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Abstract—The capacity region of the two-user additive white because through their observations each transmitter dearn
Gaussian noise (AWGN) multiple-access channel (MAC) with apout the other transmitter’s message allowing the trattesrsi
user cooperation is studied. This channel differs from the lassical to cooperate in future transmissions. The MAC with user
AWGN MAC in that here each transmitter observes a noisy - . . " .
version of the channel inputs sent by the other transmitterA new .COOperat'on was first considered by W'l!ems in [1], but only
achievable region is presented based on a Coding scheme \Nb]eﬂn the extreme case Where eaCh transmitter ObserVeS aperfec
each transmitter sends a linear combination of these obseations  (noise-free) version of the signal sent by the other tratiemi
and of the codeword it produced to encode its message. For gnd only for discrete memoryless channels.
certain choices of the parameters our scheme can be viewed as The AWGN MAC with user cooperation has previously

scheme where the messages are encoded into stationary preses . . .
and where the encoders apply linear time-invariant filters o their been studied in [2], [3], and [4]. Carleial [2] and Willems et

observations. The rates achieved by this latter scheme caneb @l- [3] proposed achievable regions based on block-Markov
expressed in terms of the power spectra of the filters and inpu  strategies where after each block each transmitter decodes
processes. For most choices of filters, the optimal input spga  part of the other transmitter's message. Tandon and Ulukus
?ﬂe g|v?notr)i3t/hfrrnequency-dlwsmn and can be found using a wate 4] yecently presented an outer bound on the capacity. These
' Ilrt]gi: gshown “that when the transmitters’ observations are [Nner and outer bounds on capacilty Coincide_ only in the two
very noisy our scheme with genera| parameters Outperformshe extreme cases Where the ObserVat|0nS are n0|Se'free amd Whe
best previously known schemes. Moreover, the scheme allowsthe observations are completely useless or missing. In this
to conclude that user cooperation strictly improves the capcity paper we analyze these existing bounds for a symmetric setup
region, irrespective of how noisy the transmitters’ obserations \yith equal power constraints at the two transmitters andiequ
are. In contrast, when the observations are almost noise-e, . . . . ,

then a scheme previously proposed by Carleial improves on Var1ances of the noises quruptlng the transmitters glaser
our scheme. It is shown that for symmetric setups—i.e., equa tions. We show that for this setup the sum-rate achieved by
power constraints at the two transmitters and equal varianes Carleial's scheme and the upper bound on the sum-rate by
of the noises. corrupting the transmitters’ .observations—ﬂ.d in  Tandon and Ulukus are asymptotically tight in the regime
the asymptotic regime when the observations become noise€ —\\here the transmitters’ observations are almost noiseifree
Carleial’'s lower bound on the sum-capacity and Tandon and . . ) . .
Ulukus’s recent upper bound on the sum-capacity are tight in the following sense: as the variances of the noises congpti
the sense that they both tend to the sum-capacity of the setup these observations tend to O these lower and upper bounds on
with noise-free observations with identical slopes. the sum-capacity tend to the sum-capacity for the case with
noise-free observations with identical slopes.

In contrast, when the observations are very noisy then there
Cooperation through different mechanisms such as feeg-a significant gap between Carleial's or Willems et al’s
back, conferencing, or eavesdropping provides gains in thehievable sum-rate and Tandon and Ulukus’ upper bound on

capacity of multiple-access channels (MACs). In this papgtie sum-capacity. In fact, in this regime the known achiévab
we study the gains provided by eavesdropping for the tweum-rates are suboptimal. This is proved in the presentrpape
user additive white Gaussian noise (AWGN) MAC. by proposing new achievable regions which strictly improve
Thus, we consider a setup where two transmitters simulign these lower bounds when the cooperation links are very
neously wish to communicate with a common receiver Whﬁbisy_ Our achievable regions moreover have the propeaty th
observes the sum of the two transmitted signals corruptegt symmetric setups, no matter how noisy the transmitters’
by AWGN, and where each transmitter observes the sigigiiservations are, our regions always include rate pairs tha
sent by the other transmitter also corrupted by AWGN. Thig outside the no-cooperation capacity region. (This ikken
setup is also called the AWGN MAC with user cooperationhe schemes by Willems et al. and by Carleial which do not
. improve over the no-cooperation capacity when the coopera-
The research of Anand D. Sarwate was supported by the GCadifor .. . . :
Institute for Telecommunications and Information Teclogyl (CALIT2) at tion links exceed a certain thre3h0|d') This result allowsa
the University of California, San Diego. prove that also for non-symmetric setups the capacity regio
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to the receiver, where each Messabk, for v € {1,2}, is

Tx 1 Zi assumed to be uniformly distributed over the discrete fiséte
v M,
1t v Each Transmitter € {1, 2} can compute its channel inputs
«— Wiy Y, M1 as a function of its messagdé, and of the previo_usly observed
Rx > symbolsV, i,...,V, 1. Thus, each Transmitter uses a
P Wos M, sequence of encoding functions
A
Vo, P M, xRV SR, te{l,...,n}, ()
M. \/ ’
lrx 2 to compute the inputs
Xot

Xt =00 (My, Vor, oo, Viio1), te{l,...,n}, (2)

Fig. 1. The two-user multiple-access channel with user emijpn. Each wheren denotes the blocklength of the scheme. The channel
transmitter can overhear a noisy version of the other tritesta symbol. inputsX,,J, D have to satisfy an average block power
constraintP,. Thus, we only allow for encoding functions that
with user cooperation is always strictly larger than withodor v € {1, 2} satisfy
cooperation, no matter how noisy the cooperation-links are Lo )
The coding strategies leading to our achievable regions are = Z E [(cp,(ﬁ) (M, Vi, ..., Vu,t—l)) } <P, (@3
very simple: each user forms a linear combination of the ni '

overh_eard S|gna_l Of_ the other user_and Its own COde‘_’VQWhere the expectation is over the messages and the reatigati
The linear combinations are chosen in a way that the origingl i« noise sequencds’ }, {W1,.}, and {Wa,}.*

channelis transformed into a new virtual memoryless Ganssi  1q receiver guesses the pair of messagesnd M- based
vector channel. We show that this scheme achieves rafgsiis ohserved: outputsY™ 2 (v; Y,), ie., as
= (Y1,...,Y,), ie,

strictly larger than the no-cooperation capacity regiore W
then turn to evaluating a subset of the achievable rate megio (J\ZH, Mz) — ¢(n)(yn) (4)
These rates correspond to mutual informations induced by a

situation in which each user applies a strictly causal lineahere¢(™ denotes an encoding function of the form:
time-invariant (LTI) filter to the signal of the other usehd
achievable rat((as a)re integrals of f?mctions of the spedttiaeo o R" = My x M. ®)
associated filter. Furthermore, we show that for most ﬁ,lterAn error occurs in the communication whenever the pair

the optimal spectra of the input processes can be found I, ]\;[22 is not equal to the paifM, Ms).

frequency division and water-filling. We define ablocklengthn, powersP; and P, codeof rate
Il. CHANNEL MODEL pair (£ log(|M]), £ log(|Mzl)) as a triple

Our communication scenario is depicted in Figure 1: two ({ (n)}" { (n)}" (b(n))
transmitters wish to simultaneously communicate with a-com PLtf o \P2t Sy ’
mon receiver over a AWGN MAC and each transmitter ob- (n) (n) .
serves a noisy version of the other transmitter’s signal. Where{(plat} a.nd{%vt } are _Of the form (1) and. satisfy (3),
Specifically, given that at (the discrete) tim@ransmitter 1 and where)™) is of the form in (5). In the following we say
sends the symbat;, and Transmitter 2 sends the symbolhat a rate paif[i, I?2) is achievable if for every > 0 and

t=

x4+, the receiver observes every sufficiently large: there exists a blocklength, powers
P, and P, code of rates exceedinB; — 6 and R, — § such
Yi =21 + 220+ Zi, that the average probability of a decoding error tends to O as
Transmitter 1 observes the blocklengthn — oo, i.e.,
Vi = a0 + Way, Jim PP ¢ (Y1,...,Yy) # (M, My)| = 0.
and Transmitter 2 observes The set of all achievable rate pairs is called the capacity

region and will be denoted b§'Usercoop(P1s Py N, 0%, 03).
The supremum of the sum of ratdss; = R; + Ry over

where{Z,}, {Wy,}, and {W,,} are independent sequence@" ach_ievable rate pair6R;, R2) is called the 32um2—capacity
of independent and identically distributed (i.i.d) zerean and will be denoted bY's Usercoop(F1; P2, N, 07,03). In a

. . . i _ _ 2 _ 2 _ 2
Gaussian random variables of varian@és> 0, o2 > 0, and Symmetric setup wher¢, = P, = P andoj = 05 = o

o3 > 0, respectively. 3 N o o
Th | of the communication is that Transmitter 1 conve The achievability results in this paper remain valid als@wlkhe expected
€goalo uni lonti ' VEY erage block-power constraints (3) are replaced by agetdgck-power

a Messagé\/; and Transmitter 2 an independent Messafile constraints that hold with probability 1.

Vou=x10 + Wiy,



the capacity region is also denoted Bsercoop(P, N,0?) Tandon and Ulukus recently proved the following outer bound
and the sum-capacity byCs ysercoop(P; N,0?). Thus, on the capacity [4].

CuserCoop(P, N,02) 2 Cusercoop(P, P, N,0%,03) and Definition 2: Given channel parametef, P,, N > 0 and

Cs: UserCoop (Py N, %) £ O UserCoop (P, P, N, 02, 03). 02,02 > 0, define the regioRrandod P1, P2, N, 0%, 032) as the

The setup includes as special cases the setup withsat of all nonnegative rate paif#;, R2) that simultaneously
cooperation which we model as} = 03 = oo, the setup satisfy the following three inequalities:

with one-sided cooperation which we model @ = oo 1 a1 PN +02)

and 03 = 0, and the special case with noise-free co- R; < -lo <1+11—21)
operation links which corresponds to = o3 = 0. 2 Noy )

In the case without cooperation we denote the capacity Ry < llog (1+ asz(N+02))

region by Cnocoop(P1, P2, N) and the sum-capacity by -2 No3

Cs: NoCoop (P1, P2, N); in a symmetric setup wher@, = Ri + Ry < 31 . ajaa Py Py(N + 02 + 03)
P, = P, we also US&Nocoop(P N) 2 Chocoop(P, P, N) i1 TH2z=5log | 1+ NoZo?

and Cs; NoCoop(P, N) = Cx Nocoop(P, P, N). When the

cooperation I?rgks a)re noise-free, chﬁlen the) capacity region +a1P1(N +ai)o3 J;O;QPQ(N * 03)0%)
coincides with the capacity region of the AWGN MAC with Nojoj

full cooperationwhere there are no cooperation links between 1 Py + Py + 2/a1a0 P Py
the two transmitters but where the transmitters perfeatigvk Ry + Ry < 2 log <1 + N )

each other's message even before the communication star
Therefore, in this case we denote the capacity region
CFullCoop(PlaPQaN) (Or CFullCOOp(Pv N) in a SymmetriC
setup) and the sum-capacity W¥s; ruiicoop(Pr, P2, N) (or
Cs Fullcoop (P, N) in @ symmetric setup).

S,
there as befor&; =1 — oy andas =1 — as.

Theorem 2 (Tandon and Ulukus [4])fhe capacity region
CuserCoop(P1, P2, N,a?,03) is included in the region
RTandor{Plap%Na 0%705):

C P, P,,N,0%,02) C R P, Py, N,02%,02).
I1l. RELATIONSHIPS BETWEEN EXISTING BOUNDS UserCoop (P, P2 1202) & Rrancod P21, P2 1,02)

The described channel has previously been studied by Car:rhe inner bound in [2] and the outer bound in [4] coincide

leial [2] and by Willems et al. [3]. They presented achiemblOnly in the extreme case of no cooperation, i.e.,
regions based on block-Markov strategies where after each  Rc,qeia( P1, P2, N,0,0) = Rrandod P1, P2, N, 0,0)
block the transmitters decode parts of the other transrsitte _

. . . . —CFullCoop(PhPQaN)a
message. In this paper we focus on Carleial's achievability
result; the result in [3] is very similar to the result in [2],and in the extreme case obise-freecooperation, i.e.,
and ignored in the following. Carleial's inner bound in [2]
is generally characterized by 13 inequalities and thus bard Reareia P, P, N, 00,00) = Rrandod P1, P2, N, 00,00)
evaluate. But when either? < N or 03 < N the bounds = CNoCoop(P1, P2, N).
simplify to only three bounds.

L : We can show however, that in the symmetric setup (i.e.,
Definition 1: Given channel parametefy, P,, N > 0 and

= P, = P ando? = 02 = ¢?) and in the asymp-
2 2 . 2 2 . . 1 2 1 2
01,03 2 0 such tr;atn;m{al,@} < N, define the region yye regime of vanishings2 | 0, the sum-rate achieved by
Reareial P1, 12, N, 01, 03) @s the set of all nonnegative rat€-,eiars scheme and the upper bound on the sum-capacity
pairs (111, ) that simultaneously satisfy the following thregyq e q by Tandon and Ulukus are asymptotically tight in the

inequalities: sense that they tend to the full-cooperation sum-capadtty w
1 a1 P identical slopes. They thus also establish the slope ofuhe s
Ry < 5 log (1 FH{U%’N}) capacity in this regime. _ o -
1 as Py Before making these observations precise in Proposition 1
Ry < 3 log ( W> ahead, we introduce two definitions. LBk careia P, N, 0°)
ez, _ denote the maximum sum-rate that is achievable with Car-
R+ Ry < %log (1 At Bt ?VV 0‘10‘2P1P2> leial's scheme in a symmetric setup, i.e.,
RE,CarIeiaI(Pa N, 02) £ max . (Rl + R2)-
Wher-e@1 AL 1—ay and Qo L 1— as. (R1,R2)€ Reareia P, P,N,02,02)
Theorem 1 (Carleial [2]): For channel parametersAlso, let Ry tandod P, N,02) denote Tandon and Ulukus’

P1,P,,N and 0,05 such thatmin{of,05} < N the upper bound on the sum-capacity in a symmetric setup, i.e.,
rate region Rcareial( P1, P2, N,0%,03) is achievable for the

2 A
AWGN MAC with user cooperation, i.e., Ry tandod P, N, 07) = (Rl,32)eRTaIEOE}()I{%P,N,az-,Uz)(Rl + Ra).

Recareial P1, Pa, N,0%,02) C CserCoop(P1, P2, N, 01, 03). Proposition 1: For a symmetric setup wheig = P, = P
(6) ando? = 02 = o2, Tandon and Ulukus’s upper bound and



Carleial’s lower bound on the sum-capacity are asymptilyicasame subblock. Thus, the transmitter’s inputs in bloekdo
tight for small? in the sense that not depend on the transmitter’s observations in the previou
blocks. To describe Transmitteis channel inputs in subblock
. RE,Tandor{Pa N7 02) - CE,FU”COOD(Pa N) . . . . . . P
lim 5 =1. (7) 7 in more detail, we define thg-dimensional column-vectors
o210 RZ,Carleial(Pa N,o ) - CZ,FU”COOD(Pa N)

; ; ; U, - £ (UU (t=D)n+1s5---> Ul/,‘rn)T
Moreover, they establish the asymptotic behavior of the-sum ’ : n ’

capacity for smalb2: Vor 2 Virmtynsts - Vi)'
A T
. CE,USGI’COO[{Pa N, 02) - CE,FU”COOD(Pa N) Xy = (X”’(Tfl)mrl’ e ’XV’TU) ’
lim (8) . . .
5210 o2 Transmitterv’'s channel inputs in subblock are then:
-1+ %2 Xyr = Upr 4B, Vo,
N . where B, is the strictly lower-triangular matrix we fixed at

Proof: The proof follows by analyzing the maximumthe beginning of the description of the scheme. The matrix
sum-rate achieved by Carleial's scheme and the upper boudneeds to be strictly lower-triangular because Transmitter
on the sum-capacity by Tandon and Ulukus. The analysislégarns the observatioft, ; only after producing its time-
simplified by first proving that in Tandon and Ulukus’s uppechannel inputX,, ;. Notice that the same matr®, is chosen
bound, without loss in optimality, one can restricting atten for all the subblocks.
to symmetric parameters; = a9, and by (possibly sub- We next describe the generation of the two codebabks
optimally) also restricting attention to symmetric chaicef and C, that the transmitters use to encode their messages.
parametersy; = a» when evaluating Carleial’s achievableCodebookC,, for v € {1,2}, is generated by randomly and
sum-rate. B independently drawing theM,,| codewords in the codebook

When the cooperation links are very noisy, there is ia the following way. Each codewor®, (m, ) is generated
significant gap between Carleial’s and Willems et al.'s loweby first drawingn /5 independent;-dimensional zero-mean
bound and Tandon and Ulukus’s upper bound on the su@aussian vectordJ, ;(m,),..., U, ,,,(m,) of covariance
capacity. In particular, when the cooperation link noisematrix Ky, (which we fixed at the beginning of the descrip-
variancesr?, o3 exceed a certain threshold (depending on thion), and then choosing theth symbol, for¢ € {1,...,n},
channel parameter®|, P, N), these lower bounds collapseof the vectorU, , as thet = (v — 1)n + ¢-th entry of the
to the sum-capacity in the case without user-cooperatie@ (£odewordU, (m, ). Notice that because our chosen matrices
[8]). Tandon and Ulukus’ upper bound in contrast suggesss, B,, Ky71, Ko satisfy (9) and (10), the constructed channel
that for all values of the cooperation link noise-varianceaputs satisfy the average block-power constraints in (3).

0% 0% < oo the sum-capacity with user cooperation exceedsThe decoding at the receiver is performed in two steps.
the sum-capacity without user cooperation. In the nexi@ect The receiver first forms the)-dimensional column-vectors

we present achievable regions that strictly exceed the Mg,,...,Y, ,;:
cooperation sum-capacity for all finite cooperation linkses N
varianced) < 02,02 < co. Y: = Yooyt Ye)', T E{L...,n/n}

Notice that the vectorsyy,...,Y,,, can be seen as the
outputs of am-dimensional Gaussian vector MAC with inputs
A. Block Scheme Uii,...,Uyy and Uy, ..., Uy, , and channel law as

We propose dinear scheme that is similar to the schemesgescribed in (11) on top of the next page. The receiver
for the single-user channel in [5], [6], and for the MAC withtherefore decodes the desired messages using an optimal
noiseless or noisy output feedback in [7], [8]. In contragtie decoding rule for a Gaussian multi-antenna MAC with noises
schemes proposed by Carleial and Willems, in our scheme that are correlated across antennas but uncorrelated @ tim
transmitters do not deche any .parts of the other transrfnltteB' Achievable Region
message. Our scheme is described as follows. ) ) ) ) )

Fix a positive integer, two strictly lower-triangulan x The scheme described in the previous subsection achieves
1 matricesB; and B, and two positive semi-definitg x  the following r.atef regon. N
matricesK;; andK - that satisfy the constraints (9) and (10) Definition 3: Given a positive integers, two positive
shown on top of the next page. semidefinite n x n-matrices K3 and Kyo, two strictly

We then split the blocklength into 2 subblocks of length [OWer-triangular ;) x n-matrices B, and B,, the region
1. (That is, we assume thatis an integer multiple of,.) The %87 Ku1, Ku2, B, Bs) |s.def|ne.d as the set of all nonnega-
idea of our scheme is that each Transmittdirst encodes its Ve raté pairsRi, R,) satisfying:
MessageM, into a cod_eworoU,?(M,,) £ (U,,yl,_. s Upn)— Ry < I(Uy;Y|Uy)
in a way that we dgscnbe Ia.ter on.—and then in ef?lCh subblock Ry < I(Us; Y|UY)
T € {1,...,n/n} it transmits a linear combination of the
symbolsU,, (- —1yy+1,-- -, Uv,, @nd its observations in this Ri+ Ry < I(Uy, UgY).

IV. BLOCK SCHEME AND A NEW ACHIEVABLE REGION



(I —BiB2) ™! (Ky1 + B1Ky2B] + B1B2BLBl o5 + B1Blo}) (I — BiB2) ™ < P 9)
(I —BBy) ™! (Kuz + BoKy1 B + B2BiB{Bo7 + B2Blo3) (I — B1B2) ™! < nP; (10)

Y, = ((I =BiB2) ™"+ (I —BsB1) ™B2) Ui, + (I — BiBs) "B1 + (I — BoB1) ") Us»
+((I —B1B2) "B1By + (I — B2B1) "Ba) Wi, + ((I — B1Bs) "By + (I — BiBy) "BaBy) Wa, + Z,  (11)

P 2
)’ KU2 - ( 7 P\/25>,
VD D
B>

Here, U; and U, are independent centered Gaussign
dimensional vectors of covariance matri¢gs; andKy», and
Y is ann-dimensional vector defined through: 0

= ( ) where

0 0 0
X, = (I~ BiBa) " (Uy + ByUs + BiBaW, + ByWy) (—\/%v 0) and JEr 0
(12) v = =y and D = P + (P + o?), the
Xy = (I, — BQBl)_1 (U + BoU; + BB Wy + BoWy) region Rg(n, KUl,PKU% B1,Bs) is strictly larger than the
(13) no-cooperation capacit¢'Nocoop(P1, P2, N). The proof for
Y =X, +X,+7, (14) asymmetric set_ups is based on the _idea of _using a time-
sharing/rate-splitting strategy to combine our linearesoh
whereW,, W5, andZ aren-dimensional zero-mean Gaussianwith a no-cooperation scheme, similar to the proof in [8,
vectors of covariance matrice§|,, o3l,, and N1, wherel,,  SectionV-E1]. ]
denotes the)-by-n identity matrix.
Definition 4: Define the two-dimensional region

n =2, Ky =

U|Eé||w

—
é”“o ~

V. LINEAR FILTERING REGION
Retock(P1, P2, N, 07, 03)
The multi-letter achievable region in Theorem 3 is gengrall
£ ¢l U Re(n, Ky, Ky, B1,Bs) |, (15) difficult to evaluate and to analyze. In the following we et
neN,Ku1,Ku2,B1,B2 a single-letter expression characterizing a subseRgfear

L L and thus an achievable region. This new (possibly smaller)
where the union is taken over all positive integefsall 5 pievable region is defined as the limiting region obtained
po_slt:vel semldgﬁmter * n—matr|c¢sKU|31 an%KBU% ar;]d r?" when in Definition 4 the union is taken only over matrices
oo " 81,8, K, and nat are Toelzand he prameer-

, . : co. Notice that while in this setup we do not know whether
N0t|ce that the power constraints (9) and (19) assure that ty;q "stationary” choice is optimal, it has been shown [Gtth
input vectors as defined in (12) and (13) satisfy in a Gaussian single-user channel with noise-free feedback
such a stationary choice is optimal for a similar class c#din
schemes.

The resulting single-letter achievable region is charatd
as a union of regions where the union is over péifs, Ho)
of strictly causal filters and power spectral densities and
Rlock(P1, P2, N,03,03) C Cusercoof P1, P2, N, o?,03). Syo. It still seems hard to evaluate this achievable region even

h . . q hi bInumerically, because the optimal choice of the filtéfs and
In contrast to the regions in [2] and [3], our achieva 2 is not known. However, given a choice of the filtelg

region in Theor(_am 3 improves on the_ ho-cooperation capaciy 4 H, it is possible to determine the optimal power spectra

for all symmetrlc setups. The following more general resugm andSy» which simplifies the evaluation of the region. In

can be dgnved. , particular, it can be shown that a frequency-division stygt
Proposition 2: Irrespective of the power#:, P», N > 0 s ontimal for almost all filters and available transmit posve

o . . : 5
and the (finite) cooperation link noise-varianegs o3 > 0, The solutions resemble the solutions in [9] for the MAC with
the capacity region of the AWGN MAC with user cooperatloriwhter_symbmS interference.

is strictly larger than the capacity region of the AWGN MAC
without user cooperation, i.e.,

CUSGFCOO[{P11P27N7 0%,0%) 2 CNOCoop(Pl,PQ,N, U%,Ug)-
a7 Definition 5: Let Hy, H, be the Fourier transforms of the
Proof: For symmetric setups wher® = P, = P impulse response of two strictly-causal filters, and $et;
and 0?2 = 02 = o? the proposition follows directly and Sy» be two power-spectral densities. Define the region
from Theorem 3. In fact, for the choice of parameterRe(Suy1,Suve, H1, H2) as the set of all nonnegative rate pairs

1 1
;||X1|\2§P1 and 5|\X2||2 < P, (16)

Theorem 3:The regionRpock iS achievable for the two-
user AWGN MAC with user cooperation, i.e.,

A. An Achievable Region



(R, R2) that satisfy (Subsection V-A2) using Theorem 3. Finally, using the
o 9 representation ofRg(Sy1, Sue, H1, H2) derived in Subsec-
Ry < i/ log (1+ 1+ Ha(w)] SUl(w)) dw tion V-Al, we prove that every rate pair in the interior
ar Jo N(w) of Re(Sv1,Su2, Hi, H2) is contained in the regiorR(n)

(18) for all sufficiently largen. Since the capacity region is
o< L /2” oe (14 114+ Hi(w)]2Sy2(w) 4,  Closed, this then proves the achievability of the entirdareg
2=U4r 0 & N(w) Re(Su1, Suz2, H1, Ho), i.e., also of its boundary points.
(19) In the following subsections le{U; ;} and {U;} be
2 114 Ha(w)]2Sy1 (w) independent discrete-time zero-mean stationary Gaussian
R1+ Ry < In ; log (1+ N(w) guences of power spectral densiti€g; and Sy2 Also,
|

let U} denote the tupldU; 1,...,U1,), and U] the tuple
1—|—H 28 1 1 ) ,n )y 2
| 1((“)() ) U2 (w)> , (20) (U2717 e U2,n)-
v 1) Formulation of Rg using stationary processesEor all
where —00 < t < oo define
N(w) £ [Hz(w) + Hi(w)Ha(w)[*07
+|Hi(w) + Ha(w) Hy (w)[?03

X1 =Us + Z an (XQ,tfk + W2,t7k) (26)

k=1
+ |1 — Hy(w)Hz(w)*N. (21) B m B
e i _ _ . Xoy=Usy + Z as. (Xl,tfk + Wl,tfk) (27)
Definition 6: Define the two-dimensional region 1
RFHter(PlaPQva U%aag) th = Xl’t +X2"t +Zt (28)
N Notice that the inputsX;; and X,, here are stationary
=cl U Re(Sv1, Svz, Hi, Hz) |, stochastic processes. Therefore, by Parseval’s theordrhean

Sv1,Suz,Ha, Hz cause by our assumption the tuplé, , Ho, Sy1, Sy2) satisfies

where the union is over all power spectral densitigs and the power constraints (22) and (23) with strict inequality,
Su2 and over all transfer functionBl,, H, of strictly-causal each integet andv € {1,2}:
filters such that the power constraints (22) and (23) (exees

in the Fourier-domain) shown on top of the next page are E [th} < P, (29)
satisfied. N )
Theorem 4:The region Reer is achievable over the Furthermore,_ by Szegd’s Theorem [10], [6], constrain®)€1
AWGN MAC with user cooperation, i.e., (20) are equivalent to the constraints
1 /-~
Reiter(P1, Pa, N, 0%, 03) C Cusercoof P1, Pa, N, 0%, 03). Ri< D S1 (V05 070y) (30)
Proof: Fix two finite, strictly-causal filters with transfer B ey
functions Ry < lim 51 (Y ; Uy ‘ Ul) (31)
m . 1 -
Hi(w) =Y ap e (24) Ritfo < lim 1 (V75 07,03 (32)
k=1 N N N
m - whereY” denotes the tupléYy, ..., Y, ). Therefore, it suffices
Hy(w) = Z aze ", (25) to prove that every nonnegative rate-péit;, R,) that simul-
k=1

taneously satisfies the three constraints (30)—(32) isaahle.
and two power spectral densiti€g;; andSy» such that the  2) Sequence of Achievable Regions with Block Schéimie:
tuple (Sy1,Su2, Hi, Ho) satisfies the power constraints (22pach positive integey, defineB, (1) as then x n strictly-lower
and (23) with strict inequality. In the following we sketch ariangular matrix whose colump- row-; entry equalsz; ;—;
proof of achievability of the regioRr(Sy1, Sua, Hi, Ha). if 0 < i—j <m and equals 0 otherwise, and similaiBs(n)
By continuity arguments and because by definition the cas thern x n strictly-lower triangular matrix whose column-
pacity region is closed, then the regi®(Sy 1, Sy, H1, H2) j, row- entry equalsus ;—; if 0 < i —j < m and equals 0
is also achievable ifH; and H, are the transfer func- otherwise. Further, for each positive integatefineK () as

tions of infinite strictly causal filters, or if the the tuplethe covariance matrix of the vect®f; (n) £ (U 1,...,U1,)"
(Su1, Sue, Hy, Hs) satisfies the power constraints (22) andnd Ky2(n) as the covariance matrix of the vectiz(n) =
(23) with equality. (Uz,1,...,Usy)".

The achievability of the regiofRg(Sy1, Sy, H1, Ha) is Also, for eachn let Y(n),Xi(n), and X3(n) be n-
proved as follows. We first express the region in terms of mdimensional vectors defined through (12), (13), (14) wBen
tual informations of stationary processes (Subsection1y-A is replaced withB; (n), B2 with By (), Ky with Ky (), and
We then present a sequence of achievable redi@(®)};°; Kyz with Kya(n).



12 81 () + Sua(w) B )2 + |H () Ha ()]20% + | Hy () 203
2 ), (e ARLEGE o< h (22)
1 2m Sva2(w) + SUl(w)|H2(w)|2 + |H1(w)H2(w)|202 + |H2((.U)|20'2
2 Jy - @R esn )

It can be shown that for all sufficiently large posDifferentiating with respect t&1(w) andSy2(w) yields the
itive integers n the vectors X;(n) and Xz(n) have KKT conditions which show that fow such that the optimal
power at mostnP; and nP,, and that thus the tu- S} (w) > 0:
ple (B1(n), B2(n), Ku1(n), Kua(n)) satisfies the power con-

straints (9) and (10). Therefore, by Theorem 3, for each pos- |1+ Ha(w)[?
itive integer the regionRg(B1(n), B2(1), Kui(n), Kua(n)) N(W) + [T+ Ho(w)[2Sg (w) + [T+ Hi(w)[>S75 ()
is achievable, i.e., for every positive integer A+ N Ho(w)]? (37)
- Hi(w)Ha(w)?
Rs(n,B1(n), B2(n), Ku1(n), Kuz(n)) _
C Cusercood P1, P2, N, 0%, 03), (33) and forw such that the optima$;,(w) > 0:
where recall that the region 1+ Hi(w)]?
Re(B1(n),B2(n), Kui(n), Kua(n)) is defined as the set N(w)+ |1+ Ha(w)[>Sf,(w) + 1+ Hi(w)[>Sf,(w)
of all nonnegative rate pairs?,, R2) that satisfy N[ H (W) 4 X (38)
1 1= Hi(w)Ha(w)?
R1 < =I(Y(n); Ui(n)|U2(n (34)
o (¥(); U(m){Ua () Therefore, for allv such that botts;, (w) > 0 andS;, (w) >
1
Ry < L T(Y (n); U2 () U1 (7)) (35) 0:we musthave
1 /\1+)\2|H2(w)|2 _ )\1|H1(w)|2+)\2 (39)
Ri+ Rg < ;I(Y(n);Ul (), Ua(n)). (36) 1+ Ho(w)? T+ Hi@)]2

For every n we then choose the regiorR(n) as However, for most filtersd; # Hs of interest this condition

Re(B1(n),B2(n), Kui(n), Kua(n)), which as shown above is holds only on a set of measube which implies that for these
achievable. filters there is no loss in optimality in considering only paw
3) Equivalence of Regiondio prove that every rate pair onSPectral densities where for evesy either Sy (w) = 0 or
the interior of the regiorR (Hy, Ha, Sy, Su2) is contained Sva (w)_: 0. Thus, for these fllters_ itis optimal that the two

in the regionR(n) for all sufficiently largen, by (30)—(32) transmitters apply a frequency division strategy.

and (34)—(36) it suffices to prove the following three limits ~ When the optimalSy;, (w) > 0 and S, (w) = 0, we obtain
from (37) that

Jim L (0@ V(o) — 17 0701)) = 0 5 (o) < L B H@P] V()
vi\wW) = - BIEk
tim + (1Y () Us ()| U (o) — 1077 03107)) N+ ol Ha@)P 1= Ha(@)P

n—oo

0

1 . and a similarly, when the optimd;;, (w) > 0 and S (w) =
lim - (I(Y(n); Ui (), Us () — IV U, Ug)) =0 0, we obtain from (38) that

n—00 1)
_ 2
The proof is lengthy, and therefore omitted. ] Sio(w) = 1= Hi@H@WP _ Nw) _
MHI(W)P+ A2 1= Hi(w)]?
B. Structural Results We thus obtain the following Theorem.
In this section we derive the power spectral densifigs Theorem 5:Given filters H, and H, such that (39) holds
and Sj;, that maximize the sum-rate (20) for given transfepnly over a set of measure, the optimal power spectra
functions H; and Hs. Si1(w) and S, (w) have disjoint supports. Fay where the

To this end, we fix two transfer functiond; and H,, and left-hand side of (39) is smaller than its right-hand side th
denote byR.,., the right-hand side of (20), by, the right- optimal power spectral densities are:
hand side of (22), and by, the right-hand side of (23). The 9
Lagrangian is then given by Siy(w) = - Hi(H @]  Nw) ’
ALt Ae|He(w)]? 1= Ha(w)P?

J(Sv1,Svu2, A2, A2) = Reum + A1(p1 — P1) + X2(p2 — Po). Sira(w) =0, (41)

(40)
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for w where the let-hand side of (39) is larger than its right-

hand Side: = = = No Cooperation
12r Carleial b
8[*]1 (w) = 07 (42) Tandon-Ulukus (ub)
— Willems et al.
|1 - Hl(W)HQ(W)|2| N(W) 115 One tap |
8* = - : 43 - — — Two taps
D V1Y A5 P T 05 LR ot

I
i

The constants\; and A\, must be chosen such that = P,
and p2 = Ps.

Following an idea in [11], the above optimal power spectral
densities can be obtained using a waterfilling algorithm. We
define: 1

A+ )\2|H2(w)|2

Rate (nats)

1.05

S A
S S T ) a1 ) 59 IO A S Rt
5 )\1 |H1 (w)lg + )\2 Cross-link noise power
S = S 45
Q(W) |1 — M (W)Hz (w)|2 U2 (w) ( ) Fig. 2. Achievable rates versus cross-link noise undeeudifft strategies for
)\1—|—)\2|H2(w)|2 P=3andN = 1.
Ni(w) 2 N(w 46
W TR meP s mep @ @9
M |H 240
Na(w) & H (1|)H1((W))||2|41— +2H ( )|2J\/(w). (47) filters for the filtering-achievable region? What happens if
_ Hw)Halw Sl there is only one cooperation link? Is there a cutwfffor
Plugging these definitions into (20) results in which linear strategies are provably superior to the Calrlei
S S i ies?
oo 1 2#1 - S (W) . So(w) ] 8 and Willems strategies”
sum =y o 08 M@  Mw) )™ ACKNOWLEDGEMENTS

tral The authors would like to acknowledge many helpful con-

Using Theorem 5, it is easily verified that the power spec
densitiesS;;, and S;;, that maximize (48) can be obtaine
by waterfilling over the modified noise-spectk§ andA> as
described in the following corollary.

Corollary 1: Given filters H; and H such that (39) holds
only over a set of measufk the optimal power spectrﬁik (w)
and S;(w) have disjoint supports. Fap where A (w) <
Nz(w)i

(1]

(2]

(3]

Siw =[1-MwI"  Sw) =0, (49)
and forw whereN; (w) > Na(w):
§iw) =0,  SwW=0-Mw)]. G

The constants\; and )\, in the definitions (44)—(47) must be

chosen such that; = P, andpy = Ps. B

VI. EXAMPLE AND EXTENSIONS

We now turn to a brief example of the rates achievablgs]
by simple filters. Figure 2 shows the rates achievable by 5
different strategies for a symmetric setup whéte= P, = 3 [7
and N = 1. The horizontal axis is the cross-link noise power
and the vertical axis is the rate in nats. The “one tap” region
is given by optimizing filters of the fornf; (z) = a;2~* and
Hy(z) = —a;z~* overa; and “two taps” plots are given by
optimizing Hy(2) = a1z~ ' + azz~ " and Hy(2) = —ayz~ ' + [
azz~2 over (a1, az). The plots show that for low cross—link[10
SNR, or higho?, the linear filtering strategies outperform the
Carleial, Willems, and No-Cooperation regions. (11]

The schemes here raise interesting questions. The filtering
achievable region is a subset of the block achievable region
but are they in fact equal? How should we optimally choose

dversations with Young-Han Kim.
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