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Abstract—We consider the two-user memoryless Gaussian
broadcast channel (BC) with feedback and common message
only. We show that linear-feedback schemes with message points,
in the spirit of Schalkwijk&Kailath’s scheme for point-to-point
channels or Ozarow&Leung’s scheme for BCs with private
messages, are strictly suboptimal for this setup. In fact even with
perfect feedback, the maximum rate achieved by these schemes
is strictly smaller than capacity (which is the same with and
without feedback).

In contrast, rate-limited feedback suffices for bursty-feedback
schemes to achieve double-exponential decay of the probability
of error when the feedback rate RFB is at least equal to the
forward rate R.

Index Terms—Broadcast channel, Feedback, Capacity, Relia-
bility, Linear schemes

I. INTRODUCTION

We consider the two-user Gaussian broadcast channel (BC)
where the transmitter sends a single common message to
both receivers. For this setup, even perfect feedback cannot
increase capacity. Feedback can however potentially reduce
the minimum probability of error for a given blocklength n.

In fact, for Gaussian point-to-point channels [1], [2] or for
memoryless Gaussian networks such as the multiple-access
channel (MAC) [3] and the BC with private messages [9],
perfect feedback allows to have a double-exponential decay
of the probability of error in the blocklength. These super-
exponential decays of the probability of error are achieved by
Schalkwijk-Kailath type schemes that first map the message(s)
into real message point(s) and then send as their channel
inputs linear combinations of the message point(s) and the
past feedback signals. We call such schemes linear-feedback
schemes with message points or (with some abuse of notation)
linear-feedback schemes for short. Such schemes are known
to achieve the (sum-)capacity of Gaussian point-to-point chan-
nels (with or without memory) [1], [2] and of the two-user
memoryless Gaussian MAC [3]. For K ≥ 3-user Gaussian
MACs they are optimal among a large class of schemes [4],
[5], and for Gaussian BCs with private messages, they achieve
the largest sum-rates known to date [6], [7], [8].

In this paper we show that while performing well (or
optimally) in the above mentioned examples, linear-feedback
schemes with message points are strictly suboptimal for the
two-user memoryless Gaussian BC with common message

only. In fact, for the BC with common message, the largest rate
achieved by linear-feedback schemes with message points is
strictly smaller than the capacity, which is the same with and
without feedback. As a consequence, for this setup, linear-
feedback schemes also fail to achieve double-exponential
decay of the probability of error for rates close to capacity.
We prove this result by showing that for any sequence of
linear-feedback schemes that sends a common message at
rate R > 0 with arbitrary small probability of error, it is
possible to construct a sequence of linear-feedback schemes
that send two independent private messages at rates R1 ≥ R
and R2 ≥ R again with arbitrary small probability of error.
Thus, intuitively, the class of linear-feedback schemes with
message points cannot take advantage of the fact that both
receivers are interested in the same message.

As we show, this is however only a shortcoming of the class
of linear-feedback schemes with message points. In fact, we
present a sequence of coding schemes that uses the feedback in
a bursty way (that means the feedback signals are used only
in very few transmissions as in [10]) and that can achieve
double-exponential decay of the probability of error for all
rates up to capacity. Moreover, in our scheme it suffices to
have rate-limited feedback with feedback rate Rfb no smaller
than the forward rate R.

The rest of the paper is organized as follows. In Sec-
tion II we explain the channel model. In Section III the sub-
optimality of linear-feedback coding schemes is established.
In Section IV we present a bursty-feedback scheme achieving
double-exponential decay of the probability of error.

II. SYSTEM MODEL

We consider the two-receiver Gaussian broadcast channel.
If Xi denotes the transmitter’s channel input at time i ∈
{1, . . . , n}, the channel output at Receiver u ∈ {1, 2} at time i
is

Yu,i = Xi + Zu,i (1)

where {Zu,i}ni=1 are independent and identically distributed
(iid) centered bivariate Gaussians of covariance matrix(
σ2
1 0

0 σ2
2

)
. Without loss of generality we assume σ2

1 ≥ σ2
2 .

The transmitter wishes to convey a common message M
to both receivers, where M is uniformly distributed over



the message set M , {1, ..., benRc}, independently of the
noise sequences {Z1,i} and {Z2,i}. Here, n is the blocklength
and R > 0 the rate of transmission. It is assumed that the
transmitter obtains feedback from both receivers. That means,
after each channel use i, each Receiver u feeds back a signal
Vu,i ∈ Vu,i to the transmitter, where the feedback alphabet
Vu,i is a design parameter of the scheme. We consider two
scenarios for the feedback: rate-limited feedback or perfect
feedback. In the case of rate-limited feedback, the signals from
Receiver u have to satisfy:

n∑
i=1

H(Vu,i) ≤ nRfb, u ∈ {1, 2}, (2)

where Rfb denotes the symmetric feedback rate. In the case
of perfect feedback, we have no constraint on the feedback
signals {Vu,i}, and it is thus optimal to choose Vu,i = R and

Vu,i = Yu,i, (3)

because this way any processing that can be done at the
receivers can also be done at the transmitter.

An encoding strategy is comprised of a sequence of encod-
ing functions {f (n)i }ni=1 of the form

f
(n)
i : M×V1,1 × · · · × V1,i−1 × V2,1 × · · · × V2,i−1 → R (4)

that is used to produce the channel inputs as

Xi = f
(n)
i (M,V i−11 , V i−12 ), i ∈ {1, . . . , n}, (5)

where for each positive integer k we define V k1 :=
(V1,1, . . . , V1,k) and V k2 := (V2,1, . . . , V2,k). We impose an
expected average block-power constraint P on the channel
input sequence. This means, we only allow for encoding
functions that produce channel inputs X1, . . . , Xn satisfying

1

n
E
[ n∑
i=1

X2
i

]
≤ P. (6)

Each Receiver u ∈ {1, 2} decodes the message M by means
of a decoding function g(n)u of the form

g(n)u : Rn →M. (7)

That means, Receiver u produces as its guess

M̂u = g(n)u (Y nu ) (8)

where Y nu := (Yu,1, . . . , Yu,n).
An error occurs in the communication whenever

(M̂1 6= M) or (M̂2 6= M), (9)

and thus the average probability of error is

P (n)
e , Pr

[
M̂1 6= M or M̂2 6= M

]
. (10)

We say that a rate R > 0 is achievable for the described
setup if for every ε > 0 there exists a sequence of encoding
and decoding functions

{
{f (n)i }ni=1, g

(n)
1 , g

(n)
2

}∞
n=1

as in (4)
and (7) and satisfying the power constraint (6) such that
for sufficiently large block lengths n the probability of error

P
(n)
e < ε. The supremum of all achievable rates is called the

capacity. In the case of rate-limited feedback we denote it
Crate-fb and in the case of perfect feedback Cperf-fb. It is well
known that even with perfect feedback the capacity is the same
as without feedback. Thus, irrespective of Rfb ≥ 0:

Crate-fb = Cperf-fb =
1

2
log

(
1 +

P

σ2
1

)
. (11)

In this paper we are also interested in the decay rate of the
probability of error. We say that the probabilities of error P (n)

e

of a sequence of schemes decays to 0 double-exponentially, if

lim
n→∞

− 1

n
log logP (n)

e > 0. (12)

Throughout the paper log(·) denotes the natural logarithm.

III. SUB-OPTIMALITY OF LINEAR-FEEDBACK SCHEMES
FOR PERFECT FEEDBACK

In this section we restrict attention to perfect feedback and
to the class of linear-feedback schemes with message points.

A. Linear-Feedback Schemes with Message Points

Definition 1. We say that a scheme is a linear-feedback
scheme with message points (or for short a linear-feedback
scheme), if the sequence of encoding functions {f (n)i }ni=1 is
of the composite form

f
(n)
i = L

(n)
i ◦ Φ(n) (13)

with

Φ(n) : M 7→ Θ ∈ R (14a)

L
(n)
i : (Θ, Y i−11 , Y i−12 ) 7→ Xi, (14b)

where Φ(n) is an arbitrary mapping and L
(n)
i is a linear

mapping on the respective domains.

We denote the maximum rate achievable with a sequence
of linear-feedback schemes C (Lin)

perf-fb.
For comparison, in this section we also discuss the scenario

where the transmitter wishes to send two independent private
messages M1 and M2 of rates R1 and R2 to Receivers 1
and 2, respectively. A linear-feedback scheme for this setup
with private messages consists of a sequence of encoding
functions {f (n)priv,i} that is of the composite form

f
(n)
priv,i = L

(n)
priv,i ◦

(
Φ

(n)
priv,1

Φ
(n)
priv,2

)
(15)

with

Φ
(n)
priv,u : Mu 7→ Θu ∈ R, u ∈ {1, 2}, (16a)

L
(n)
priv,i : (Θ1,Θ2, Y

i−1
1 , Y i−12 ) 7→ Xi, (16b)

where Φ
(n)
priv,1 and Φ

(n)
priv,2 are arbitrary mappings and L(n)

priv,i is
a linear mapping on the respective domains. We denote the
set of all rate pairs (R1, R2) that are achievable with a linear-
feedback scheme C(Lin)

priv, perf-fb.



B. Results

Proposition 1. For a given power constraint P , if a sequence
of linear-feedback schemes with message points achieves a
common rate R > 0, then there exists a sequence of linear-
feedback schemes with message points that achieves the sym-
metric private rates (R,R):

0 ≤ R ≤ C(Lin)
perf-fb ⇒ (R,R) ∈ C(Lin)

priv, perf-fb. (17)

Proof: A sketch of the proof is given in Appendix A.

Theorem 1. Linear-feedback schemes with message points
cannot achieve the capacity of the Gaussian BC with common
message:

C
(Lin)
perf-fb ≤

1

2
log

(
1 +

αP

(1− α)P + σ2
1

)
< Cperf-fb (18)

where α is the unique solution in the open interval (0, 1) to

α
σ2
1σ

2
2

σ2
1 + σ2

2

= (1− α)2P + (1− α)σ2
1 . (19)

Proof: Follows from Proposition 1 and by the outer bound
on the capacity region for the Gaussian BC with private
messages and perfect feedback in [9].

IV. DOUBLE-EXPONENTIAL DECAY OF PROBABILITY OF
ERROR WITH RATE-LIMITED FEEDBACK

In this section we again allow for general coding schemes
and we consider rate-limited feedback.

Theorem 2. If the feedback rate Rfb ≥ R, then it is possible
to have a double-exponential decay of the probability of error.

Proof: In Section IV-A we present a bursty-feedback
scheme achieving the desired performance; it is based on the
scheme in [10], see also [11]. Its analysis is omitted.

A. Bursty-feedback scheme

Fix a positive rate R and assume that

Rfb ≥ R. (20)

Also, fix a large blocklength n and δ > 0 such that

R < C(1− δ). (21)

Choose a small ε > 0 and define n2 = εn and n1 = n−n2−1.
Notice that if n has been chosen sufficiently large,

n

n1
< 1 + δ. (22)

We choose a no-feedback code C1 for the BC with common
message. The parameters of the code are: blocklength n1,
rate n

n1
R, expected average block-power constraint P , and

probability of error

P
(n)
e,1 ≤ e−n(ζ−o(1)) (23)

for some ζ > 0 and some function o(1) that tends to 0 as
n → ∞. Notice that such a code exists because, by (21) and
(22), the rate of the code n

n1
R < C(1 − δ2) and the error

exponent of the BC with common message without feedback
is positive for all rates below capacity.1

Now, choose a second code C2 for the BC with common
message and no feedback. The parameters of code C2 are:
blocklength n2, rate R/ε, expected average block-power con-
straint P/γ, where

γ , P
(n)
e,1 , (24)

and probability of error

P
(n)
e,2 ≤ exp(−exp(n(ζ − o(1))). (25)

That such a code exists can be proved using arguments
from [12].

Transmission takes place in 2 phases.
1) First phase with channel uses i = 1, . . . , n1: During the

first n1 channel uses, the transmitter sends the codeword in
C1 corresponding to message M .

After observing the channel outputs Y n1
u , Receiver u ∈

{1, 2} makes a tentative decision M̂u,1 about M . It then sends
its tentative decision M̂u,1 to the transmitter over the feedback
channel:

Vu,n1
= M̂u,1. (26)

All other feedback signals from Receiver u are deterministi-
cally 0 and therefore, by (20), the scheme satisfies the feedback
rate constraint (2).

2) Second phase with channel uses i = n1 + 1, . . . , n:
In channel use n1 + 1 the transmitter sends a signal to indi-
cate whether both receivers’ tentative decisions were correct.
Specifically,

Xn1+1 =

{√
P/γ if M̂1,1 6= M or M̂2,1 6= M

0 if M̂1,1 = M̂2,1 = M.
(27)

Moreover, if one of the two tentative decisions was wrong,

(M̂1,1 6= M) or (M̂2,1 6= M),

then during channel uses i = n1 + 2, . . . , n the transmitter
sends the codeword from C2 that corresponds to M .

Each Receiver u first detects the signal Xn1+1. Define

Γ ,

√
P/γ

2
. (28)

If Yu,n1+1 < Γ, Receiver u decides that its tentative decision
was correct, and produces as its guess M̂u = M̂u,1. If instead
Yu,n1+1 ≥ Γ, it decides that its tentative decision M̂u,1 was
wrong and discards it. It then produces a new guess M̂u,2

by decoding the code C2 applied in the second phase solely
based on the outputs Yu,n1+2, . . . , Yu,n, and produces as its
final guess M̂u = M̂u,2.

1The positiveness of the error exponent for the Gaussian BC with common
message and without feedback follows from the fact that without feedback
the probability of error for the Gaussian BC with common messages is at
most twice the probability of error to the weaker receiver.



APPENDIX A
PROOF OF PROPOSITION 1

Let δ be a small positive number. Fix a sequence of
linear-feedback schemes

{(
Φ(n), {L(n)

i }ni=1, g
(n)
1 , g

(n)
2

)}∞
n=1

that send a common message to the two receivers and that sat-
isfy the power constraint (6) with P replaced by (P−δ). Based
on this sequence, we construct a sequence of linear-feedback
schemes

{(
Φ

(n)
priv,1,Φ

(n)
priv,2, {L

(n)
priv,i}ni=1, g

(n)
priv,1, g

(n)
priv,2

)}∞
n=1

that
send two independent private messages at rates

R1 ≥ R and R2 ≥ R, (29)

and that for large blocklengths n satisfy the power con-
straint (6). Since δ > 0 can be chosen arbitrarily small, and
by continuity considerations, this establishes the proposition.

In the next subsection A-1 we state two lemmas on the
sequence of linear-feedback schemes for common message.
The construction of the desired sequence of linear-feedback
schemes for private messages is explained in Subsection A-2.

1) About the Linear-Feedback Schemes with Common
Message: We denote the message point, the channel in-
puts, and the channel outputs corresponding to the block-
length n scheme (Φ(n), {L(n)

i }ni=1, g
(n)
1 , g

(n)
2 ) by Θ(n),

X
(n)
1 , . . . , X

(n)
n , Y (n)

1,1 , . . . , Y
(n)
1,n , Y (n)

2,1 , . . . , Y
(n)
2,n . By the defi-

nition of a linear-feedback coding scheme in (16), and defining

X(n) ,
(
X

(n)
1 , . . . , X

(n)
n

)T

, (30)

Y(n)
u ,

(
Y

(n)
u,1 , . . . , Y

(n)
u,n

)T

, u ∈ {1, 2}, (31)

Zu ,
(
Zu,1, . . . , Zu,n

)T
, u ∈ {1, 2}, (32)

we can write

X(n) = A(n)Z1 + B(n)Z2 + d(n)Θ(n) (33a)

Y
(n)
1 = (I + A(n))Z1 + B(n)Z2 + d(n)Θ(n) (33b)

Y
(n)
2 = A(n)Z1 + (I + B(n))Z2 + d(n)Θ(n). (33c)

for some strictly-lower triangular n-by-n matrices A(n) and
B(n) and an n-dimensional column-vector d(n).2 Notice that,
since the schemes satisfy the average block-power constraint
in (6) for power P − δ,

tr(AAT)σ2
1 + tr(BBT)σ2

2 + ‖d(n)‖2Var
(

Θ(n)
)
≤ n(P − δ),

(34)
where, for ease of notation, we dropped the superscript (n)
for the matrices A(n) and B(n).

Lemma 1. For each positive integer n there exist two n-
dimensional row-vectors v

(n)
1 and v

(n)
2 of unit norms

‖v(n)
1 ‖2 = ‖v(n)

2 ‖2 = 1 (35)

such that

R ≤ lim
n→∞

− 1

2n
log

(
σ2
1‖v

(n)
1 (I + A(n))‖2 + σ2

2‖v
(n)
1 B(n)‖2

)
=: Γ1 (36)

2We do not use a superscript (n) for the noise samples because their law
does not depend on the block length n.

and

R ≤ lim
n→∞

− 1

2n
log
(
σ2
1‖v

(n)
2 A(n)‖2 + σ2

2‖v
(n)
2 (I + B(n))‖2

)
=: Γ2. (37)

Proof: Omitted.

Lemma 2. Let {v(n)
1 } and {v(n)

2 } be as in Lemma 1. If the
limits Γ1,Γ2 in (36) and (37) are both positive, then for each
positive integer n there exists a pair of indices (j(n), k(n))
satisfying

lim
n→∞

1

n
E
[(
X

(n)

j(n)

)2]
= 0 (38a)

lim
n→∞

1

n
E
[(
X

(n)

k(n)

)2]
= 0 (38b)

lim
n→∞

1

2n
log(|v(n)

1,j(n) |) > 0 (38c)

lim
n→∞

1

2n
log(|v(n)

2,k(n) |) > 0, (38d)

where v(n)
1,j(n) denotes the j(n)-th component of v

(n)
1 and v(n)

2,k(n)

denotes the k(n)-th component of v
(n)
2 .

Proof: Omitted.
2) A Linear-Feedback Scheme for Private Messages:

We are now ready to describe our sequence
of linear-feedback schemes for private messages{(
φ
(n)
priv,1, φ

(n)
priv,2, {L

(n)
priv,i}ni=1, g

(n)
priv,1, g

(n)
priv,2

)}∞
n=1

. We denote
the channel inputs produced by the blocklength-n scheme by
{X̄(n)

i } and the corresponding channel outputs by

Ȳ
(n)
u,i = X̄

(n)
i + Zu,i, u ∈ {1, 2}. (39)

To facilitate the description, we assume that the transmission
starts at time i = −1 (instead of i = 1).

We describe our scheme for blocklength-(n + 4), which
takes place in time-slots i = −1, 0, . . . , n + 2. As we shall
see, the blocklength-(n+4) encoding functions

{
L
(n+4)
priv,i

}n+4

i=1

are constructed from the blocklength-n parameters A(n) and
B(n) defined in the previous section.

Let j(n) and k(n) be two indices that satisfy the conditions
in Lemma 2 and define

Z̄
(n+4)
1,i :=


Z1,i, if 1 ≤ i ≤ j(n),
Z1,i+1, if j(n) + 1 ≤ i ≤ k(n),
Z1,i+2, if k(n) + 1 ≤ i ≤ n

(40)

and

Z̄
(n+4)
2,i :=


Z2,i, if 1 ≤ i ≤ j(n) − 1,

Z2,i+1, if j(n) ≤ i ≤ k(n) − 1,

Z2,i+2 if k(n) ≤ i ≤ n.
(41)

We assume that j(n) ≤ k(n); otherwise we exchange the roles
of the subscripts 1 and 2 and in our scheme we reverse the
roles of the two receivers.



Encoding is as follows. The transmitter first computes the
two message points Θ̄

(n+4)
1 and Θ̄

(n+4)
2 as in [9]:

Θ̄(n+4)
u := 1/2− Mu − 1

b2(n+4)Ruc
, u ∈ {1, 2}. (42)

In the first two channel uses it then transmits:

X̄
(n+4)
−1 = Θ̄

(n+4)
1

√
P

Var
(
Θ̄

(n+4)
1

) (43)

X̄
(n+4)
0 = Θ̄

(n+4)
2

√
P

Var
(
Θ̄

(n+4)
2

) . (44)

The remaining inputs X̄
(n+4)
1 , . . . , X̄

(n+4)
n+2 are constructed

from the inputs X(n)
1 , . . . , X

(n)
n in the scheme with common

message.
• At times 1, . . . , j(n) − 1 the transmitter sends
X

(n)
1 , . . . , Xj(n)−1 but without the component from

the message point.
• At time j(n) it sends X(n)

j(n) but with the component from
the message point replaced by Z1,−1/

√
σ2
1 .

• At times j(n) + 1, . . . , k(n) it sends the inputs
X

(n)

j(n) , . . . , X
(n)

k(n) but again without the message point.

• At time k(n) + 2 it sends X(n)

k(n) but with the component
from the message point replaced by Z2,0/

√
σ2
2 .

• Finally, at times k(n) + 3, . . . , n + 2 it sends the inputs
X

(n)

k(n)+1
, . . . X

(n)
n .

Defining

I
(n+4)
1 :=

(
Ȳ

(n+4)
1,1 , . . . , Ȳ

(n+4)

1,j(n) , Ȳ
(n+4)

1,j(n)+2
, . . . ,

Ȳ
(n+4)

1,k(n)+1
, Ȳ

(n+4)

1,k(n)+3
, . . . , Ȳ

(n+4)
1,n+2

)T

(45)

and

I
(n+4)
2 :=

(
Ȳ

(n+4)
2,1 , . . . , Ȳ

(n+4)

2,j(n)−1, Ȳ
(n+4)

2,j(n)+1
, . . . ,

Ȳ
(n+4)

2,k(n) , Ȳ
(n+4)

2,k(n)+2
, . . . , Ȳ

(n+4)
2,n+2

)T

, (46)

the described encoding procedure yields:

I
(n+4)
1 = (I + A(n))Z̄

(n+4)
1 + B(n)Z̄

(n+4)
2 + ej(n)

Z1,−1√
σ2
1

(47a)

and

I
(n+4)
2 = A(n)Z̄

(n+4)
1 + (I + B(n))Z̄

(n+4)
2 + ek(n)

Z2,0√
σ2
2

, (47b)

where

Z̄(n+4)
u := (Z̄

(n+4)
u,1 , . . . , Z̄(n+4)

u,n )T, u ∈ {1, 2} (48)

and where, for i ∈ {1, . . . , n}, ei denotes the n-dimensional
vector with i-th entry 1 and all other entries equal to 0.

Receiver 1 completely ignores its channel outputs
Ȳ

(n+4)
1,0 , Ȳ

(n+4)

1,j(n)+1
, Ȳ

(n+4)

1,k(n)+2
and bases its decision solely on

the vector I
(n+4)
1 and on Ȳ (n+4)

1,−1 . Similarly, Receiver 2 bases
its decision on I

(n+4)
2 and on Ȳ (n+4)

2,0 . The decisions are taken
as in the Ozarow-Leung scheme [9]. Specifically, Receiver 1

first produces the LMMSE estimate Ẑ(n+4)
1,−1 of the noise Z1,−1

based on I
(n+4)
1 and guesses the message point Θ̄

(n+4)
1 as

Θ̂
(n+4)
1 =

√
Var
(
Θ̄

(n+4)
1

)
P

(
Ȳ

(n+4)
1,−1 − Ẑ(n+4)

1,−1

)
. (49)

It finally decodes its desired Message M1 using nearest-
neighbor decoding from Θ̂

(n+4)
1 . Receiver 2 decodes its Mes-

sage M2 in a similar way.
By (47) and because the indices j(n) and k(n) satisfy the

conditions (38c) and (38d) in Lemma 2, it can be shown
(details omitted) that the probability of error of the described
scheme tends to 0 as n→∞, whenever

R1 ≤ Γ1 and R2 ≤ Γ2. (50)

Also notice that the way we constructed the channel inputs,
n+2∑
i=−1

E
[∣∣X̄(n+4)

i

∣∣2]
≤ 2P +

n∑
i=1

E
[∣∣X(n)

i

∣∣2]+ E
[∣∣X̄(n+4)

j(n)

∣∣2]+ E
[∣∣X̄(n+4)

k(n)

∣∣2]
≤ 2P + n(P − δ) + E

[∣∣X(n)

j(n)

∣∣2]+ E
[∣∣X(n)

k(n)

∣∣2]+ 2. (51)

Thus, since j(n) and k(n) satisfy (38a) and (38b) in Lemma 2,
the inputs {X̄(n+4)

i }n+2
i=−1 are expected average block-power

constrained to P for all sufficiently large n.
By Lemma 1 and rate constraints (50), we therefore con-

clude that the symmetric private rate pair R1 = R and R2 = R
is achievable with a sequence of linear feedback schemes.
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