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Abstract—We propose two coding schemes for discrete mem-
oryless broadcast channels (DMBCs) with rate-limited feedback.
In our first scheme, the encoder does not process the feedback
information that it receives, but simply relays it to the other re-
ceiver. This first scheme shows that arbitrary small, but positive,
feedback rate suffices to improve over the nofeedback capacity
for many DMBCs such as: any binary erasure BC (BEBC) with
unequal erasure probability at the two receivers, any binary
symmetric BC (BSBC) with unequal crossover probability at
the receivers, and any binary erasure/binary symmetric BC
(BEC/BSC-BC) with nonequal single-user capacity to the re-
ceivers. The scheme also improves the entire nofeedback capacity
region for any strictly essentially less-noisy BC–a new class of BCs
introduced in this paper–that is not physically degraded.

In our second scheme, the encoder decodes all the feedback
information and processes it with some local information before
sending the result to the receivers. For some setups, this second
scheme performs better than our first scheme. In the limit, as
the available feedback-rates tend to infinity, our second scheme
coincides with a special case of the Shayevitz and Wigger (SW)
scheme for DMBCs with generalized feedback. The mentioned
special case of the SW-scheme includes several other schemes as
further special cases, e.g, the schemes by Dueck and by Maddah-
Ali and Tse which achieve capacity or the degrees of freedom on
the respectively studied channels.

All our results hold also with noisy feedback when the receivers
can code over the feedback links.

I. INTRODUCTION

For most discrete memoryless broadcast channels (DMBC),
it is not known whether feedback can increase the capacity
region, even when the feedback links are noise-free and of
infinite rate. There are some exceptions. For all physically
degraded DMBCs the capacity regions with and without
feedback coincide [1]. The first simple example DMBC where
feedback increases capacity was presented by Dueck [2]. His
example and coding scheme were generalized by Shayevitz
and Wigger [3] who proposed a scheme and achievable region
for DMBCs with generalized feedback. In the generalized-
feedback model, the feedback to the transmitter is modeled
as an additional output of the DMBC that can depend on the
input and the receivers’ outputs in an arbitrary manner. It has
recently been shown [4] that the Shayevitz-Wigger scheme
includes as special cases the two-user schemes by Wang [5],
by Georgiadis and Tassiulas [6], and by Maddah-Ali and
Tse [7], which achieve the capacity region and the degrees of
freedom region of their respective channels. Other achievable
regions for DMBCs with perfect or noisy feedback, have been

proposed by Kramer [8] and Venkataramanan and Pradhan [9].
Kramer’s achievable region also shows that feedback improves
capacity for some specific binary symmetric BC (BSBC).

In this paper, we present two coding schemes for DMBCs
with rate-limited feedback. Both schemes use a block-Markov
strategy with backward decoding, and in each block they apply
Marton’s coding [10], which to date is the best known coding
scheme without feedback. In both schemes, the messages sent
over the feedback links are simply compression information
that describe the previous channel outputs at the corresponding
receiver. In our first scheme, the encoder transmits exactly
these compression informations as part of the cloud center of
Marton’s code in the next block. Thus, here, the encoder only
relays the feedback messages from one receiver to the other.
Backward decoding is used where in each block each receiver
first reconstructs a compressed version of the other receiver’s
outputs and then applies a modified Marton decoding to these
compressed outputs and its own observed outputs. We modify
the Marton decoding to account for the fact that each receiver
already knows a part of the message sent in the cloud center
(namely the compression information it had generated itself
after the previous block).

As we will see, in our first scheme, each receiver can
decode its intended messages equally well as if the part of
the message known to it was not there. Thus in the cloud
center we send information that is useful to one of the two
receivers without disturbing the other receiver, or in other
words, without occupying the other receiver’s resources. In
this sense, parts of the resources in the cloud center can serve
two purposes at the same time.

The proposed scheme is particularly beneficial for the class
of strictly essentially less-noisy DMBCs, which we define
in this paper and which represents a subclass of Nair’s
essentially less-noisy DMBCs [11]. Our class includes the
BSBC and the binary erasure BC (BEBC) with unequal
crossover probabilities or unequal erasure probabilities at the
receivers, and the binary erasure channel/binary symmetric
channel BC (BEC/BSC-BC) for a large range of parameters.
For strictly essentially less-noisy DMBCs Marton’s coding
achieves capacity [11], and except for physically degraded
BCs, our first scheme improves strictly over the nofeedback
capacity region no matter how small, but positive, the feedback
rates. In fact, for most of these channels our scheme improves
over all boundary points (R1 > 0, R2 > 0) of the nofeedback
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Fig. 1. Broadcast channel with rate-limited feedback

capacity region. The described scheme also improves over the
nofeedback capacity region of the BEC/BSC-BC when the
DMBC is more capable [12], unless the BEC and BSC have
same capacities.

Unlike for previous schemes, with our new schemes we can
thus easily show that feedback increases the capacity region
for a large set of DMBCs. This holds even when the feedback
links are rate-limited to arbitrary small, but positive, rates.

In our second scheme, the encoder first reconstructs the
compressed versions of the channel outputs. It then uses
these compressed signals together with the previously sent
codewords to generate some update information, which it then
sends to both receivers as part of the cloud center of Marton’s
code in the next-following block. For some setups this latter
coding scheme performs better than the first scheme. For
example, for Dueck’s example DMBC, the second scheme
can achieve the feedback capacity if the feedback rates are
sufficiently large. As the feedback rates increase, the region
achieved with this second scheme converges to a special case
of the Shayevitz-Wigger region that includes the regions by
Wang [5], by Georgiadis and Tassiulas [6], and by Maddah-
Ali and Tse [7].

All our results hold also with noisy feedback when the
receivers can code over the feedback links.

Notation: Z ∼ Bern(p) denotes that Z is a binary random
variable taking values 0 and 1 with probabilities 1− p and p.
Also, we use the definitions ā := (1−a) and a∗ b := āb+ab̄,
for a, b ∈ [0, 1]. Hb(·) denotes the binary entropy function.

II. CHANNEL MODEL

Communication takes place over a DMBC with rate-limited
feedback, see Figure 1. The setup is characterized by the finite
input alphabet X , the finite output alphabets Y1 and Y2, the
channel law PY1Y2|X , and nonnegative feedback rates RFb,1
and RFb,2. Specifically, if at discrete-time t the transmitter
sends the channel input xt ∈ X , then Receiver i ∈ {1, 2}
observes the output Yi,t ∈ Yi, where the pair (Y1,t, Y2,t) ∼
PY1Y2|X(·, ·|xt). Also, after observing Yi,t, Receiver i can send
a feedback signal Fi,t ∈ Fi,t to the transmitter, where Fi,t

denotes the finite alphabet of Fi,t and is a design parameter
of a scheme. The feedback link between the transmitter and
Receiver i is assumed to be instantaneous and noiseless but
rate-limited to RFb,i bits on average. Thus, if the transmission
takes place over a total blocklength N , then

|Fi,1| × · · · × |Fi,N | ≤ 2NRFb,i , i ∈ {1, 2}. (1a)

The goal of the communication is that the transmit-
ter conveys two independent private messages M1 ∈

{1, . . . , b2NR1c} and M2 ∈ {1, . . . , b2NR2c}, to Receiver
1 and 2, respectively. Each Mi, i ∈ {1, 2}, is uniformly
distributed over the set Mi := {1, . . . , b2NRic}, where Ri

denotes the private rate of transmission of Receiver i.
The transmitter is comprised of a sequence of encoding

functions
{
f
(N)
t

}N

t=1
of the form f

(N)
t :M1 ×M2 ×F1,1 ×

· · ·×F1,t−1×F2,1×· · ·×F2,t−1 → X that is used to produce
the channel inputs as

Xt = f
(N)
t

(
M1,M2, F

t−1
1 , F t−1

2

)
, t ∈ {1, . . . , N}. (2)

Receiver i ∈ {1, 2} is comprised of a sequence of feedback-
encoding functions {ψ(N)

i,t }Nt=1 of the form ψ
(N)
i,t : Yt

i → Fi,t

that is used to produce the symbols

Fi,t = ψ
(N)
i,t (Yi,1, . . . , Yi,t), t ∈ {1, . . . , N}, (3)

sent over the feedback link, and of a decoding function Φ
(N)
i :

YN
i →Mi used to produce a guess of Message Mi:

M̂i = Φ
(N)
i (Y N

i ). (4)

A rate region (R1, R2) with averaged feedback rates RFb,1,
RFb,2 is called achievable if for every blocklength N , there
exists a set encoding functions

{
f
(N)
t

}N

t=1
and for i = {1, 2}

there exists a set of decoding functions Φ
(N)
i , feedback alpha-

bets {Fi,t}Nt=1 satisfying (1), and feedback-encoding functions{
ψ
(N)
i,t

}N

t=1
such that the error probability

P (N)
e := Pr(M1 6= M̂1 or M2 6= M̂2) (5)

tends to zero as the blocklength N tends to infinity. The
closure of the set of achievable rate pairs (R1, R2) is called
the feedback capacity region and is denoted by CFb.

In the special case RFb,1 = RFb,2 = 0 the feedback signals
are constant and the setup is equivalent to a setup without
feedback. We denote the capacity region for this setup CNoFB.

III. PRELIMINARIES

We recall some previous results for DMBCs. The best
inner bound without feedback is Marton’s region [10], RMarton,
which equals the set of all nonnegative rarte-pairs (R1, R2)
that satisfy

R1 ≤ I(U0, U1;Y1) (6a)
R2 ≤ I(U0, U2;Y2) (6b)

R1+R2 ≤ I(U0, U1;Y1)+I(U2;Y2|U0)−I(U1;U2|U0) (6c)
R1+R2 ≤ I(U0, U2;Y2)+I(U1;Y1|U0)−I(U1;U2|U0) (6d)

for some probability mass function (pmf) PU0U1U2
and a

function f : U0×U1×U2 → X such that X = f(U0, U1, U2).
The best known outer bound without feedback [13] is the

set of all nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (7a)
R2 ≤ I(V ;Y2) (7b)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (7c)
R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) (7d)



for some pmf PUVX .
We recall the definition of essentially less-noisy BCs [11].

A subset PX of all pmfs on the input alphabet X is said to be
a sufficient class of pmfs for a DMBC if the following holds:
Given any joint pmf PUVX there exists a joint pmf P ′UVX

that satisfies P ′X(x) ∈ PX and

IP (U ;Y1) ≤ IP ′(U ;Y1)

IP (V ;Y2) ≤ IP ′(V ;Y2)

IP (U ;Y1) + IP (X;Y2|U) ≤ IP ′(U ;Y1) + IP ′(X;Y2|U)

IP (V ;Y2) + IP (X;Y1|V ) ≤ IP ′(V ;Y2) + IP ′(X;Y1|V ) (8)

where the notations IP and IP ′ indicate that the mutual
informations are computed assuming that (U, V,X) ∼ PUVX

and (U, V,X) ∼ P ′UVX , respectively, and P ′X(x) is the
marginal obtained from P ′UVX . A DMBC is called essentially
less-noisy if there exists a sufficient class of pmfs PX such
that whenever PX ∈ PX , then for all conditional pmfs PU |X ,

I(U ;Y1) ≤ I(U ;Y2). (9)

The class of essentially less-noisy DMBCs contains as special
cases the BSBC and the BEBC. The capacity region of
essentially less-noisy DMBCs equals the superposition coding
region, which is a special case of Marton’s region that results
when in (6) we set U1 =const. and X = U2.

The region C(1)Enh, given by the set of all nonnegative rate-
pairs (R1, R2) that for some pmf PUX satisfy

R1 ≤ I(U ;Y1) (10a)
R2 ≤ I(X;Y1, Y2|U), (10b)

forms an outer bound to the capacity region with feedback
[14]. An analogous outer bound, C(2)Enh, is obtained by exchang-
ing indices 1 and 2 in the definition above.

IV. RESULTS

The schemes achieving Thoerems 1 and 3 are sketched in
Section V. See [15] for details and for proofs of our results.

Theorem 1. The capacity region CFb includes the set Rrelay
of all nonnegative rate-pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q) (11a)
R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q) (11b)

R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U2;Y2, Ỹ1|U0, Q)− I(U1;U2|U0) (11c)
R1+R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

+I(U1;Y1, Ỹ2|U0, Q)− I(U1;U2|U0) (11d)
R1+R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

−I(U1;U2|U0) (11e)

for some pmfs PQ, PU0U1U2|Q, PỸ1|Y1Q
, PỸ2|Y2Q

and some
function f : U0 × U1 × U2 ×Q → X that satisfy

I(Ỹ1;Y1|Y2, Q) ≤ RFb,1 and I(Ỹ2;Y2|Y1, Q) ≤ RFb,2 (12)

where X = f(U0, U1, U2, Q).

For Ỹ1 = Ỹ2 =const., the region above specializes to
RMarton. For Ỹ2 =const., it specializes to:

Corollary 1. The capacity region CFb includes the set R(1)
relay,s

of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1|Q) (13a)
R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q) (13b)

R1+R2 ≤ I(U0, U1;Y1|Q) + I(U2;Y2, Ỹ1|U0, Q)

−I(U1;U2|U0, Q) (13c)
R1+R2 ≤ I(U1;Y1|U0, Q) + I(U0, U2;Y2, Ỹ1|Q)

−I(Ỹ1;Y1|Y2, Q)− I(U1;U2|U0, Q) (13d)

for some pmfs PQ, PU0U1U2|Q, PỸ1|Y1Q
and some function

f : U0 × U1 × U2 ×Q → X that satisfy

I(Ỹ1;Y1|Y2, Q) ≤ RFb,1, (14)

where X = f(U0, U1, U2, Q).
It also includes the region R(2)

relay,s which is obtained by
exchanging indices 1 and 2 in the above definition of R(1)

relay,s.

In the following example we apply this corollary.

Example 1. Consider a DMBC where the channel from X to
Y1 is a BSC with crossover probability p ∈ (0, 1/2), and the
channel from X to Y2 is an independent BEC with erasure
probability e ∈ (0, 1). We show that our feedback regions
R(1)

relay,s and R(2)
relay,s improve over a large part of the boundary

points of CNoFB for all values of e, p unless Hb(p) = e, no
matter how small RFb,1, RFb,2 > 0.

We distinguish different parameter ranges of our channel.
• 0 < e < Hb(p): CNoFB [11] is formed by the set of rate

pairs (R1, R2) that for some s ∈ [0, 1/2] satisfy

R1 ≤ 1−Hb(s ∗ p), (15a)
R2 ≤ (1− e)Hb(s), (15b)

R1 +R2 ≤ 1− e. (15c)

We specialize the region R(1)
relay,s to the choices Q = U1 =

const., U0 ∼ Bern(1/2), X = U2 = U0⊕V , where V ∼
Bern(s) independent of U0, and Ỹ1 = Y1 with probability
γ ∈ (0, 1) and Ỹ1 = ? with probability 1− γ, where

γ ≤ RFb,1

(1− e)Hb(p) + e
. (16)

Condition (16) assures that (14) is satisfied. Thus, for
any γ ∈ (0, 1) satisfying (16), the following region is
achievable with feedback when RFb,1 > 0:

R1 ≤ 1−Hb(s ∗ p) (17a)
R2 ≤ (1− e)Hb(s) + γe(Hb(s ∗ p)−Hb(p)) (17b)

R1+R2 ≤ 1− e− γHb(p). (17c)

As shown in [11], the points (R1, R2) of the form

(1−Hb(s ∗ p), (1− e)Hb(s)), s ∈ (0, s0), (18)



are all on the boundary of CNoFb, where s0 ∈ (0, 1/2) is
the unique solution to

1−Hb(s0 ∗ p) + (1− e)Hb(s0) = 1− e. (19)

Notice that for these boundary points, only the single-
rate constraints (15a) and (15b) are active, but not (15c).
Thus, comparing (18) to our feedback region (17), we
can conclude that by choosing γ sufficiently small, all
boundary points (18) lie strictly in the interior of our
feedback region R(1)

relay,s when RFb,1 > 0.
• 0 < Hb(p) < e < 1: CNoFb equals the time-sharing region

given by the union of all rate-pairs (R1, R2) that for some
α ∈ [0, 1] satisfy

R1 ≤ α(1−Hb(p)) (20a)
R2 ≤ (1− α)(1− e). (20b)

We specialize the region R(2)
relay,s to the following choices:

Q ∼ Bern(α); if Q = 0 then U0 ∼ Bern(1/2), X =
U1 = U0, and U2 = Ỹ2 = const.; if Q = 1 then U0 =
const., X = U1 ∼ Bern(1/2), U2 =const, and Ỹ2 = Y2
with probability γ ∈ (0, 1) and Ỹ2 = ? with probability
1− γ, where to satisfy the feedback rate constraint,

γ ≤ RFb,2

α((1− e)Hb(p) +Hb(e))
. (21)

For any γ ∈ (0, 1) satisfying (21), the following region
is achievable with feedback when RFb,2 > 0:

R1 ≤ α(1−Hb(p)) + α(1− e)γHb(p) (22a)
R2 ≤ (1− α)(1− e) (22b)

R1 +R2 ≤ 1−Hb(p)− (1− α)γHb(e). (22c)

Since here 1 − Hb(p) > 1 − e, for small γ > 0 the
feedback region in (22) improves over CNoFB given in (20).
In fact, (22) improves over all boundary points (R1 >
0, R2 > 0) of CNoFB.

Remark 1. The BSC/BEC-BC in Example 1, is particularly
interesting, because depending on the values of the parameters
e and p, the BC is either degraded, less noisy, more capable,
or essentially less-noisy [11]. We conclude that our feedback
regions R(1)

relay,s and R(2)
relay,s can improve over the nofeedback

capacity regions for all these classes of BCs even with only
one feedback link that is of arbitrary small, but positive rate.

We have the following result on the usefulness of feedback.

Theorem 2. Fix a DMBC. Consider random variables
(U

(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) such that

∆(M) := I(U
(M)
0 ;Y

(M)
2 )− I(U

(M)
0 ;Y

(M)
1 ) > 0. (23)

Let the rate-pair (R
(M)
1 , R

(M)
2 ) satisfy Marton’s constraints (6)

when evaluated for (U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) where Con-

straint (6b) has to hold with strict inequality. Also, let
(R

(Enh)
1 , R

(Enh)
2 ) ∈ C(1)Enh.

If RFb,1 > 0, then for all sufficiently small γ ∈ (0, 1),(
(1− γ)R

(M)
1 + γR

(Enh)
1 , (1− γ)R

(M)
2 + γR

(Enh)
2

)
∈ R(1)

relay,s.

An analogous statement holds for exchanged indices 1 & 2.

Remark 2. For most U (M)
0 , U

(M)
1 , U

(M)
2 , X(M) satisfying (23),

the region defined by Marton’s constraints (6) is a pentagon,
and the only point in this region satisfying Constraint (6b) with
equality is the dominant corner point of maximum R2-rate.

If U (M)
1 =const. and U (M)

2 = X(M) (i.e., when superposition
coding is used), then Condition (23) makes that the region is
a quadrilateral and the only active constraints are (6a) and
(6c). In this case, Constraint (6b) holds with strict inequality
for all points in the region.

Corollary 2. Let RFb,1 > 0. If there exists a pair (R
(M)
1 , R

(M)
2 )

that satisfies the conditions in Theorem 2 and lies on the
boundary of RMarton but in the interior of C(1)Enh, then

RMarton ( CFb. (24)

Moreover, if for the considered DMBC RMarton = CNoFB,

CNoFB ( CFb. (25)

We introduce the term strictly essentially less-noisy. The
definition of a strictly essentially less-noisy DMBC coincides
with the definition of an essentially less-noisy DMBC except
that Inequality (9) needs to be strict whenever I(U ;Y1) > 0.

Corollary 3. Consider a DMBC where Y2 is strictly essen-
tially less-noisy than Y1. Assume RFb,1 > 0. We have:

1) If a rate-pair (R1, R2) lies on the boundary of CNoFB but
in the interior of C(1)Enh, then (R1, R2) lies in the interior
of CFb, i.e., it can be improved with feedback.

2) If CNoFB does not coincide with C(1)Enh, then CNoFB is also
a strict subset of CFb, i.e., feedback strictly improves
capacity.

Analogous statements hold if indices 1 and 2 are exchanged.

All BSBCs and BEBCs with unequal crossover probabilities
or unequal erasure probabilities at the two receivers are strictly
essentially less-noisy. Also, for these BCs CNoFB has no
common boundary points (R1 > 0, R2 > 0) with the sets
C(1)Enh or C(2)Enh when the BC is not physically degraded.

Thus, Corollary 3 implies that for not physically degraded
BSBCs or BEBCs with unequal crossover or erasure prob-
abilities, rate-limited feedback improves all boundary points
(R1 > 0, R2 > 0) of CNoFB whenever RFb,1, RFb,2 > 0.

The following region sometimes improves over Rrelay.

Theorem 3. The capacity region CFb includes the set Rproc.
of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ1, V )−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1)

R2 ≤ I(U0, U2;Y2, Ỹ2, V )−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2)

R1 +R2 ≤ I(U0, U1;Y1, Ỹ1, V ) + I(U2;Y2, Ỹ2, V |U0)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1)− I(U1;U2|U0)

R1 +R2 ≤ I(U0, U2;Y2, Ỹ2, V ) + I(U1;Y1, Ỹ1, V |U0)

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2)− I(U1;U2|U0)

R1 +R2 ≤ I(U0, U1;Y1, Ỹ1, V )−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1)



+I(U0, U2;Y2, Ỹ2, V )

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2)− I(U1;U2|U0)

for some pmf PU0U1U2
, PỸ1|Y1

, PỸ2|Y2
, PV |U0U1U2Ỹ1Ỹ2

and
some function f : X → U0 × U1 × U2 that satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2) ≤ RFb,1 (27a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1) ≤ RFb,2 (27b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2) ≤ RFb,1 +RFb,2, (27c)

where X = f(U0, U1, U2).

Remark 3. When the feedback rates RFb,1, RFb,2 are suffi-
ciently large, we can choose Ỹi = Yi and our achievable
region Rproc. specializes to the Shayevitz-Wigger region for
output feedback and for the choice V1 = V2 = V0. Our region
Rproc. can thus recover the two-user capacity results in [2],
[5], [6] when RFb,1, RFb,2 are sufficiently large and the degree
of freedom achievability result in [7] when RFb,1, RFb,2 →∞.

Remark 4. All our results remain valid in the related setup
where the feedback links are noisy channels of capacities RFb,1
and RFb,2, when the receivers can code over these channels.

V. OUTLINE OF CODING SCHEMES

A. Encoder Relays Feedback Messages (Theorem 1)

We use a block-Markov scheme with blocks of length
n. In each block b ∈ {1, . . . , B + 1} the transmitter uses
Marton’s nofeedback scheme to send fresh messages M1,b

and M2,b. In addition, as part of the cloud center it also
sends the feedback messages MFb,1,b−1 and MFb,2,b−1 that
it received after the previous block. In fact, after each block
b, each Receiver i ∈ {1, 2} compresses the channel outputs
Y n
i,b it observed in this block, and sends the compression

index as its feedback message MFb,i,b to the transmitter. As
already mentioned, the encoder only relays the information it
obtains over the feedback links without any processing. Thus,
the compression indices produced by Receiver 1 are really
intended for Receiver 2 who already has side-information Y n

2,b,
and it is therefore constructed using a Wyner-Ziv compression.
Similarly for the compression indices produced by Receiver 2.

Notice further that in each block b, some of the messages
encoded in Marton’s cloud center (namely the feedback mes-
sages MFb,1,b−1 and MFb,2,b−1) are already known at one of
the two receivers. Simply because the receivers have generated
these messages themselves after the previous block b − 1. In
our scheme, the receivers apply a modified Marton decoding
rule that is adapted to this.

Decoding is performed backwards. We explain the decoding
at Receiver 1; the decoding at Receiver 2 is similar. After
the last block B + 1, Receiver 1 decodes its private message
M1,B+1 and the feedback message MFb,2,B . To this end, it
applies the traditional Marton decoding but in the typicality
check it only considers the codewords that correspond to the
correct feedback message MFb,1,B , which it had generated in
block B. For all other blocks b = 1, . . . , B, with the aid of
the feedback message MFb,2,b that it had previously decoded in

block b+1, Receiver 1 first reconstructs a compressed version
Ỹ n
2,b of the outputs Y n

2,b. Then, it applies the modified Marton
decoding explained in the previous paragraph to the enhanced
output (Y n

1,b, Ỹ
n
2,b).

B. Encoder Processes the Feedback Messages (Theorem 3)

Our second scheme is very similar to the first scheme. It
differs in that in each block b, after receiving the feedback
messages MFb,1,b,MFb,2,b, the encoder first reconstructs the
compressed versions of the channel outputs, Ỹ n

1,b and Ỹ n
2,b,

and then newly compresses the quintuple consisting of Ỹ n
1,b

and Ỹ n
2,b and the Marton codewords Un

0,b, Un
1,b, Un

2,b that it
had sent during block b. This new compression information is
then sent to the two receivers in the next-following block b+1
as part of the cloud center of Marton’s code for this block.

Backward decoding is applied at the receivers. For each
block b, each receiver i∈{1, 2} uses its observed outputs Y n

i,b

to simultaneously reconstruct the encoder’s compressed signal
and decode its intended messages sent in block b.
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