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Abstract—We consider a three-terminal distributed hypothesis
testing against independence problem. Two terminals, which act
as decision centers, are required to decide whether their observed
sequences are probabilistically independent of the sequence
observed at the third terminal. The third terminal communicates
with the two decision centers over three rate-limited noise-free
pipes (error free channels): A common pipe that is connected
to both centers, and two private pipes that connect separately to
each center. We characterize the optimal exponential decay of the
type-II error probabilities at the two decision centers given that
the type-I error probabilities vanish for increasing blocklengths.
The optimal exponents are determined by a certain information-
theoretic optimization problem that depends on the maximum
rates allowed over the noise-free communication pipes.

I. INTRODUCTION

This work is motivated by joint problems of communica-
tions and distributed hypothesis testing. For example, imagine
that many physically separated decision centers observe dif-
ferent datasets, and suppose that each center must determine
whether or not its data is independent of the other datasets.
Naturally the decision centers will need to exchange informa-
tion to ensure reliable decisions. We would like to understand
the fundamental tradeoffs between the hypothesis-testing error
probabilities and the communications rates.

This paper will characterize the above tradeoffs for the sim-
plified binary hypothesis testing problem with communications
constraints shown in Figure 1. This problem is formulated in
the same spirit as the seminal works of Ahlswede, Csiszár and
Han [1], [2]: The main aim will be to determine the maximum
exponents of the type-II error probabilities (the probability
of incorrectly choosing the dependent-data hypothesis when
the independent-data hypothesis is true) when the type-I er-
ror probabilities (the probability of incorrectly choosing the
independent-data hypothesis when the dependent-data hypoth-
esis is true) are smaller than some constant ε ∈ (0, 1).

Ahlswede, Csiszár and Han [1], [2] considered a different,
but rather canonical, binary hypothesis-testing problem with
three terminals. They assumed that two separated terminals
observed different random sequences. These terminals com-
municated information about their observations to a single
decision center, and the decision center was required to choose
between two hypothesis on the joint distributions of these
sequences. Ahlswede, Csisźar and Han established several
important upper and lower bounds on maximum exponent of
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Fig. 1. Distributed hypothesis testing problem with one transmitter (observer)
and two receivers (decision centers). The receivers must decide whether or
not (Xn, Y n

1 , Y n
2 ) is generated in an independent and identically distributed

manner using the “dependent data” null hypothesis (X,Y1, Y2) ∼ PXY1Y2

or the “independent-data” alternative hypothesis (X,Y1, Y2) ∼ PXPY1Y2 .

the type-II error probabilities as functions of the available com-
munication rates, and they completely resolved the “testing
against independence” problem. More work on this distributed
hypothesis testing problem can be found in [3], [4], and a
comprehensive literature review is given by [5]. Extensions to
more involved communication scenarios have been considered
in [6], [7], [8]. Zhao and Lai assumed that the observers (i.e.,
the terminals that are not decision centers) can exchange data.
Xiang and Kim [7], [8] and Katz, Piantanida and Debbah [9]
allowed interactive communication between a single observer
and a single decision center.

In contrast to the above mentioned work, this paper con-
siders a scenario with two decision centers and one observer
(that is not a decision center), see Figure 1. We assume that
the single observer can communicate to the two decision
centers over three bit-pipes of given rates: A common pipe to
both decision centers, and two separate private pipes to each
center. The main result of this paper is to determine, for this
communication scenario, the optimal exponents of the type-II
error probabilities under constrained type-I error probabilities.

Outline: The problem setup is formally described in Sec-
tion II. Our main result is summarized by Theorem 1 in
Section III, and it is proved in Section IV.

Notation: Random variables are identified by uppercase
letters, e.g. X , their alphabets by matching calligraphic font,
e.g. X , and elements of an alphabet by lowercase letters, e.g.
x ∈ X . The n-fold Cartesian product of an alphabet X is Xn.
Finally, log(·) denotes the base-2 logarithm.978-1-5090-1746-1/16/$31.00 c© 2016 IEEE



II. PROBLEM DEFINITION

Consider the distributed hypothesis testing problem with a
transmitter and two receivers (the decision centers) illustrated
in Figure 1. The transmitter observes the sequence

Xn := (X1, X2, . . . , Xn)

and Receivers 1 and 2 respectively observe

Y n1 := (Y1,1, Y1,2, . . . , Y1,n) and
Y n2 := (Y2,1, Y2,2, . . . , Y2,n).

The receivers are required to choose between two hypothesis
H ∈ {0, 1}. The “dependent data” null hypothesis is

H = 0: (Xn, Y n1 , Y
n
2 ) ∼ i.i.d. PXY1Y2

, (1a)

and the “independent data” alternative hypothesis is

H = 1: (Xn, Y n1 , Y
n
2 ) ∼ i.i.d. PXPY1Y2 , (1b)

Here i.i.d. stands for independent and identically distributed;
PX and PY1Y2

respectively denote the X and (Y1, Y2)
marginals of the joint law PXY1Y2 :

PX(x) =
∑

y1∈Y1,y2∈Y2

PXY1Y2(x, y1, y2) x ∈ X ,

PY1Y2
(y1, y2) =

∑
x∈X

PXY1Y2
(x, y1, y2), (y1, y2) ∈ Y1 × Y2.

The transmitter computes three messages

(M0,M1,M2) = φ(n)(Xn), (2)

using a (possibly stochastic) encoding function φ(n) of the
form

φ(n) : Xn → {0, . . . , b2nR0c} × {0, . . . , b2nR1c}
× {0, . . . , b2nR2c}.

The transmitter sends M0, M1 and M2 over the three noise-
free bit-pipes as depicted in Figure 1. Receiver 1 obtains
messages M0 and M1 and Receiver 2 obtains messages M0

and M2.
Each receiver i ∈ {1, 2} outputs an estimate Ĥi ∈ {0, 1} of

the actual hypothesis based on its observed sequence Y ni and
on the messages obtained over the pipes. That is,

Ĥi = g
(n)
i (Y ni ,M0,Mi), i ∈ {1, 2}, (3)

using some (possibly stochastic) decoding function

g
(n)
i : Yni × {0, . . . , b2nR0c} × {0, . . . , b2nRic} → {0, 1}.

The main goal here is to maximize the exponent of the type-
II error probabilities under a constant constraint on the type-I
error probabilities.

Definition 1: For each ε ∈ (0, 1), we say that the
exponent-rate tuple (θ1, θ2, R0, R1, R2) is ε-achievable if
there exists a sequence of encoding and decoding functions
{(φ(n), g(n)1 , g

(n)
2 )}n such that corresponding sequences of

type-I error probabilities

α1,n := P
[
Ĥ1 = 1

∣∣H = 0
]

(4a)

α2,n := P
[
Ĥ2 = 1

∣∣H = 0
]

(4b)

and type-II error probabilities

β1,n := P
[
Ĥ1 = 0

∣∣H = 1
]

(5a)

β2,n := P
[
Ĥ2 = 0

∣∣H = 1
]

(5b)

satisfy (for i = 1 and 2)

αi,n ≤ ε (6)

for all n and
− lim
n→∞

1

n
log βi,n ≥ θi (7)

Definition 2: For a given rate triple (R0, R1, R2), we define
the exponent region E?(R0, R1, R2) as the closure of all non-
negative exponent pairs (θ1, θ2) for which (θ1, θ2, R0, R1, R2)
is ε-achievable for every ε ∈ (0, 1).

Characterizing the exponents region E?(R0, R1, R2) is main
problem of interest in this paper.

Remark 1: For our envisioned communication scenario, the
two receivers cannot exploit differences in the joint conditional
laws PY1Y2|X that do not lead to different conditional laws
PY1|X and PY2|X under the two hypothesis. In this sense, the
solution to our hypothesis testing problem remains unchanged
when

1) we replace the conditional law PY1Y2|X in (1a) by any
other joint conditional law with same marginal laws
PY1|X and PY2|X ; or

2) we replace the joint law PY1Y2
in (1b) by any other joint

law with same marginals PY1 and PY2 .

III. MAIN RESULT

Definition 3: For a given rate tuple (R0, R1, R2), let E(R0,
R1, R2) denote the set of all nonnegative pairs (θ1, θ2) that
satisfy

θ1 ≤ I(U0, U1;Y1) (8a)
θ2 ≤ I(U0, U2;Y2), (8b)

for some auxiliary random variables U0, U1, U2 satisfying the
Markov chain

(U0, U1, U2)→ X → (Y1, Y2), (9)

and for which

R0 ≥ I(U0;X)

R1 ≥ I(U1;X|U0)

R2 ≥ I(U2;X|U0). (10)

Theorem 1: The exponents region E?(R0, R1, R2) coincides
with E(R0, R1, R2):

E(R0, R1, R2) = E?(R0, R1, R2). (11)

Proof: See Section IV.
Remark 2: Theorem 1 readily leads to the following re-

sult for the related scenario where communication from the
transmitter to the two receivers is over a discrete memoryless



broadcast channel (BC) of transition law PZ1Z2|W . The ex-
ponents region over a discrete memoryless broadcast channel
PZ1Z2|W includes all pairs (θ1, θ2) that satisfy (8) for some
auxiliary random variables U0, U1, U2 satisfying the Markov
chain (9) and for which the rate triple(
R0 = I(U0;X), R1 = I(U1;X|U0), R2 = I(U2;X|U0)

)
lies inside the capacity region of the discrete memoryless BC
PZ1Z2|W .

It is further interesting to notice that in the important special
case with only a common pipe to both receivers, i.e., when
R1 = R2 = 0, a single auxiliary random variable U suffices
to characterize the optimal exponents region.

Definition 4: Given rate R > 0, let Ecom-pipe(R) denote the
set of all nonnegative pairs (θ1, θ2) that satisfy

θ1 ≤ I(U ;Y1) (12)
θ2 ≤ I(U ;Y2), (13)

for some auxiliary random variable U satisfying the Markov
chain

U → X → (Y1, Y2), (14)

and for which
R ≥ I(U ;X). (15)

Corollary 1.1: When R1 = R2 = 0, the exponents region
E?(R0, R1, R2) coincides with Ecom-pipe(R0):

Ecom-pipe(R) = E?(R,R1 = 0, R2 = 0). (16)

It is not too difficult to see that Corollary 1.1 readily extends
to arbitrary number of K ≥ 1 receivers.

IV. PROOF OF THEOREM 1

Feasibility of all pairs in E(R0, R1, R2), i.e., inclusion

E(R0, R1, R2) ⊆ E?(R0, R1, R2) (17)

is proved in Subsection IV-A. Infeasibility of all pairs outside
E(R0, R1, R2), i.e., inclusion

E(R0, R1, R2) ⊇ E?(R0, R1, R2) (18)

is proved in Subsection IV-B.

A. Proof of Feasibility Statement (17)

Fix ε > 0, an arbitrary large blocklength n, and a joint
conditional distribution PU0U1U2|X . Consider any nonnegative
rate tuple (R0, R1, R2) satisfying

R0 > I(U0;X) (19a)
R1 > I(U1;X|U0) (19b)
R2 > I(U2;X|U0). (19c)

Codebook Generation: Randomly generate a U0-codebook{
Un0 (m0) =

(
U0,1(m0), . . . , U0,n(m0)

)}b2nR0c

m0=1

by selecting each entry of each n-length codeword Un0 (m0)
in an i.i.d. manner using PU0

. For each index m0, randomly
generate a codebook (U1,m0)-codebook{
Un1 (m0,m1) =

(
U1,1(m0,m1), . . . , U1,n(m0,m1)

}b2nR1c

m1=1

by picking the j-th entry of codeword Un1 (m0,m1) in
a memoryless manner using the conditional distribution
PU1|U0

(·|U0,j(m0)). In a similar manner, randomly generate
a (U2,m0)-codebook for each index m0 using the conditional
distribution PU2|U0

instead of PU1|U0
.

All codebooks are revealed to all terminals. Choose a small
ε′ > 0.

Transmitter: The transmitter looks for a tuple of indices
(m0,m1,m2) such that(

Xn, Un0 (m0), Un1 (m0,m1), Un2 (m0,m2)
)

∈ T (n)
ε′/2(PXU0U1U2).

If successful, the transmitter picks one such tuple uniformly
at random and sends the corresponding indices M0,M1,M2

over pipes 0, 1 and 2 respectively. If no such triple exists,
the transmitter sends M0 = 0,M1 = 0 and M2 = 0 over the
respective pipes.

Receiver 1: If M0 = 0, then receiver 1 outputs hypothesis
Ĥ1 = 1. If M0 6= 0, then it checks whether checks(

Y n1 , U
n
0 (M0), Un1 (M0,M1)

)
∈ T (n)

ε′ (PY1U0U1
). (20)

If this check is successful, then it outputs hypothesis Ĥ1 = 0;
otherwise, it outputs Ĥ1 = 1.

Receiver 2: If M0 = 0, then receiver 2 outputs hypothesis
Ĥ2 = 1. If M0 6= 0, then it checks whether(

Y n2 , U
n
0 (m0), Un2 (m0,m2)

)
∈ T (n)

ε′ (PY2U0U2
). (21)

If this check is successful, then it outputs hypothesis Ĥ2 = 0;
otherwise, if outputs Ĥ2 = 1.

Analysis: We first analyse the two type-I probabilities of
error. We thus assume that H = 0 and (Xn, Y n1 , Y

n
2 ) i.i.d. ∼

PXY1Y2
. Let us first bound the expectation of the type-I error

probability averaged over the randomly generated codebooks.
By the covering lemma [10, Sec. 3.7] and the rate-

constraints (19), the probability that the encoding operation
at the transmitter outputs M0 = 0 tends to 0 exponentially
fast in n. Notice that if M0 6= 0, then the tuple(
Xn, Un0 (M0), Un1 (M1|M0), Un2 (M2|M0)

)
∈ T (n)

ε′/2(PXU0U1U2
). (22)

Conditioned on the event (22), the probability that(
Y n1 , Y

n
2 , X

n, Un0 (M0), Un1 (M1|M0), Un2 (M2|M0)
)

∈ T (n)
ε′ (PY1Y2XU0U1U2

) (23)

tends to 1 exponentially fast in n by the Markov and the
conditional typicality lemma [10].



The above discussion implies that both receivers decide for
the correct hypothesis H = 0 with probability tending to 1
exponentially fast in n. Or, put another way, we have

ᾱi,n := E[αi,n] ≤ 2−an, i ∈ {1, 2} (24)

for some a > 0. (Here the expectation is taken over the
randomly generated codebooks).

We now analyze the type-II probabilities of error. Assume
thatH = 1 and thus (Xn, Y n1 , Y

n
2 ) i.i.d.∼ PX ·PY1Y2

. We start
by bounding the probability of error for any given codebooks
by

βi,n = P
[
Ĥi = 0,M0 = 0

∣∣H = 1
]

+P
[
Ĥi = 0,M0 6= 0

∣∣H = 1
]

a
= P

[
Ĥi = 0,M0 6= 0

∣∣H = 1
]

≤ P
[
Ĥi = 0

∣∣M0 6= 0,H = 1
]

b
= P

[
Ĥi = 0

∣∣(M0,M1,M2) = (1, 1, 1),H = 1
]

= P
[(
Y ni , U

n
0 (1), Uni (1|1)

)
∈ T (n)

ε′ (PYiU0Ui
)
∣∣

(M0,M1,M2) = (1, 1, 1),H = 1
]

where (a) holds because the receivers output Ĥi = 1 whenever
M0 = 0, and (b) holds by symmetry in the code construction.
It can be shown that the probability that (Un0 (1), Uni (1|1))
is jointly typical with the (independently generated) Y ni is
bounded by

β̄i,n := E[βi,n] ≤ 2−n[I(U0,Ui;Yi)−δ(ε′)], (25)

where δ(ε′) is a function that tends to 0 as ε′ → 0. (Here the
expectation is over the randomly generated codebooks.)

We now show that the expectations (over the randomly cho-
sen codebooks) in (24) and (25) imply that for all sufficiently
large blocklengths n there exists at least one codebook for
which

αi,n ≤ ε, (26a)

βi,n ≤ 2−n[I(U0,Ui;Yi)−δ′], (26b)

for any δ > δ(ε′). Since ε′ can be chosen arbitrarily close to
0, this proves the theorem.

Let Cn denote the (finite) product space representing ev-
ery possible configuration of the U0, {(U1,m0)}m0 and
{(U2,m0)}m0

codebooks with blocklength n (as described
above), and let the random variable Cn ∈ Cn represent the
random codebook construction method. For any given code-
book configuration c ∈ Cn, let αi,n(c) and βi,n(c) denote the
type-I and type-II error probabilities at receiver i respectively.

Fix δ′ > δ(ε′). Now define a set of bad codes

Bn := Bα,1,n ∪ Bα,2,n ∪ Bβ,1,n ∪ Bβ,2,n, (27)

where
Bα,i,n :=

{
c ∈ Cn : αi,n(c) > ε

}
(28)

and

Bβ,i,n :=
{
c ∈ Cn : βi,n(c) > 2−n[I(U ;Yi)−δ′]

}
(29)

The probability that we choose a bad code is bounded by

P
[
Cn ∈ Bn

] a
≤

2∑
i=1

(
P
[
Cn ∈ Bα,i,n

]
+ P

[
Cn ∈ Bβ,i,n

])
b
≤

2∑
i=1

(
1

ε
ᾱi,n + β̄i,n2n[I(U ;Yi)−δ′]

)
c
≤ 2

(
1

ε
2−na + 2−n[δ

′−δ(ε′)]
)
, (30)

where (a) follows by the union bound, (b) follows by Markov’s
inequality, and (c) substitutes (24) and (25). Since δ′ > δ(ε′),
we have P

[
Cn /∈ Bn

]
→n 1. Therefore, for some sufficiently

large n there exists at least one codebook configuration c ∈ Cn
that satisfies (26).

B. Proof of Infeasibility Statement (18)
Fix a sequence of encoding and decoding functions
{φ(n), g(n)1 , g

(n)
2 }∞n=1 so that (6) and (7) hold.

Now consider a fixed blocklength n. By the data-processing
inequality and the definitions of αi,n and βi,n,

D
(
PM0MiY n

i |H=0

∥∥PM0MiY n
i |H=1

)
≥ D

(
PĤi|H=0

∥∥PĤi|H=1

)
= αi,n log

αi,n
1− βi,n

+ (1− αi,n) log
(1− αi,n)

βi,n
= Hb(αi,n)− αi,n log(1− βi,n)− (1− αi,n) log βi,n

≥ −(1− αi,n) log βi,n

≥ −(1− ε) log βi,n, (31)

where Hb(·) denotes the binary entropy function and in the
last inequality we have used that αi,n ≤ ε.

We have

− 1

n
log β1,n

≤ 1

1− ε
1

n
D
(
PM0M1Y n

1 |H=0

∥∥PM0M1Y n
1 |H=1

)
=

1

1− ε
1

n
I(M0,M1;Y n1 )

=
1

1− ε
1

n

n∑
t=1

I(M0,M1;Y1,t|Y t−11 )

=
1

1− ε
1

n

n∑
t=1

I(M0,M1, Y
t−1
1 ;Y1,t),

≤ 1

1− ε
1

n

n∑
t=1

I(M0,M1, X
t−1;Y1,t)

=
1

1− εI(Ũ0,Tn , U1,Tn ;Y1,Tn |Tn)

=
1

1− εI(U0,n, U1,n;Y1,n), (32)

where Tn denotes a uniform random variable over {1, . . . , n}
independent of the tuple (M0,M1,M2, X

n, Y n1 , Y
n
2 ), and

where we defined Ũ0,t := (M0, X
t−1); U0,n := (Ũ0,Tn

, Tn);
U1,n := M1; Y1,n := Y1,Tn . The second equality holds
because under hypothesis H = 1 the messages M0 and M1,



which are functions of Xn, are independent of Y n1 . The third
equality and the last equality hold because Y n1 is i.i.d. and in-
dependent of Tn. The second inequality holds because for each
t we have the Markov chain Y1,t → (M0,M1, X

t−1)→ Y t−11 .
Following similar steps we also obtain

− 1

n
log β2,n ≤

1

1− εI(U0,n, U2,n;Y2,n), (33)

where we defined U2,n := M2 and Y2,n := Y2,Tn
.

Further, we have for the common rate

R0 ≥
1

n
H(M0)

≥ 1

n
I(M0;Xn)

≥ 1

n

n∑
t=1

I(M0;Xt|Xt−1)

=
1

n

n∑
t=1

I(M0, X
t−1;Xt)

=
1

n

n∑
t=1

I(Ũ0,t;Xt)

= I(Ũ0,Tn
;XTn

|Tn)

= I(U0,n;Xn), (34)

where we defined Xn := XTn
. And for the private rates

R1 ≥
1

n
H(M1)

≥ 1

n
H(M1|M0)

≥ 1

n
I(M1;Xn|M0)

≥ 1

n

n∑
t=1

I(M1;Xt|Xt−1,M0)

=
1

n

n∑
t=1

I(M1, ;Xt|Xt−1,M0)

= I(U1,Tn
;XTn

|U0,Tn
, Tn)

= I(U1,n;Xn|U0,n). (35)

Similarly,

R2 ≤ I(U2,n;Xn|U0,n), (36)

Notice that the Markov chain

(U0,n, U1,n, U2,n)→ Xn → (Y1,n, Y2,n) (37)

holds and that

(Xn, Y1,n, Y2,n) ∼ PXY1Y2
. (38)

From (32)–(38) and by continuity of mutual information we
conclude that if the tuple (θ1, θ2, R0, R1, R2) is ε-achievable,
then there exist auxiliary random variable U0, U1, U2 forming
the Markov chain

(U0, U1, U2)→ X → (Y1, Y2)

and satisfying

θ1 ≤
1

1− ε I(U0, U1;Y1)

θ2 ≤
1

1− ε I(U0, U2;Y2)

R0 ≥ I(U0;X)

R1 ≥ I(U1;X|U0)

R2 ≥ I(U2;X|U0).

Taking ε→ 0, concludes the proof.
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