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Abstract—The capacity region of the two-user additive white
Gaussian noise (AWGN) multiple-access channel (MAC) with
user cooperation is studied. This channel differs from the classical
AWGN MAC in that here each transmitter observes a noisy
version of the channel inputs sent by the other transmitter.A new
achievable region is presented based on a coding scheme where
each transmitter sends a linear combination of these observations
and of the codeword it produced to encode its message. For
certain choices of the parameters our scheme can be viewed asa
scheme where the messages are encoded into stationary processes
and where the encoders apply linear time-invariant filters to their
observations. The rates achieved by this latter scheme can be
expressed in terms of the power spectra of the filters and input
processes. For most choices of filters, the optimal input spectra
are given by frequency-division and can be found using a water-
filling algorithm.

It is shown that when the transmitters’ observations are
very noisy our scheme with general parameters outperforms the
best previously known schemes. Moreover, the scheme allows
to conclude that user cooperation strictly improves the capacity
region, irrespective of how noisy the transmitters’ observations
are. In contrast, when the observations are almost noise-free,
then a scheme previously proposed by Carleial improves on
our scheme. It is shown that for symmetric setups—i.e., equal
power constraints at the two transmitters and equal variances
of the noises corrupting the transmitters’ observations—and in
the asymptotic regime when the observations become noise-free
Carleial’s lower bound on the sum-capacity and Tandon and
Ulukus’s recent upper bound on the sum-capacity are tight in
the sense that they both tend to the sum-capacity of the setup
with noise-free observations with identical slopes.

I. I NTRODUCTION

Cooperation through different mechanisms such as feed-
back, conferencing, or eavesdropping provides gains in the
capacity of multiple-access channels (MACs). In this paper
we study the gains provided by eavesdropping for the two-
user additive white Gaussian noise (AWGN) MAC.

Thus, we consider a setup where two transmitters simulta-
neously wish to communicate with a common receiver who
observes the sum of the two transmitted signals corrupted
by AWGN, and where each transmitter observes the signal
sent by the other transmitter also corrupted by AWGN. This
setup is also called the AWGN MAC with user cooperation,
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because through their observations each transmitter learns
about the other transmitter’s message allowing the transmitters
to cooperate in future transmissions. The MAC with user
cooperation was first considered by Willems in [1], but only
in the extreme case where each transmitter observes a perfect
(noise-free) version of the signal sent by the other transmitter
and only for discrete memoryless channels.

The AWGN MAC with user cooperation has previously
been studied in [2], [3], and [4]. Carleial [2] and Willems et
al. [3] proposed achievable regions based on block-Markov
strategies where after each block each transmitter decodes
part of the other transmitter’s message. Tandon and Ulukus
[4] recently presented an outer bound on the capacity. These
inner and outer bounds on capacity coincide only in the two
extreme cases where the observations are noise-free and where
the observations are completely useless or missing. In this
paper we analyze these existing bounds for a symmetric setup
with equal power constraints at the two transmitters and equal
variances of the noises corrupting the transmitters’ observa-
tions. We show that for this setup the sum-rate achieved by
Carleial’s scheme and the upper bound on the sum-rate by
Tandon and Ulukus are asymptotically tight in the regime
where the transmitters’ observations are almost noise freein
the following sense: as the variances of the noises corrupting
these observations tend to 0 these lower and upper bounds on
the sum-capacity tend to the sum-capacity for the case with
noise-free observations with identical slopes.

In contrast, when the observations are very noisy then there
is a significant gap between Carleial’s or Willems et al.’s
achievable sum-rate and Tandon and Ulukus’ upper bound on
the sum-capacity. In fact, in this regime the known achievable
sum-rates are suboptimal. This is proved in the present paper
by proposing new achievable regions which strictly improve
on these lower bounds when the cooperation links are very
noisy. Our achievable regions moreover have the property that
for symmetric setups, no matter how noisy the transmitters’
observations are, our regions always include rate pairs that
lie outside the no-cooperation capacity region. (This is unlike
the schemes by Willems et al. and by Carleial which do not
improve over the no-cooperation capacity when the coopera-
tion links exceed a certain threshold.) This result allows us to
prove that also for non-symmetric setups the capacity region
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Fig. 1. The two-user multiple-access channel with user cooperation. Each
transmitter can overhear a noisy version of the other transmitter’s symbol.

with user cooperation is always strictly larger than without
cooperation, no matter how noisy the cooperation-links are.

The coding strategies leading to our achievable regions are
very simple: each user forms a linear combination of the
overheard signal of the other user and its own codeword.
The linear combinations are chosen in a way that the original
channel is transformed into a new virtual memoryless Gaussian
vector channel. We show that this scheme achieves rates
strictly larger than the no-cooperation capacity region. We
then turn to evaluating a subset of the achievable rate region.
These rates correspond to mutual informations induced by a
situation in which each user applies a strictly causal linear
time-invariant (LTI) filter to the signal of the other user. The
achievable rates are integrals of functions of the spectra of the
associated filter. Furthermore, we show that for most filters,
the optimal spectra of the input processes can be found by
frequency division and water-filling.

II. CHANNEL MODEL

Our communication scenario is depicted in Figure 1: two
transmitters wish to simultaneously communicate with a com-
mon receiver over a AWGN MAC and each transmitter ob-
serves a noisy version of the other transmitter’s signal.

Specifically, given that at (the discrete) timet Transmitter 1
sends the symbolx1,t and Transmitter 2 sends the symbol
x2,t, the receiver observes

Yt = x1,t + x2,t + Zt,

Transmitter 1 observes

V1,t = x2,t +W2,t,

and Transmitter 2 observes

V2,t = x1,t +W1,t,

where{Zt}, {W1,t}, and{W2,t} are independent sequences
of independent and identically distributed (i.i.d) zero-mean
Gaussian random variables of variancesN > 0, σ2

1 ≥ 0, and
σ2

2 ≥ 0, respectively.
The goal of the communication is that Transmitter 1 conveys

a MessageM1 and Transmitter 2 an independent MessageM2

to the receiver, where each MessageMν , for ν ∈ {1, 2}, is
assumed to be uniformly distributed over the discrete finiteset
Mν .

Each Transmitterν ∈ {1, 2} can compute its channel inputs
as a function of its messageMν and of the previously observed
symbolsVν,1, . . . , Vν,t−1. Thus, each Transmitterν uses a
sequence of encoding functions

ψ
(n)
ν,t : Mν × Rt−1 → R, t ∈ {1, . . . , n}, (1)

to compute the inputs

Xν,t = ψ
(n)
ν,t (Mν , Vν,1, . . . , Vν,t−1) , t ∈ {1, . . . , n}, (2)

wheren denotes the blocklength of the scheme. The channel
inputsXν,1, . . . , Xν,n have to satisfy an average block power
constraintPν . Thus, we only allow for encoding functions that
for ν ∈ {1, 2} satisfy

1

n

n
∑

t=1

E
[

(

ϕ
(n)
ν,t (Mν , Vν,1, . . . , Vν,t−1)

)2
]

≤ Pν , (3)

where the expectation is over the messages and the realizations
of the noise sequences{Zt}, {W1,t}, and{W2,t}.1

The receiver guesses the pair of messagesM1 andM2 based
on its observedn outputsY n , (Y1, . . . , Yn), i.e., as

(

M̂1, M̂2

)

= φ(n)(Y n) (4)

whereφ(n) denotes an encoding function of the form:

φ(n) : Rn → M1 ×M2. (5)

An error occurs in the communication whenever the pair
(

M̂1, M̂2

)

is not equal to the pair(M1,M2).
We define ablocklengthn, powersP1 andP2 codeof rate

pair
(

1
n log(|M1|), 1

n log(|M2|)
)

as a triple
({

ϕ
(n)
1,t

}n

t=1
,
{

ϕ
(n)
2,t

}n

t=1
, φ(n)

)

,

where
{

ϕ
(n)
1,t

}

and
{

ϕ
(n)
2,t

}

are of the form (1) and satisfy (3),

and whereφ(n) is of the form in (5). In the following we say
that a rate pair(R1, R2) is achievable if for everyδ > 0 and
every sufficiently largen there exists a blocklengthn, powers
P1 andP2 code of rates exceedingR1 − δ andR2 − δ such
that the average probability of a decoding error tends to 0 as
the blocklengthn→ ∞, i.e.,

lim
n→∞

P
[

φ(n) (Y1, . . . , Yn) 6= (M1,M2)
]

= 0.

The set of all achievable rate pairs is called the capacity
region and will be denoted byCUserCoop(P1, P2, N, σ

2
1 , σ

2
2).

The supremum of the sum of ratesRΣ = R1 + R2 over
all achievable rate pairs(R1, R2) is called the sum-capacity
and will be denoted byCΣ,UserCoop(P1, P2, N, σ

2
1 , σ

2
2). In a

symmetric setup whereP1 = P2 = P and σ2
1 = σ2

2 = σ2

1The achievability results in this paper remain valid also when the expected
average block-power constraints (3) are replaced by average block-power
constraints that hold with probability 1.



the capacity region is also denoted byCUserCoop(P,N, σ2)
and the sum-capacity byCΣ,UserCoop(P,N, σ2). Thus,
CUserCoop(P,N, σ2) , CUserCoop(P, P,N, σ2

1 , σ
2
2) and

CΣ,UserCoop(P,N, σ2) , CΣ,UserCoop(P, P,N, σ2
1 , σ

2
2).

The setup includes as special cases the setup without
cooperation which we model asσ2

1 = σ2
2 = ∞, the setup

with one-sided cooperation which we model asσ2
1 = ∞

and σ2
2 = 0, and the special case with noise-free co-

operation links which corresponds toσ2
1 = σ2

2 = 0.
In the case without cooperation we denote the capacity
region by CNoCoop(P1, P2, N) and the sum-capacity by
CΣ,NoCoop(P1, P2, N); in a symmetric setup whereP1 =
P2 = P , we also useCNoCoop(P,N) , CNoCoop(P, P,N)
and CΣ,NoCoop(P,N) , CΣ,NoCoop(P, P,N). When the
cooperation links are noise-free, then the capacity region
coincides with the capacity region of the AWGN MAC with
full cooperationwhere there are no cooperation links between
the two transmitters but where the transmitters perfectly know
each other’s message even before the communication starts.
Therefore, in this case we denote the capacity region by
CFullCoop(P1, P2, N) (or CFullCoop(P,N) in a symmetric
setup) and the sum-capacity byCΣ,FullCoop(P1, P2, N) (or
CΣ,FullCoop(P,N) in a symmetric setup).

III. R ELATIONSHIPS BETWEEN EXISTING BOUNDS

The described channel has previously been studied by Car-
leial [2] and by Willems et al. [3]. They presented achievable
regions based on block-Markov strategies where after each
block the transmitters decode parts of the other transmitter’s
message. In this paper we focus on Carleial’s achievability
result; the result in [3] is very similar to the result in [2],
and ignored in the following. Carleial’s inner bound in [2]
is generally characterized by 13 inequalities and thus hardto
evaluate. But when eitherσ2

1 ≤ N or σ2
2 ≤ N the bounds

simplify to only three bounds.
Definition 1: Given channel parametersP1, P2, N > 0 and

σ2
1 , σ

2
2 ≥ 0 such thatmin{σ2

1 , σ
2
2} ≤ N , define the region

RCarleial(P1, P2, N, σ
2
1 , σ

2
2) as the set of all nonnegative rate

pairs(R1, R2) that simultaneously satisfy the following three
inequalities:

R1 ≤ 1

2
log

(

1 +
α1P1

min{σ2
1 , N}

)

R2 ≤ 1

2
log

(

1 +
α2P2

min{σ2
2 , N}

)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√
ᾱ1ᾱ2P1P2

N

)

whereᾱ1 , 1 − α1 and ᾱ2 , 1 − α2.
Theorem 1 (Carleial [2]): For channel parameters

P1, P2, N and σ2
1 , σ

2
2 such that min{σ2

1 , σ
2
2} ≤ N the

rate regionRCarleial(P1, P2, N, σ
2
1 , σ

2
2) is achievable for the

AWGN MAC with user cooperation, i.e.,

RCarleial(P1, P2, N, σ
2
1 , σ

2
2) ⊆ CUserCoop(P1, P2, N, σ

2
1 , σ

2
2).
(6)

Tandon and Ulukus recently proved the following outer bound
on the capacity [4].

Definition 2: Given channel parametersP1, P2, N > 0 and
σ2

1 , σ
2
2 ≥ 0, define the regionRTandon(P1, P2, N, σ

2
1 , σ

2
2) as the

set of all nonnegative rate pairs(R1, R2) that simultaneously
satisfy the following three inequalities:

R1 ≤ 1

2
log

(

1 +
α1P1(N + σ2

1)

Nσ2
1

)

R2 ≤ 1

2
log

(

1 +
α2P2(N + σ2

2)

Nσ2
2

)

R1 +R2 ≤ 1

2
log

(

1 +
α1α2P1P2(N + σ2

1 + σ2
2)

Nσ2
1σ

2
2

+
α1P1(N + σ2

1)σ2
2 + α2P2(N + σ2

2)σ2
1

Nσ2
1σ

2
2

)

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√
ᾱ1ᾱ2P1P2

N

)

where as beforēα1 = 1 − α1 and ᾱ2 = 1 − α2.
Theorem 2 (Tandon and Ulukus [4]):The capacity region

CUserCoop(P1, P2, N, σ
2
1 , σ

2
2) is included in the region

RTandon(P1, P2, N, σ
2
1 , σ

2
2):

CUserCoop(P1, P2, N, σ
2
1 , σ

2
2) ⊆ RTandon(P1, P2, N, σ

2
1 , σ

2
2).

The inner bound in [2] and the outer bound in [4] coincide
only in the extreme case of no cooperation, i.e.,

RCarleial(P1, P2, N, 0, 0) = RTandon(P1, P2, N, 0, 0)

= CFullCoop(P1, P2, N),

and in the extreme case ofnoise-freecooperation, i.e.,

RCarleial(P1, P2, N,∞,∞) = RTandon(P1, P2, N,∞,∞)

= CNoCoop(P1, P2, N).

We can show however, that in the symmetric setup (i.e.,
P1 = P2 = P and σ2

1 = σ2
2 = σ2) and in the asymp-

totic regime of vanishingσ2 ↓ 0, the sum-rate achieved by
Carleial’s scheme and the upper bound on the sum-capacity
derived by Tandon and Ulukus are asymptotically tight in the
sense that they tend to the full-cooperation sum-capacity with
identical slopes. They thus also establish the slope of the sum-
capacity in this regime.

Before making these observations precise in Proposition 1
ahead, we introduce two definitions. LetRΣ,Carleial(P,N, σ

2)
denote the maximum sum-rate that is achievable with Car-
leial’s scheme in a symmetric setup, i.e.,

RΣ,Carleial(P,N, σ
2) , max

(R1,R2)∈RCarleial(P,P,N,σ2,σ2)
(R1 +R2).

Also, let RΣ,Tandon(P,N, σ
2) denote Tandon and Ulukus’

upper bound on the sum-capacity in a symmetric setup, i.e.,

RΣ,Tandon(P,N, σ
2) , max

(R1,R2)∈RTandon(P,P,N,σ2,σ2)
(R1 +R2).

Proposition 1: For a symmetric setup whereP1 = P2 = P
and σ2

1 = σ2
2 = σ2, Tandon and Ulukus’s upper bound and



Carleial’s lower bound on the sum-capacity are asymptotically
tight for smallσ2 in the sense that

lim
σ2↓0

RΣ,Tandon(P,N, σ
2) − CΣ,FullCoop(P,N)

RΣ,Carleial(P,N, σ2) − CΣ,FullCoop(P,N)
= 1. (7)

Moreover, they establish the asymptotic behavior of the sum-
capacity for smallσ2:

lim
σ2↓0

CΣ,UserCoop(P,N, σ
2) − CΣ,FullCoop(P,N)

σ2
(8)

=
1 −

√

1 + 4P
N

N
.

Proof: The proof follows by analyzing the maximum
sum-rate achieved by Carleial’s scheme and the upper bound
on the sum-capacity by Tandon and Ulukus. The analysis is
simplified by first proving that in Tandon and Ulukus’s upper
bound, without loss in optimality, one can restricting attention
to symmetric parametersα1 = α2, and by (possibly sub-
optimally) also restricting attention to symmetric choices of
parametersα1 = α2 when evaluating Carleial’s achievable
sum-rate.

When the cooperation links are very noisy, there is a
significant gap between Carleial’s and Willems et al.’s lower
bound and Tandon and Ulukus’s upper bound on the sum-
capacity. In particular, when the cooperation link noise-
variancesσ2

1 , σ
2
2 exceed a certain threshold (depending on the

channel parametersP1, P2, N ), these lower bounds collapse
to the sum-capacity in the case without user-cooperation (see
[8]). Tandon and Ulukus’ upper bound in contrast suggests
that for all values of the cooperation link noise-variances
σ2

1 , σ
2
2 < ∞ the sum-capacity with user cooperation exceeds

the sum-capacity without user cooperation. In the next section
we present achievable regions that strictly exceed the no-
cooperation sum-capacity for all finite cooperation link noise-
variances0 ≤ σ2

1 , σ
2
2 <∞.

IV. B LOCK SCHEME AND A NEW ACHIEVABLE REGION

A. Block Scheme

We propose alinear scheme that is similar to the schemes
for the single-user channel in [5], [6], and for the MAC with
noiseless or noisy output feedback in [7], [8]. In contrast to the
schemes proposed by Carleial and Willems, in our scheme the
transmitters do not decode any parts of the other transmitter’s
message. Our scheme is described as follows.

Fix a positive integerη, two strictly lower-triangularη ×
η matricesB1 and B2, and two positive semi-definiteη × η
matricesKU1 andKU2 that satisfy the constraints (9) and (10)
shown on top of the next page.

We then split the blocklengthn into n
η subblocks of length

η. (That is, we assume thatn is an integer multiple ofη.) The
idea of our scheme is that each Transmitterν first encodes its
MessageMν into a codewordUn

ν (Mν) , (Uν,1, . . . , Uν,n)—
in a way that we describe later on—and then in each subblock
τ ∈ {1, . . . , n/η} it transmits a linear combination of the
symbolsUν,(τ−1)η+1, . . . , Uν,τη and its observations in this

same subblockτ . Thus, the transmitter’s inputs in blockτ do
not depend on the transmitter’s observations in the previous
blocks. To describe Transmitterν’s channel inputs in subblock
τ in more detail, we define theη-dimensional column-vectors

Uν,τ , (Uν,(τ−1)η+1, . . . , Uν,τη)T

Vν,τ , (Vν,(τ−1)η+1, . . . , Vν,τη)T

Xν,τ , (Xν,(τ−1)η+1, . . . , Xν,τη)T.

Transmitterν’s channel inputs in subblockτ are then:

Xν,τ = Uν,τ + BνVν,τ ,

whereBν is the strictly lower-triangular matrix we fixed at
the beginning of the description of the scheme. The matrix
Bν needs to be strictly lower-triangular because Transmitterν
learns the observationVν,t only after producing its time-t
channel inputXν,t. Notice that the same matrixBν is chosen
for all the subblocks.

We next describe the generation of the two codebooksC1

and C2 that the transmitters use to encode their messages.
CodebookCν , for ν ∈ {1, 2}, is generated by randomly and
independently drawing the|Mν | codewords in the codebook
in the following way. Each codewordUν(mν) is generated
by first drawingn/η independentη-dimensional zero-mean
Gaussian vectorsUν,1(mν), . . . ,Uν,n/η(mν) of covariance
matrix KUν (which we fixed at the beginning of the descrip-
tion), and then choosing theℓ-th symbol, forℓ ∈ {1, . . . , η},
of the vectorUν,τ as thet = (ν − 1)η + ℓ-th entry of the
codewordUν(mν). Notice that because our chosen matrices
B1,B2,KU1,KU2 satisfy (9) and (10), the constructed channel
inputs satisfy the average block-power constraints in (3).

The decoding at the receiver is performed in two steps.
The receiver first forms theη-dimensional column-vectors
Y1, . . . ,Yn/η:

Yτ , (Y(τ−1)η+1, . . . , Yτη)T, τ ∈ {1, . . . , n/η}.
Notice that the vectorsY1, . . . ,Yn/η can be seen as the
outputs of anη-dimensional Gaussian vector MAC with inputs
U1,1, . . . ,U1,n/η and U2,1, . . . ,U2,n/η and channel law as
described in (11) on top of the next page. The receiver
therefore decodes the desired messages using an optimal
decoding rule for a Gaussian multi-antenna MAC with noises
that are correlated across antennas but uncorrelated in time.

B. Achievable Region

The scheme described in the previous subsection achieves
the following rate region.

Definition 3: Given a positive integerη, two positive
semidefinite η × η-matrices KU1 and KU2, two strictly
lower-triangular η × η-matrices B1 and B2, the region
RB(η,KU1,KU2,B1,B2) is defined as the set of all nonnega-
tive rate pairs(R1, R2) satisfying:

R1 ≤ I(U1;Y|U2)

R2 ≤ I(U2;Y|U1)

R1 +R2 ≤ I(U1,U2;Y).



(I − B1B2)
−1
(

KU1 + B1KU2B
T
1 + B1B2B

T
2B

T
1σ

2
2 + B1B

T
1σ

2
1

)

(I − B1B2)
−1 ≤ ηP1 (9)

(I − B2B1)
−1
(

KU2 + B2KU1B
T
2 + B2B1B

T
1B

T
2σ

2
1 + B2B

T
2σ

2
2

)

(I − B1B2)
−1 ≤ ηP2 (10)

Yτ =
(

(I − B1B2)
−T + (I − B2B1)

−T
B2

)

U1,τ +
(

(I − B1B2)
−T

B1 + (I − B2B1)
−T
)

U2,τ

+
(

(I − B1B2)
−T

B1B2 + (I − B2B1)
−T

B2

)

W1,τ +
(

(I − B1B2)
−T

B1 + (I − B1B2)
−T

B2B1

)

W2,τ + Zτ (11)

Here, U1 and U2 are independent centered Gaussianη-
dimensional vectors of covariance matricesKU1 andKU2, and
Y is anη-dimensional vector defined through:

X1 = (Iη − B1B2)
−1

(U1 + B1U2 + B1B2W1 + B1W2)
(12)

X2 = (Iη − B2B1)
−1 (U2 + B2U1 + B2B1W2 + B2W1)

(13)

Y = X1 + X2 + Z, (14)

whereW1, W2, andZ areη-dimensional zero-mean Gaussian
vectors of covariance matricesσ2

1 Iη, σ2
2 Iη, andN Iη, whereIη

denotes theη-by-η identity matrix.
Definition 4: Define the two-dimensional region

RBlock(P1, P2, N, σ
2
1 , σ

2
2)

, cl





⋃

η∈N,KU1,KU2,B1,B2

RB(η,KU1,KU2,B1,B2)



 , (15)

where the union is taken over all positive integersη, all
positive semidefiniteη × η-matricesKU1 and KU2, and all
strictly-lower triangularη × η matricesB1 and B2 such that
the power constraints (9) and (10) are satisfied.
Notice that the power constraints (9) and (10) assure that the
input vectors as defined in (12) and (13) satisfy

1

η
‖X1‖2 ≤ P1 and

1

η
‖X2‖2 ≤ P2. (16)

Theorem 3:The regionRBlock is achievable for the two-
user AWGN MAC with user cooperation, i.e.,

RBlock(P1, P2, N, σ
2
1 , σ

2
2) ⊆ CUserCoop(P1, P2, N, σ

2
1 , σ

2
2).

In contrast to the regions in [2] and [3], our achievable
region in Theorem 3 improves on the no-cooperation capacity
for all symmetric setups. The following more general result
can be derived.

Proposition 2: Irrespective of the powersP1, P2, N > 0
and the (finite) cooperation link noise-variancesσ2

1 , σ
2
2 ≥ 0,

the capacity region of the AWGN MAC with user cooperation
is strictly larger than the capacity region of the AWGN MAC
without user cooperation, i.e.,

CUserCoop(P1, P2, N, σ
2
1 , σ

2
2) ) CNoCoop(P1, P2, N, σ

2
1 , σ

2
2).
(17)

Proof: For symmetric setups whereP1 = P2 = P
and σ2

1 = σ2
2 = σ2 the proposition follows directly

from Theorem 3. In fact, for the choice of parameters

η = 2, KU1 =

(

P P√
D

P√
D

P 2

D

)

, KU2 =

(

P − P√
D

− P√
D

P 2

D

)

,

B1 =

(

0 0

−
√

P
Dγ 0

)

and B2 =

(

0 0
√

P
Dγ 0

)

, where

γ = N
2σ2+N+σ2 N

P

and D = P + γ2(P + σ2), the

region RB(η,KU1,KU2,B1,B2) is strictly larger than the
no-cooperation capacityCNoCoop(P1, P2, N). The proof for
asymmetric setups is based on the idea of using a time-
sharing/rate-splitting strategy to combine our linear scheme
with a no-cooperation scheme, similar to the proof in [8,
SectionV-E1].

V. L INEAR FILTERING REGION

The multi-letter achievable region in Theorem 3 is generally
difficult to evaluate and to analyze. In the following we present
a single-letter expression characterizing a subset ofRLinear,
and thus an achievable region. This new (possibly smaller)
achievable region is defined as the limiting region obtained
when in Definition 4 the union is taken only over matrices
B1,B2,KU1, andKU2 that are Toeplitz and the parameterη →
∞. Notice that while in this setup we do not know whether
this ”stationary” choice is optimal, it has been shown [6] that
in a Gaussian single-user channel with noise-free feedback
such a stationary choice is optimal for a similar class of linear
schemes.

The resulting single-letter achievable region is characterized
as a union of regions where the union is over pairs(H1, H2)
of strictly causal filters and power spectral densitiesSU1 and
SU2. It still seems hard to evaluate this achievable region even
numerically, because the optimal choice of the filtersH1 and
H2 is not known. However, given a choice of the filtersH1

andH2 it is possible to determine the optimal power spectra
SU1 andSU2 which simplifies the evaluation of the region. In
particular, it can be shown that a frequency-division strategy
is optimal for almost all filters and available transmit powers.
The solutions resemble the solutions in [9] for the MAC with
inter-symbols interference.

A. An Achievable Region

Definition 5: Let H1, H2 be the Fourier transforms of the
impulse response of two strictly-causal filters, and letSU1

and SU2 be two power-spectral densities. Define the region
RF(SU1,SU2, H1, H2) as the set of all nonnegative rate pairs



(R1, R2) that satisfy

R1 ≤ 1

4π

∫ 2π

0

log

(

1 +
|1 +H2(ω)|2SU1(ω)

N (ω)

)

dω

(18)

R2 ≤ 1

4π

∫ 2π

0

log

(

1 +
|1 +H1(ω)|2SU2(ω)

N (ω)

)

dω

(19)

R1 +R2 ≤ 1

4π

∫ 2π

0

log

(

1 +
|1 +H2(ω)|2SU1(ω)

N (ω)

+
|1 +H1(ω)|2SU2(ω)

N (ω)

)

, (20)

where

N (ω) , |H2(ω) +H1(ω)H2(ω)|2σ2
1

+ |H1(ω) +H2(ω)H1(ω)|2σ2
2

+ |1 −H1(ω)H2(ω)|2N. (21)

Definition 6: Define the two-dimensional region

RFilter(P1, P2, N, σ
2
1 , σ

2
2)

, cl





⋃

SU1,SU2,H1,H2

RF(SU1,SU2, H1, H2)



 ,

where the union is over all power spectral densitiesSU1 and
SU2 and over all transfer functionsH1, H2 of strictly-causal
filters such that the power constraints (22) and (23) (expressed
in the Fourier-domain) shown on top of the next page are
satisfied.

Theorem 4:The region RFilter is achievable over the
AWGN MAC with user cooperation, i.e.,

RFilter(P1, P2, N, σ
2
1 , σ

2
2) ⊆ CUserCoop(P1, P2, N, σ

2
1 , σ

2
2).

Proof: Fix two finite, strictly-causal filters with transfer
functions

H1(ω) =

m
∑

k=1

a1,ke
−iωk (24)

H2(ω) =
m
∑

k=1

a2,ke
−iωk. (25)

and two power spectral densitiesSU1 andSU2 such that the
tuple (SU1,SU2, H1, H2) satisfies the power constraints (22)
and (23) with strict inequality. In the following we sketch a
proof of achievability of the regionRF(SU1,SU2, H1, H2).

By continuity arguments and because by definition the ca-
pacity region is closed, then the regionRF(SU1,SU2, H1, H2)
is also achievable ifH1 and H2 are the transfer func-
tions of infinite strictly causal filters, or if the the tuple
(SU1,SU2, H1, H2) satisfies the power constraints (22) and
(23) with equality.

The achievability of the regionRF(SU1,SU2, H1, H2) is
proved as follows. We first express the region in terms of mu-
tual informations of stationary processes (Subsection V-A1).
We then present a sequence of achievable regions{R(η)}∞η=1

(Subsection V-A2) using Theorem 3. Finally, using the
representation ofRF(SU1,SU2, H1, H2) derived in Subsec-
tion V-A1, we prove that every rate pair in the interior
of RF(SU1,SU2, H1, H2) is contained in the regionR(η)
for all sufficiently large η. Since the capacity region is
closed, this then proves the achievability of the entire region
RF(SU1,SU2, H1, H2), i.e., also of its boundary points.

In the following subsections let{U1,t} and {U2,t} be
independent discrete-time zero-mean stationary Gaussianse-
quences of power spectral densitiesSU1 and SU2 Also,
let Uη

1 denote the tuple(U1,1, . . . , U1,n), and Uη
2 the tuple

(U2,1, . . . , U2,n).
1) Formulation ofRF using stationary processes.:For all

−∞ < t <∞ define

X̃1,t = U1,t +

m
∑

k=1

a1,k

(

X̃2,t−k +W2,t−k

)

(26)

X̃2,t = U2,t +
m
∑

k=1

a2,k

(

X̃1,t−k +W1,t−k

)

(27)

Ỹt = X̃1,t + X̃2,t + Zt. (28)

Notice that the inputsX̃1,t and X̃2,t here are stationary
stochastic processes. Therefore, by Parseval’s theorem and be-
cause by our assumption the tuple(H1, H2,SU1,SU2) satisfies
the power constraints (22) and (23) with strict inequality,for
each integert andν ∈ {1, 2}:

E
[

X̃2
ν,t

]

< Pν . (29)

Furthermore, by Szegö’s Theorem [10], [6], constraints (18)–
(20) are equivalent to the constraints

R1 ≤ lim
η→∞

1

η
I
(

Ỹ η ; Uη
1

∣

∣

∣U
η
2

)

(30)

R2 ≤ lim
η→∞

1

η
I
(

Ỹ η ; Uη
2

∣

∣

∣U
η
1

)

(31)

R1 +R2 ≤ lim
η→∞

1

η
I
(

Ỹ η ; Uη
1 , U

η
2

)

(32)

whereỸ η denotes the tuple(Ỹ1, . . . , Ỹn). Therefore, it suffices
to prove that every nonnegative rate-pair(R1, R2) that simul-
taneously satisfies the three constraints (30)–(32) is achievable.

2) Sequence of Achievable Regions with Block Scheme:For
each positive integerη, defineB1(η) as theη×η strictly-lower
triangular matrix whose column-j, row-i entry equalsa1,i−j

if 0 < i− j ≤ m and equals 0 otherwise, and similarly,B2(η)
as theη × η strictly-lower triangular matrix whose column-
j, row-i entry equalsa2,i−j if 0 < i − j ≤ m and equals 0
otherwise. Further, for each positive integerη defineKU1(η) as
the covariance matrix of the vectorU1(η) , (U1,1, . . . , U1,η)T

andKU2(η) as the covariance matrix of the vectorU2(η) ,

(U2,1, . . . , U2,η)T.
Also, for each η let Y(η),X1(η), and X2(η) be η-

dimensional vectors defined through (12), (13), (14) whenB1

is replaced withB1(η), B2 with B2(η), KU1 with KU1(η), and
KU2 with KU2(η).



1

2π

∫ 2π

0

SU1(ω) + SU2(ω)|H1(ω)|2 + |H1(ω)H2(ω)|2σ2
1 + |H1(ω)|2σ2

2

|1 −H1(ω)H2(ω)|2 dω ≤ P1 (22)

1

2π

∫ 2π

0

SU2(ω) + SU1(ω)|H2(ω)|2 + |H1(ω)H2(ω)|2σ2
2 + |H2(ω)|2σ2

1

|1 −H1(ω)H2(ω)|2 dω ≤ P2 (23)

It can be shown that for all sufficiently large pos-
itive integers η the vectors X1(η) and X2(η) have
power at most ηP1 and ηP2, and that thus the tu-
ple (B1(η),B2(η),KU1(η),KU2(η)) satisfies the power con-
straints (9) and (10). Therefore, by Theorem 3, for each pos-
itive integerη the regionRB(B1(η),B2(η),KU1(η),KU2(η))
is achievable, i.e., for every positive integerη:

RB(η,B1(η),B2(η),KU1(η),KU2(η))

⊆ CUserCoop(P1, P2, N, σ
2
1 , σ

2
2), (33)

where recall that the region
RB(B1(η),B2(η),KU1(η),KU2(η)) is defined as the set
of all nonnegative rate pairs(R1, R2) that satisfy

R1 ≤ 1

η
I(Y(η);U1(η)|U2(η)) (34)

R2 ≤ 1

η
I(Y(η);U2(η)|U1(η)) (35)

R1 +R2 ≤ 1

η
I(Y(η);U1(η),U2(η)). (36)

For every η we then choose the regionR(η) as
RB(B1(η),B2(η),KU1(η),KU2(η)), which as shown above is
achievable.

3) Equivalence of Regions:To prove that every rate pair on
the interior of the regionRF (H1, H2,SU1,SU2) is contained
in the regionR(η) for all sufficiently largeη, by (30)–(32)
and (34)–(36) it suffices to prove the following three limits:

lim
η→∞

1

η

(

I(Y(η);U1(η)|U2(η)) − I(Ỹ η;Uη
1 |Uη

2 )
)

= 0

lim
η→∞

1

η

(

I(Y(η);U2(η)|U1(η) − I(Ỹ η;Uη
2 |Uη

1 )
)

= 0

lim
η→∞

1

η

(

I(Y(η);U1(η),U2(η)) − I(Ỹ η;Uη
1 , U

η
2 )
)

= 0

The proof is lengthy, and therefore omitted.

B. Structural Results

In this section we derive the power spectral densitiesS∗
U1

and S∗
U2 that maximize the sum-rate (20) for given transfer

functionsH1 andH2.
To this end, we fix two transfer functionsH1 andH2, and

denote byRsum the right-hand side of (20), byρ1 the right-
hand side of (22), and byρ2 the right-hand side of (23). The
Lagrangian is then given by

J(SU1,SU2, λ2, λ2) = Rsum + λ1(ρ1 − P1) + λ2(ρ2 − P2).

Differentiating with respect toSU1(ω) andSU2(ω) yields the
KKT conditions which show that forω such that the optimal
S∗

U1(ω) > 0:

|1 +H2(ω)|2
N (ω) + |1 +H2(ω)|2S∗

U1(ω) + |1 +H1(ω)|2S∗
U2(ω)

=
λ1 + λ2|H2(ω)|2

|1 −H1(ω)H2(ω)|2 , (37)

and forω such that the optimalS∗
U2(ω) > 0:

|1 +H1(ω)|2
N (ω) + |1 +H2(ω)|2S∗

U1(ω) + |1 +H1(ω)|2S∗
U2(ω)

=
λ1|H1(ω)|2 + λ2

|1 −H1(ω)H2(ω)|2 . (38)

Therefore, for allω such that bothS∗
U1(ω) > 0 andS∗

U2(ω) >
0, we must have

λ1 + λ2|H2(ω)|2
|1 +H2(ω)|2 =

λ1|H1(ω)|2 + λ2

|1 +H1(ω)|2 . (39)

However, for most filtersH1 6= H2 of interest this condition
holds only on a set of measure0, which implies that for these
filters there is no loss in optimality in considering only power
spectral densities where for everyω either SU1(ω) = 0 or
SU2(ω) = 0. Thus, for these filters it is optimal that the two
transmitters apply a frequency division strategy.

When the optimalS∗
U1(ω) > 0 andS∗

U2(ω) = 0, we obtain
from (37) that

S∗
U1(ω) =

|1 −H1(ω)H2(ω)|2|
λ1 + λ2|H2(ω)|2 − N (ω)

|1 −H2(ω)|2 ,

and a similarly, when the optimalS∗
U2(ω) > 0 andS∗

U1(ω) =
0, we obtain from (38) that

S∗
U2(ω) =

|1 −H1(ω)H2(ω)|2|
λ1|H1(ω)|2 + λ2

− N (ω)

|1 −H1(ω)|2 .

We thus obtain the following Theorem.
Theorem 5:Given filtersH1 andH2 such that (39) holds

only over a set of measure0, the optimal power spectra
S∗

U1(ω) andS∗
U2(ω) have disjoint supports. Forω where the

left-hand side of (39) is smaller than its right-hand side the
optimal power spectral densities are:

S∗
U1(ω) =

|1 −H1(ω)H2(ω)|2|
λ1 + λ2|H2(ω)|2 − N (ω)

|1 −H2(ω)|2 , (40)

S∗
U2(ω) = 0, (41)



for ω where the let-hand side of (39) is larger than its right-
hand side:

S∗
U1(ω) = 0, (42)

S∗
U2(ω) =

|1 −H1(ω)H2(ω)|2|
λ1|H1(ω)|2 + λ2

− N (ω)

|1 −H1(ω)|2 . (43)

The constantsλ1 andλ2 must be chosen such thatρ1 = P1

andρ2 = P2.
Following an idea in [11], the above optimal power spectral

densities can be obtained using a waterfilling algorithm. We
define:

S̃1(ω) ,
λ1 + λ2|H2(ω)|2

|1 −H1(ω)H2(ω)|2SU1(ω) (44)

S̃2(ω) ,
λ1|H1(ω)|2 + λ2

|1 −H1(ω)H2(ω)|2SU2(ω) (45)

N1(ω) ,
λ1 + λ2|H2(ω)|2

|1 −H1(ω)H2(ω)|2|1 +H2(ω)|2N (ω) (46)

N2(ω) ,
λ1|H1(ω)|2 + λ2

|1 −H1(ω)H2(ω)|2|1 +H1(ω)|2N (ω). (47)

Plugging these definitions into (20) results in

Rsum =
1

4π

∫ 2π

0

log

(

1 +
S̃1(ω)

N1(ω)
+

S̃2(ω)

N2(ω)

)

dω. (48)

Using Theorem 5, it is easily verified that the power spectral
densitiesS̃∗

U1 and S̃∗
U2 that maximize (48) can be obtained

by waterfilling over the modified noise-spectraN1 andN2 as
described in the following corollary.

Corollary 1: Given filtersH1 andH2 such that (39) holds
only over a set of measure0, the optimal power spectrãS∗

1 (ω)
and S̃∗

2 (ω) have disjoint supports. Forω where N1(ω) <
N2(ω):

S̃∗
1 (ω) = [1 −N1(ω)]+, S̃∗

2 (ω) = 0, (49)

and forω whereN1(ω) > N2(ω):

S̃∗
1 (ω) = 0, S̃∗

2 (ω) = [1 −N2(ω)]+. (50)

The constantsλ1 andλ2 in the definitions (44)–(47) must be
chosen such thatρ1 = P1 andρ2 = P2.

VI. EXAMPLE AND EXTENSIONS

We now turn to a brief example of the rates achievable
by simple filters. Figure 2 shows the rates achievable by 5
different strategies for a symmetric setup whereP1 = P2 = 3
andN = 1. The horizontal axis is the cross-link noise power
and the vertical axis is the rate in nats. The “one tap” region
is given by optimizing filters of the formH1(z) = a1z

−1 and
H2(z) = −a1z

−1 over a1 and “two taps” plots are given by
optimizingH1(z) = a1z

−1 + a2z
−1 andH2(z) = −a1z

−1 +
a2z

−2 over (a1, a2). The plots show that for low cross-link
SNR, or highσ2, the linear filtering strategies outperform the
Carleial, Willems, and No-Cooperation regions.

The schemes here raise interesting questions. The filtering-
achievable region is a subset of the block achievable region,
but are they in fact equal? How should we optimally choose
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Fig. 2. Achievable rates versus cross-link noise under different strategies for
P = 3 andN = 1.

filters for the filtering-achievable region? What happens if
there is only one cooperation link? Is there a cut-offσ2 for
which linear strategies are provably superior to the Carleial
and Willems strategies?
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