b) (c)(a)
TESSELATOR

Figure 8: Generation of per-triangle uniform random values in the
divergent pipeline. Each divergent triangle (a) is first subdivided.
For each sub-vertex (b), its barycentric coordinates tess_coord are
used to fetch a random value in the noise texture. Finally the fetched
value is used to initialize the subtriangle (c) random attribute.

ized when loading the mesh with random values uniformly chosen
between 0 and 232−1. In the regular pipeline, at the geometry shad-
ing stage, uti is computed as a xor between the random attributes
of the three vertices of ti. Note that the choice of the xor opera-
tor avoids correlation among two or three triangles. Moreover, new
random values can be generated at any time by using u_rand, a
global uniform random value that may be updated at most once per
frame. Being xor’d with the original per-vertex values, it allows to
get whole new random distributions over the mesh (Alg. 2).

For the divergent pipeline, the construction of uti is quite more
subtle. Indeed, this value remains unaltered, even under camera mo-
tion or mesh deformation, i.e. as long as the mesh topology remains
the same. To preserve these properties, we perform the tessellation
in the model space and exploit the fact that the tessellation pat-
tern only depends on the input triangle shape. Indeed, in our use
cases, the tessellation parameters are only determined by the origi-
nal triangle area. Therefore, during the tessellation evaluation stage,
we use the barycentric coordinates of the generated vertices to fetch
a uint32 value, named v_rand_tess, from a precomputed noise tex-
ture. Thus, to generate uti for a triangle sprung from the subdivi-
sion, we compute a xor between the three v_rand_tess, the three
base triangle v_rand and finally the global uniform random value
u_rand (Fig. 8, Alg. 2).

Progressive Rendering Since the VPL support functions defined
in Eqn. 16 are smooth, our algorithm produces at each frame a vi-
sually plausible rendering without high frequency artifacts. Never-
theless, with the aforementioned global uniform variable u_rand,
it is straightforward to generate many independent renderings of

Cornell Box Power Plant
Tiling ×64 Tiling ×64

GBuffer + SM 0.3 3.6
Indirect 3.5 8.5

Regular Pipeline 0.9 6.5
Divergent Pipeline 1.0 0.8
Upscaling + Blur 1.2 1.2

Full frame 3.8 12.1

Table 1: Rendering time break drown (ms) at 1280× 720 resolu-
tion, for the Cornell Box (1K tri.) and the PowerPlant (12M tri.)

the same scene with our approach. In addition, for each triangle,
we can easily derive two new independent random values from
u_rand. These values are used to jitter the VPL center yi defined
in Eqn. 5 over the triangle ti. Then, by averaging all these render-
ings with jittered VPLs, Eqn. 8 provides a result that is close to
the true solution of our problem, i.e. the computation of the first
bounce outgoing radiance on surface composed of diffuse reflec-
tors and ignoring indirect visibility. While this means that indirect
lighting is computed by integrating over every scene triangle, this
progressive version of our technique is able to manage any kind of
disturbed geometry (e.g. normal mapping, alpha tested) and could
also be extended to manage emissive textured geometry (Fig. 11).

Splatting indirect illumination The way the VPL contributions
are summed to simulate the indirect lighting is orthogonal to the
previous discussion. Hence, to keep a simple pipeline, we use a
splatting strategy similar to deferred lighting [ST90]. In particu-
lar, this allows to manage geometry decimation, VPL generation
and lighting in a single shader program. Indeed, besides determin-
ing whether a triangle is divergent or not and which is the level
of generated VPLs, we use the geometry shader to transform in-
put triangles in sized point primitives which encompasses the un-
derlying VPL screen space function support. Although the major
drawback of such a single-pass lighting pipeline is the fillrate con-
sumption, our algorithm aims at simulating a low frequency phe-
nomenon. Therefore, undersampling the resulting signal appears as
a reasonnable optimization. To do so, we partition the viewport in
4Ntiling_level tiles and assign to each pixel in the viewport a unique tile
pixel at the same relative location – this technique is often referred
as interleaved sampling [KH01, LSK∗07]. Next, at splatting time,
a tile is randomly chosen for each VPL thus dividing the number
of touched pixels by 4Ntiling_level . We finally recompose the image by
untiling the buffer and blurring it to remove the generated noise.

7. Results

All our experiments are performed on a standard PC equipped with
a Quadro M6000 GPU. Tab. 1 gathers timings of our FLC algorithm
on two scenes: one very simple and one containing a much more
complex geometry. We observe that the overall performance of our
algorithm mainly depends on two factors: the framebuffer resolu-
tion and the number of triangles composing the scene (Fig. 13).
Note also that the divergent pipeline costs roughly the same in both
cases.

When geometry is not the bottleneck, the framerate heavily de-
pends on the number of lower resolution subtiles used when splat-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Model Direct lighting only With SSDO With DSS With FLC (ours)

Sponza
270k tri. 4ms 7ms 19ms 8ms

Oil Platform
700k tri. 1ms 5ms 22ms 14ms

Car
3M tri. 2ms 6ms 28ms 20ms

San Miguel
12M tri. 9ms 13ms 35ms 22ms

Lucy
28M tri. 18ms 20ms 80ms 35ms

Table 2: Comparisons performed at a 1280x720 resolution. All high resolution images are provided as supplemental material.

ting indirect illumination. However, even if no information is lost
from the viewport sampling, reducing subtile resolution also comes
with drawbacks such as removing geometry details in shadowed
area (Fig. 9), due to the indirect lighting interpolation. The num-
ber of required VPLs depends on the scene (Fig. 10) and induces
fillrate, bandwidth and shading costs which obviously influences
the FLC framerate. However, although the number of used VPLs
is proportional to rendering time, the overall visual quality does
not map linearly to this value. In fact, we observe that the degra-
dation brought with our downscale strategy is well compensated
by increasing the number of VPLs. This allows trading VPLs for
subtiles to adjust a visually pleasant real-time framerate.

Comparison We evaluate our FLC approach against two algo-
rithms that we reimplemented in our framework: the popular SSDO
method [RGS09] and the more recent DSS approach [NRS14].
These two algorithms share the same properties as our FLC
method: (i) they run in real time (ii) with no preprocessing (i.e.,
on fully dynamic scenes) and they reproduce one-bounce, unshad-
owed diffuse indirect lighting. We perform our comparison using 5
scenes that exhibit different structures, polygon counts and lighting

conditions. Table 2 provides resulting images obtained by the three
different approaches and reports the complete frame generation
time in each case. First, we can observe that our method succeeds
at producing similar or better result than DSS, while being signifi-
cantly faster. This behavior is emphasized when the polygon count
grows and can be explained by our rerouting strategy, which re-
duces significantly the tessellator work load for large models. Sec-
ond, when comparing to SSDO, we can observe that this method
often fails at revealing the scene regions which are not directly
lit, but should receive a signifcant amount of first bounce indirect
lighting. Of course, being fully screen-space, the SSDO framerate
remains high even with large scenes, but the visual improvement
appears to be small compared to direct lighting only, while our ap-
proach, just such as DSS, reproduces better and more consistent
long range indirect lighting. In addition, Fig. 11 illustrates the ex-
ecution of our approach when enabling progressive rendering. We
compute the average of many renderings for which we change the
random seed at each frame. Each rendering is done with a high
number of subtiles and a few number of VPLs which allows to im-
prove the rendering time until convergence. We can visually assess

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

Figure 11: (Left) Progressive rendering (250ms) by averaging 50
renderings. (Right) Real time rendering (14 ms).

that, at the cost of a longer rendering time, this strategy allows to
completely remove any kind of artifact (like spikes).

Limitations and future work Our algorithm does not produce in-
direct shadow casting (Fig. 12) nor multiple light bounces since
splatting indirect illumination in screen space does not provide
any direct mean to simulate such phenomena. A future approach
would be to incorporate object space strategies [OBA12] to address
these issues, while still preserving the scalability and full dynamic-
compatibility of our method. The second limitation of our approach
is its current restriction to diffuse indirect lighting: incorporating
glossy reflectors in our mathematical framework is an important re-
search direction for managing scenes which are complex both from
a geometric and a material point-of-view.

8. Conclusion

We have proposed Forward Light Cuts, a novel approach to com-
pute diffuse indirect global illumination in real-time. Our geomet-
ric method generates VPLs using a stochastic decimation process
of the input triangles within a two-stages pipeline that either sim-
plifies or refines the scene’s geometry to reach a suitable radi-
ance caching resolution. Our approach does not imply any complex
preprocessing nor requires carrying complex data structures over
frames. It is compatible with large fully dynamic scenes, including
light, view point and geometry animations. Last, in terms of inte-
gration, our approach naturally fits modern graphics pipelines and
does not make any strong assumption on the complementary ren-
dering techniques employed by the host application. In addition to
the mathematical basis of our method, we evaluated it on a number
of scenes with high polygon counts, ranging from CAD models to
scans, and reported interactive performances in each case.

References

[BBH13] BARÁK T., BITTNER J., HAVRAN V.: Temporally coherent
adaptive sampling for imperfect shadow maps. In Comp. Graph. Forum
(2013), vol. 32, pp. 87–96. 2

[BJ03] BASRI R., JACOBS D. W.: Lambertian reflectance and linear sub-
spaces. IEEE Trans. PAMI 25, 2 (2003), 218–233. 1

[Chr08] CHRISTENSEN P.: Point-based approximate color bleeding.
Pixar Technical Notes 2, 5 (2008), 6. 2, 5

[DGR∗09] DONG Z., GROSCH T., RITSCHEL T., KAUTZ J., SEIDEL
H.-P.: Real-time indirect illumination with clustered visibility. In Proc.
VMV (2009), pp. 187–196. 2

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE
A., WALTER B., NOVÁK J.: Scalable realistic rendering with many-
light methods. In Comp. Graph. Forum (2014), vol. 33, pp. 88–104. 2,
4

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps.
In Proc. I3D (2005), pp. 203–231. 2

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect illu-
mination. In Proc. I3D (2006), pp. 93–100. 2

[HKL16] HEDMAN P., KARRAS T., LEHTINEN J.: Sequential monte
carlo instant radiosity. In Proc. I3D (2016), pp. 121–128. 2

[HREB11] HOLLANDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-detail
selection for real-time global illumination. In Comp. Graph. Forum
(2011), vol. 30, pp. 1233–1240. 2

[Kaj86] KAJIYA J. T.: The rendering equation. In Proc. SIGGRAPH
(1986), vol. 20, pp. 143–150. 1

[Kel97] KELLER A.: Instant radiosity. In Proc. SIGGRAPH (1997),
pp. 49–56. 2

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. Springer,
2001. 7

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTINEN J.,
AILA T.: Incremental instant radiosity for real-time indirect illumina-
tion. In Proc. EGSR (2007), pp. 277–286. 2, 7

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In SIGGRAPH
2007 courses (2007), pp. 97–121. 2

[MMNL14] MARA M., MCGUIRE M., NOWROUZEZAHRAI D., LUE-
BKE D.: Fast global illumination approximations on deep G-buffers.
Tech. rep., Tech. Rep. NVR-2014-001, NVIDIA Corporation., 2014. 2

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep screen
space. In Proc. I3D (2014), pp. 79–86. 3, 8

[OA11] OLSSON O., ASSARSSON U.: Tiled shading. Journal of Graph-
ics, GPU, and Game Tools 15, 4 (2011), 235–251. 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Clustered de-
ferred and forward shading. In Proc. HPG (2012), pp. 87–96. 2, 9

[PKD12] PRUTKIN R., KAPLANYAN A., DACHSBACHER C.: Reflec-
tive shadow map clustering for real-time global illumination. In Proc.
EUROGRAPHICS Short Papers (2012), pp. 9–12. 2

[RDGK12] RITSCHEL T., DACHSBACHER C., GROSCH T., KAUTZ J.:
The state of the art in interactive global illumination. In Comp. Graph.
Forum (2012), vol. 31, pp. 160–188. 2

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEIDEL H.-P.,
KAUTZ J., DACHSBACHER C.: Micro-rendering for scalable, parallel
final gathering. In ACM Trans. Graph. (2009), vol. 28, p. 132. 1, 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-P.,
DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for efficient
computation of indirect illumination. In ACM Trans. Graph. (2008),
vol. 27, p. 129. 2

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating dy-
namic global illumination in image space. In Proc. I3D (2009), pp. 75–
82. 2, 8

[RH01] RAMAMOORTHI R., HANRAHAN P.: On the relationship be-
tween radiance and irradiance: determining the illumination from images
of a convex lambertian object. JOSA A 18, 10 (2001), 2448–2459. 1

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. In Proc. SIGGRAPH (1990), vol. 24, pp. 197–206. 7

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable approach to
illumination. In ACM Trans. Graph. (2005), vol. 24, pp. 1098–1107. 1,
2

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

G. Laurent, C. Delalandre, G. De La Rivière & T. Boubekeur / Forward Light Cuts

(a) (b) (c) (d)

Figure 9: Influence of the tiling resolution parameter on the Lucy statue (28M triangles) in the Cornell Box model. The viewport resolution
is 1024×1024 pixels and we vary the tiling level from 0 (a) to 3 (d). Because of indirect light interpolation, Lucy’s face details are more and
more blurred while reducing resolution. At the same time, the indirect splatting time is reduced from 93 ms (a), to 48 ms (b) and 33 ms (c,
d). (c) and (d) rendering times do not vary because our algorithm is no more fillrate bottlenecked at this level.

(a) (b) (c) (d)

Figure 10: Indirect illumination computed with our algorithm on the Cornell Box model at 1024×1024 resolution. We fixed the number of
partitions level to N = 5 and we compare the results by varying Navg, i.e. the approximate number of VPLs influencing every pixel. Rendering
times are directly proportional to this number – (a) Navg = 64 is rendered in less than 1ms, (b) Navg = 128 in 3ms, (c) Navg = 256 in 7ms, (d)
Navg = 512 in 14ms. The close-up shows the typical artifacts appearing when N is not high enough.

Figure 12: Limitaton. Comparison between our technique (left) and a ground truth solution (right) for the first indirect light bounce. The
ground truth is rendered with path tracing using 8196 samples per pixels. We can observe the missing contact indirect shadow in our solution,
mainly visible at the pillar bases on the right. Underneath the right archs also appears much brighter than the reference in our solution, which
is due to the fact that the entire left facade illuminates this region without being occluded by the first floor.

(a) (b) (c)

Figure 13: FLC on the Power Plant model (12M triangles). The scene is rendered at 2560× 1440 pixels resolution in 8 ms for the direct
lighting (a) and 25 ms for the direct and indirect lighting (c) per frame.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

