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On Achievability for Downlink Cloud Radio Access
Networks with Base Station Cooperation

Chien-Yi Wang, Michèle Wigger, and Abdellatif Zaidi

Abstract

This work investigates the downlink of a cloud radio access network (C-RAN) in which a central processor
communicates with two mobile users through two base stations (BSs). The BSs act as relay nodes and cooperate
with each other through error-free rate-limited links. We develop and analyze two coding schemes for this scenario.
The first coding scheme is based on Liu–Kang scheme for C-RANs without BS cooperation; and extends it to
scenarios allowing conferencing between the BSs. Among few other features, our new coding scheme enables
arbitrary correlation among the auxiliary codewords that are recovered by the BSs. It also introduces common
codewords to be described to both BSs. For the analysis of this coding scheme, we extend the multivariate covering
lemma to non-Cartesian product sets, thereby correcting an erroneous application of this lemma in Liu–Kang’s
related work. We highlight key aspects of this scheme by studying three important instances of it. The second
coding scheme extends the so-called compression scheme that was originally developed for memoryless Gaussian
C-RANs without BS cooperation to general discrete memoryless C-RANs with BS cooperation. We show that this
scheme subsumes the original compression scheme when applied to memoryless Gaussian C-RAN models. In the
analysis of this scheme, we also highlight important connections with the so-called distributed decode–forward
scheme, and refine the approximate capacity of a general N -BS L-user C-RAN model in the memoryless Gaussian
case.

Index Terms

Broadcast relay networks, cloud radio access networks, compression, conferencing relays, data sharing, dis-
tributed decode–forward, Gaussian networks.

I. INTRODUCTION

Cloud radio access networks (C-RANs) are promising candidates for fifth generation (5G) wireless communication
networks. In a C-RAN, the base stations (BSs) are connected to a central processor through digital fronthaul links.
Comprehensive surveys on C-RANs can be found in [1], [2]. The 2-BS 2-user case is depicted in Figure 1. The
two most important coding schemes for downlink C-RANs are
• The data-sharing scheme: The central processor splits each message into independent submessages and conveys

these independent submessages to one or multiple BSs. The BSs map the received submessages into codewords
and transmit these codewords over the interference network. The mobile users decode their intended message
parts by treating interference as noise. If there are N BSs, in general there can be up to 2N−1 submessages, each
of which is sent to a specific subset of BSs. Two special cases have been considered in the literature: Zakhour
and Gesbert [3] studied the 2-BS 2-user case. On the other hand, Dai and Yu [4] focused on BS clustering for
general C-RANs: The messages are sent as a whole to subsets of BSs and there is no message splitting.

• The compression scheme: The central processor first precalculates idealized channel inputs and then sends lossy
representations of these idealized inputs over the rate-limited fronthaul links to the BSs. The BSs reconstruct the
compressed signals and transmit them over the interference network. The first hop, from the central processor to
the BSs, is conceptually a lossy source coding problem. The goal is to make the compressed signals correlated
in a way that would be useful for the second hop, from the BSs to the mobile users. The compression scheme
was first investigated by Park et al. [5] for the memoryless Gaussian case.
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Fig. 1. Downlink C-RAN with 2 base stations and 2 mobile users.

A third scheme, the reverse compute–forward, was proposed by Hong and Caire [6], which uses nested lattice codes
to perform precalculations in a finite field. The reverse compute–forward scheme can enhance the performance under
the condition of weak fronthaul links, but it suffers from non-integer penalty and thus is less competitive than the
first two schemes when the fronthaul links are strong.

Recently, for the downlink of C-RANs some advanced coding schemes have been developed based on random
coding: Liu and Kang [7] generalized the data-sharing scheme to a new scheme, which we will refer to as Liu–
Kang scheme. In the Liu–Kang scheme, the central processor maps the message pair (M1,M2) into “2-dimensional”
Marton codewords: codewords Un1 , U

n
2 for message M1 and V n

1 , V
n

2 for message M2. The central processor then
describes codewords Un1 , V

n
1 to BS 1 and codewords Un2 , V

n
2 to BS 2, where the descriptions are obtained by

enumerating all possible pairs of codewords (Un1 , V
n

1 ) and (Un2 , V
n

2 ). However, the performance analysis in [7]
is flawed due to an erroneous application of the mutual covering lemma. This leads to a rate region that is not
achievable using the described coding scheme, because of some missing rate constraints.

On the other hand, it was observed in [8] that for the 2-BS 2-user case, distributed decode–forward (DDF) [9]
subsumes the compression scheme. The DDF scheme precodes every codeword involved in the entire communication
already at the source (the central processor, in our setup). The codewords carry the information of the messages in
an implicit manner.

In this paper, we study the downlink of a C-RAN with two BSs and two mobile users in which the BSs cooperate
over error-free rate-limited links. We develop two coding schemes for this model. The first coding scheme, termed
generalized data-sharing (G-DS), is based on a variation of the Liu–Kang scheme [7], which is developed for
C-RANs without BS cooperation. Our G-DS scheme accounts for the conferencing between the BSs by introducing
common codewords (Un0 , V

n
0 ) intended to be recovered by both of them. The analysis generalizes that of [7] and

fixes an erroneous step in the achievability proof therein. To this end, in particular we extend the multivariate
covering lemma to non-Cartesian product sets.

The second coding scheme, termed generalized compression (G-Compression), is based on the compression
scheme developed by Park et al. [5] in the context of Gaussian C-RAN without BS cooperation. Our G-Compression
scheme also accounts for conferencing between the BSs and applies to general discrete memoryless channels on
the second hop. We analyze this scheme and show that its performance subsumes that of the DDF scheme when
the latter is applied to the studied downlink C-RAN model. Furthermore, we characterize the capacity region of
a general N -BS L-user C-RAN model under the memoryless Gaussian model to within a better (i.e., smaller)
constant gap, independent of power.

The main contributions of this work can be summarized as follows:
1) We modify the Liu–Kang scheme [7] and introduce common codewords to the new G-DS scheme. We use the

cooperation links to exchange part of common codewords and to redirect private codewords for asymmetric link
or channel conditions. The new G-DS scheme subsumes the data-sharing scheme proposed in [3]. To highlight
distinct features of the code components, we consider three representative simplifications.

2) We introduce a cloud center and incorporate BS cooperation to the compression scheme in [5] and derive the
corresponding achievable rate region for general discrete memoryless channels on the second hop. The new
G-Compression scheme subsumes the scheme proposed in [5] when adapted to the memoryless Gaussian case.

3) We simplify the achievable rate region of the DDF scheme for downlink C-RAN with BS cooperation. Under
the memoryless Gaussian model, we characterize the capacity region of a downlink N -BS L-user C-RAN with
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BS cooperation to within a gap of L
2 + min{N,L logN}

2 bits per dimension, which improves the previous result
L+N

2 .
4) We show that under the memoryless Gaussian model, the G-DS scheme outperforms the G-Compression scheme

in the low-power regime and when the channel gain matrix is ill-conditioned. Furthermore, compared to the
G-Compression scheme, the G-DS scheme benefits more from BS cooperation.

The paper is organized as follows. In Section II, we provide the problem formulation for the 2-BS 2-user case.
Section III is devoted to the G-DS scheme, in which we describe the detailed coding scheme and consider three
representative special cases and two examples with simpler network topologies. Section IV is devoted to the G-
Compression scheme. In this section, we describe the G-Compression scheme with a cloud center and then conduct
a performance analysis on the DDF scheme. Finally, in Section V we compare the G-DS scheme and the G-
Compression scheme through examples and evaluation for the memoryless Gaussian model. The lengthy proofs are
deferred to appendices.

A. Notations

Random variables and their realizations are represented by uppercase letters (e.g., X) and lowercase letters
(e.g., x), respectively. Matrices are represented by uppercase letters in sans-serif font (e.g., M) and vectors are in
boldface font (e.g., v). We use calligraphic symbols (e.g., X ) and the Greek letter Ω to denote sets. The probability
distribution of a random variable X is denoted by pX . Denote by | · | the cardinality of a set and by 1{·} the
indicator function of an event. We denote [a] := {1, 2, · · · , bac} for all a ≥ 1, Xk := (X1, X2, · · · , Xk), and
X(Ω) = (Xi : i ∈ Ω). Throughout the paper, all logarithms are to the base two.

The usual notation for entropy, H(X), and mutual information, I(X;Y ), is used. We follow the ε–δ notation in
[10] and the robust typicality introduced in [11]: For X ∼ pX and ε ∈ (0, 1), the set of typical sequences of length
k with respect to the probability distribution pX and the parameter ε is denoted by T (k)

ε (X), which is defined as

T (k)
ε (X) :=

{
xk ∈ X k :

∣∣∣∣#(a|xk)
k

− pX(a)

∣∣∣∣ ≤ εpX(a), ∀a ∈ X
}
,

where #(a|xk) is the number of occurrences of a in xk. Finally, the total correlation among the random variables
X(Ω) is defined as

Γ(X(Ω)) :=
∑
i∈Ω

H(Xi)−H(X(Ω)).

II. PROBLEM STATEMENT

Consider the downlink 2-BS 2-user C-RAN with BS cooperation depicted in Figure 2. The network consists
of one central processor, two BSs, and two mobile users. The central processor communicates with the two BSs
through individual noiseless bit pipes of finite capacities. Denote by Ck the capacity of the link from the central
processor to BS k. In addition, the two BSs can also communicate with each other through individual noiseless bit
pipes of finite capacities. Denote by Ckj the capacity of the link from BS j to BS k. The network from the BSs to the
mobile users is modeled as a discrete memoryless interference channel (DM-IC) 〈X1 × X2, pY1,Y2|X1,X2

,Y1 × Y2〉
that consists of four finite sets X1,X2,Y1,Y2 and a collection of conditional probability mass functions (pmf)
pY1,Y2|X1,X2

.
With the help of the two BSs, the central processor wants to communicate two messages M1 and M2 to users 1

and 2, respectively. Assume that M1 and M2 are independent and uniformly distributed over [2nR1 ] and [2nR2 ],
respectively. In this paper, we restrict attention to information processing on a block-by-block basis. Each block
consists of a sequence of n symbols. The entire communication is divided into three successive phases:
1) central processor to BSs

The central processor conveys two indices (W1,W2) := f0(M1,M2) to BS 1 and BS 2, respectively, where
f0 : [2nR1 ]× [2nR2 ]→ [2nC1 ]× [2nC2 ] is the encoder of the central processor.

2) BS to BS conferencing communication
BS 1 conveys an index W21 := f1(W1) to BS 2, where f1 : [2nC1 ] → [2nC21 ] is the conferencing encoder of
BS 1. BS 2 conveys an index W12 := f2(W2) to BS 1, where f2 : [2nC2 ]→ [2nC12 ] is the conferencing encoder
of BS 2.
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Fig. 2. Downlink C-RAN with BS cooperation: 2 base stations and 2 mobile users.

3) BSs to mobile users
BS 1 transmits a sequence Xn

1 := g1(W1,W12) over the DM-IC, where g1 : [2nC1 ]×[2nC12 ]→ X n1 is the channel
encoder of BS 1. BS 2 transmits a sequence Xn

2 := g2(W2,W21) over the DM-IC, where g2 : [2nC2 ]× [2nC21 ]→
X n2 is the channel encoder of BS 2.

Upon receiving the sequence Y n
` ∈ Yn` , user ` ∈ {1, 2} finds an estimate M̂` := d`(Y

n
` ) of message M`, where

d` : Yn` → [2nR` ] is the decoder of user `. The collection of the encoders f0, f1, f2, g1, g2 and the decoders d1, d2

is called a (2nR1 , 2nR2 , n) channel code for the downlink 2-BS 2-user C-RAN model with BS cooperation.
The average error probability is defined as

P(n)
e := P

(
2⋃
`=1

{M̂` 6= M`}

)
.

We say that a rate pair (R1, R2) is achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes such that
limn→∞ P

(n)
e = 0. The capacity region of the downlink C-RAN is the closure of the set of achievable rate pairs.

Finally, we remark that using the discretization procedure [10, Section 3.4.1] and appropriately introducing input
costs, our developed results for DM-ICs can be adapted to the Gaussian interference channel with constrained input
power. The input–output relation of this channel is[

Y1

Y2

]
=

[
g11 g12

g21 g22

] [
X1

X2

]
+

[
Z1

Z2

]
, (1)

where Xk ∈ R is the channel input from BS k, Y` is the channel output observed at user `, g`k ∈ R is the channel
gain from BS k to user `, and (Z1, Z2) are i.i.d. N (0, 1) and each BS has to satisfy an average power constraint
P , i.e., 1

n

∑n
i=1 x

2
ki ≤ P for all k ∈ {1, 2}.

III. GENERALIZED DATA-SHARING SCHEME

We now propose a new coding scheme, which we term generalized data-sharing (G-DS) scheme and which
generalizes the data-sharing scheme [3]. It is instructive to briefly review the encoding of the data-sharing scheme
before presenting the details of our new G-DS scheme.

A. Preliminary: Data-Sharing Scheme

The conventional data-sharing scheme follows from a rate-splitting approach: Each message M` is split into
three independent submessages M`0, M`1, and M`2, where ` ∈ {1, 2}. The central processor sends the private
messages (M1k,M2k) to BS k, where k ∈ {1, 2}, and the common messages (M10,M20) to both BSs. The BSs
map the received submessages into codewords, i.e., m1j → unj and m2j → vnj , for all j ∈ {0, 1, 2}, and each
BS k ∈ {1, 2} applies a symbol-by-symbol mapping xk(u0, v0, uk, vk) to map the codewords (Un0 , V

n
0 , U

n
k , V

n
k )

into channel inputs Xn
k . In the conventional data-sharing scheme, the codewords are generated according to the

distribution

pU0,U1,U2,V0,V1,V2
=

2∏
j=0

pUjpVj .
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In [3], Zakhour and Gesbert specialized the data-sharing scheme to the memoryless Gaussian model and to linear
mapping of xk, which is known as linear beamforming in the literature.

Our aim is to develop a coding scheme that allows to exploit the full joint distribution pU0,U1,U2,V0,V1,V2
. However,

to the best of our knowledge, the rate-splitting approach seems to admit at best the structure pU0,V0

∏2
j=1 pUj ,Vj |U0,V0

.
The reason is that since the private messages are independent of each other and of the common messages, the
BSs cannot coordinate with each other to have (U1, V1) directly correlate with (U2, V2). In order to overcome
this obstacle, we modify and extend the Liu–Kang scheme [7]: Each message, instead of being split into three
independent parts, is now represented by a set of auxiliary index tuples. Each auxiliary index is referred to a
codeword of independently generated codebooks. Through joint typicality test, we find auxiliary indices such that
the set of corresponding codewords are coordinated.

B. Performance

First, let us give a high-level summary of the G-DS scheme. The encoding is based on multicoding. We fix a
joint pmf pU0,V0,U1,V1,U2,V2

and independently generate six codebooks Uj , Vj , j ∈ {0, 1, 2}, from the marginals pUj ,
pVj , j ∈ {0, 1, 2}, respectively. For j ∈ {0, 1, 2}, the codebook Uj contains 2nRuj codewords and the codebook
Vj contains 2nRvj codewords. Each message m1 ∈ [2nR1 ] is associated with a unique bin B(m1) of index tuples
(k0, k1, k2) ∈ [2Ru0 ]× [2Ru1 ]× [2Ru2 ], which are indices to the codebooks U0,U1,U2, respectively. Similarly, each
message m2 ∈ [2nR2 ] is associated with a unique bin B(m2) of index tuples (`0, `1, `2) ∈ [2Rv0 ]× [2Rv1 ]× [2Rv2 ],
which are indices to the independently generated codebooks V0,V1,V2, respectively. Then, given (m1,m2), we
apply joint typicality encoding to find index tuples (k0, k1, k2) ∈ B(m1) and (`0, `1, `2) ∈ B(m2) such that
(Un0 (k0), Un1 (k1), Un2 (k2), V n

0 (`0), V n
1 (`1), V n

2 (`2)) are jointly typical.
Remark 1: In addition to including the common auxiliaries U0 and V0, as already mentioned in [7], the main

difference of our proposed scheme from the Liu–Kang scheme is that we do not enumerate the jointly typical pairs
(Un1 (k1), Un2 (k2)) and (V n

1 (`1), V n
2 (`2)), which renders the analysis of the success probability of finding jointly

typical tuples (Un1 (k1), Un2 (k2), V n
1 (`1), V n

2 (`2)) difficult. ♦
The next step is to convey (k0, `0, k1, `1) to BS 1 and (k0, `0, k2, `2) to BS 2. By taking advantage of the following

facts, we can reduce the conventional sum rate Ru0 +Rv0 +Ruj +Rvj , j ∈ {1, 2}:
1) Correlated index tuples

The index tuple to be sent represents certain jointly typical codewords. As long as U0, V0, Uj , Vj are not mutually
independent, some members of [2nRu0 ]× [2nRv0 ]× [2nRuj ]× [2nRvj ] will never be used. Thus, instead of sending
(k0, `0, kj , `j) separately, we can enumerate all jointly typical codewords and simply convey an enumeration
index.

2) Opportunity of exploiting the cooperation links
In the presence of cooperation links, the BSs do not need to learn all the information directly over the link from
the central processor, but can learn part of it over the cooperation link.

Finally, user 1 applies joint typicality decoding to recover (k0, k1, k2) and then the message m1 can be uniquely
identified. Similarly, user 2 applies joint typicality decoding to recover (`0, `1, `2) and then the message m2 can
be uniquely identified.

The achieved rate region of the G-DS scheme is presented in the following theorem.
Theorem 1: A rate pair (R1, R2) is achievable for the downlink 2-BS 2-user C-RAN with BS cooperation if there

exist some rates Ruj , Rvj ≥ 0, j ∈ {0, 1, 2}, some joint pmf pU0,V0,U1,V1,U2,V2
, and some functions xk(u0, v0, uk, vk),

k ∈ {1, 2}, such that for all Ωu,Ωv ⊆ {0, 1, 2} satisfying |Ωu|+ |Ωv| ≥ 2,

1{|Ωu| = 3}R1 + 1{|Ωv| = 3}R2 <
∑
i∈Ωu

Rui +
∑
j∈Ωv

Rvj − Γ(U(Ωu), V (Ωv)); (2)

for all non-empty Ωu,Ωv ⊆ {0, 1, 2},∑
i∈Ωu

Rui < I(U(Ωu);U(Ωc
u), Y1) + Γ(U(Ωu)), (3)∑

j∈Ωv

Rvj < I(V (Ωv);V (Ωc
v), Y2) + Γ(V (Ωv)); (4)
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and ∑
i={0,1}

Rui +
∑

j∈{0,1}

Rvj < C1 + C12 + Γ(U0, V0, U1, V1), (5)

∑
i∈{0,2}

Rui +
∑

j∈{0,2}

Rvj < C2 + C21 + Γ(U0, V0, U2, V2), (6)

2∑
i=0

Rui +

2∑
j=0

Rvj < C1 + C2 + Γ(U0, V0, U1, V1) + Γ(U0, V0, U2, V2)− Γ(U0, V0). (7)

Unfortunately, the rate region in Theorem 1 is hard to evaluate. Besides, we find it insightful to learn the effects
of different code components. Thus, now we present three corollaries to Theorem 1 where we restrict the correlation
structure:

1) Corollary 1: Uj = Vj = ∅ and Ruj = Rvj = 0, j ∈ {1, 2},
2) Corollary 2: pU0,V0,U1,V1,U2,V2

=
∏2
j=1 pUjpVj ,

3) Corollary 3: U0 = V0 = ∅ and Ru0 = Rv0 = 0.
In all the corollaries, the auxiliaries (Ruj , Rvj : j ∈ {0, 1, 2}) are eliminated through the Fourier–Motzkin
elimination.1 We remark that the first two correlation structures can also be realized through the rate-splitting
approach mentioned in Section III-A.

Corollary 1 (Scheme I): A rate pair (R1, R2) is achievable for the downlink 2-BS 2-user C-RAN with BS
cooperation if

R1 < I(U0;Y1),

R2 < I(V0;Y2),

R1 +R2 < I(U0;Y1) + I(V0;Y2)− I(U0;V0),

R1 +R2 < min{C1 + C12, C2 + C21, C1 + C2},

for some joint pmf pU0,V0
and some functions xk(u0, v0), k ∈ {1, 2}.

Corollary 2 (Scheme II): A rate pair (R1, R2) is achievable for the downlink 2-BS 2-user C-RAN with BS
cooperation if

R1 < C1 + C12 + I(U2;Y1|U0, U1),

R1 < C2 + C21 + I(U1;Y1|U0, U2),

R1 < I(U0, U1, U2;Y1),

R2 < C1 + C12 + I(V2;Y2|V0, V1),

R2 < C2 + C21 + I(V1;Y2|V0, V2),

R2 < I(V0, V1, V2;Y2),

R1 +R2 < C1 + C2,

R1 +R2 < C1 + C12 + I(U2;Y1|U0, U1) + I(V2;Y2|V0, V1),

R1 +R2 < C2 + C21 + I(U1;Y1|U0, U2) + I(V1;Y2|V0, V2),

R1 + 2R2 < C1 + C2 + C12 + C21 + I(V1, V2;Y2|V0),

2R1 +R2 < C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0),

2R1 + 2R2 < C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0) + I(V1, V2;Y2|V0),

for some joint pmf
∏2
j=0 pUjpVj and some functions xk(u0, v0, uk, vk), k ∈ {1, 2}.

When applied to the memoryless Gaussian model (1), Corollary 2 with C12 = C21 = 0 recovers the rate region
of the scheme of Zakhour and Gesbert [3, Proposition 1].

1In this paper, all Fourier–Motzkin eliminations are performed using the software developed by Gattegno, et al. [12].
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Corollary 3 (Scheme III): A rate pair (R1, R2) is achievable for the downlink 2-BS 2-user C-RAN with BS
cooperation if

R1 < C1 + C12 + I(U2;U1, Y1)− I(U2;U1, V1),

R1 < C2 + C21 + I(U1;U2, Y1)− I(U1;U2, V2),

R1 < I(U1, U2;Y1) + min


0,
I(V1;V2, Y2)− I(V1;U1, U2),
I(V2;V1, Y2)− I(V2;U1, U2)

 ,

R2 < C1 + C12 + I(V2;V1, Y2)− I(V2;U1, V1),

R2 < C2 + C21 + I(V1;V2, Y2)− I(V1;U2, V2),

R2 < I(V1, V2;Y2) + min


0,
I(U2;U1, Y1)− I(U2;V1, V2),
I(U1;U2, Y1)− I(U1;V1, V2)

 ,

R1 +R2 < I(U1, U2;Y1) + I(V1, V2;Y2)− I(U1, U2;V1, V2),

R1 +R2 < C1 + C2 − I(U1, V1;U2, V2),

R1 +R2 < C1 + C12 − I(U1, V1;U2, V2)

+ min


I(U2;U1, Y1) + I(V2;V1, Y2)− I(U2;V2),
2I(U2;U1, Y1) + I(V1, V2;Y2)− I(U2;V1)− I(U2;V2) + I(V1;V2),
I(U1, U2;Y1) + 2I(V2;V1, Y2)− I(U1;V2)− I(U2;V2) + I(U1;U2)

 ,

R1 +R2 < C2 + C21 − I(U1, V1;U2, V2)

+ min


I(U1;U2, Y1) + I(V1;V2, Y2)− I(U1;V1),
2I(U1;U2, Y1) + I(V1, V2;Y2)− I(U1;V1)− I(U1;V2) + I(V1;V2),
I(U1, U2;Y1) + 2I(V1;V2, Y2)− I(U1;V1)− I(U2;V1) + I(U1;U2)

 ,

for some joint pmf pU1,V1,U2,V2
and some functions xk(uk, vk), k ∈ {1, 2} such that

I(U1;V1) < I(U1;U2, Y1) + I(V1;V2, Y2),

I(U2;V2) < I(U2;U1, Y1) + I(V2;V1, Y2),

I(U1;V2) < I(U1;U2, Y1) + I(V2;V1, Y2),

I(U2;V1) < I(U2;U1, Y1) + I(V1;V2, Y2).

C. Examples

Now let us consider two special cases with simpler topologies.
Example 1 (1 BS and 2 users): The downlink 1-BS 2-user C-RAN can be considered as a special case of the

downlink 2-BS 2-user C-RAN with C2 = C12 = C21 = 0 and pY1,Y2|X1,X2
= pY1,Y2|X1

. We fix a joint pmf pU,V and
substitute (U1, V1) = (U, V ), Uj = Vj = ∅, and Ruj = Rvj = 0, j ∈ {0, 2}, in Theorem 1. Then, after removing
Ru1 and Rv1 by the Fourier–Motzkin elimination, we have the following corollary.

Corollary 4: A rate pair (R1, R2) is achievable for the downlink 1-BS 2-user C-RAN if there exist some pmf
pU,V and some function x1(u, v) such that

R1 < I(U ;Y1),

R2 < I(V ;Y2),

R1 +R2 < I(U ;Y1) + I(V ;Y2)− I(U ;V ),

R1 +R2 < C1. (8)

Thus, the achieved rate region is essentially Marton’s inner bound [13] with the additional constraint (8) due to the
fact that the digital link is of finite capacity. ♦

Example 2 (2 BSs and 1 user): The downlink 2-BS 1-user C-RAN is a class of diamond networks [14], [15],
which can be considered as a special case of the downlink 2-BS 2-user C-RAN by setting R2 = 0. We fix a joint
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pmf pU,X1,X2
and substitute (U0, U1, U2) = (U,X1, X2), Vj = ∅, and Rvj = 0, j ∈ {0, 1, 2}, in Theorem 1. Then,

after removing Ru0, Ru1, and Ru2 by the Fourier–Motzkin elimination, we have the following corollary.
Corollary 5: Any rate R1 is achievable for the downlink 2-BS 1-user C-RAN with BS cooperation if there exists

some pmf pU,X1,X2
such that

R1 < min


C1 + C2 − I(X1;X2|U),
C1 + C12 + I(X2;Y1|U,X1),
C2 + C21 + I(X1;Y1|U,X2),
I(X1, X2;Y1),
1
2 [C1 + C2 + C12 + C21 + I(X1, X2;Y1|U)− I(X1;X2|U)]

 .

Remark 2: Considering diamond networks with an orthogonal broadcast channel, the proposed G-DS scheme
recovers the achievability results in [14, Theorem 2] and [15, Theorem 1]. It is shown in [15] that the achievability
is optimal when the second hop is the binary-adder multiple-access channel, i.e., X1 = X2 = {0, 1}, Y1 = {0, 1, 2},
and Y1 = X1 +X2. Furthermore, the proposed G-DS scheme recovers the achievability result in [16, Theorem 2]
in which cooperation between relays is also included in the network model.

♦

D. Coding Scheme

Codebook generation: Fix a joint pmf pU0,V0,U1,V1,U2,V2
and functions xj(u0, v0, uj , vj), j ∈ {1, 2}. Randomly

and independently generate sequences
• un0 (k0), each according to

∏n
i=1 pU0

(u0i), for k0 ∈ [2nRu0 ];
• un1 (k1), each according to

∏n
i=1 pU1

(u1i), for k1 ∈ [2nRu1 ];
• un2 (k2), each according to

∏n
i=1 pU2

(u2i), for k2 ∈ [2nRu2 ];
• vn0 (`0), each according to

∏n
i=1 pV0

(v0i), for `0 ∈ [2nRv0 ];
• vn1 (`1), each according to

∏n
i=1 pV1

(v1i), for `1 ∈ [2nRv1 ];
• vn2 (`2), each according to

∏n
i=1 pV2

(v2i), for `2 ∈ [2nRv2 ].
Next, we generate three dictionaries:

D0 = {(k0, `0) ∈ [2nRu0 ]× [2nRv0 ] : (un0 (k0), vn0 (`0)) ∈ T (n)
ε′ },

D1(k, `) = {(k1, `1) ∈ [2nRu1 ]× [2nRv1 ] : (un1 (k1), vn1 (`1)) ∈ T (n)
ε′ (U1, V1|un0 (k), vn0 (`))},

D2(k, `) = {(k2, `2) ∈ [2nRu2 ]× [2nRv2 ] : (un2 (k2), vn2 (`2)) ∈ T (n)
ε′ (U2, V2|un0 (k), vn0 (`))},

for all (k, `) ∈ D0. Every index tuple in the dictionaries is assigned a unique reference label. For example, the first
index tuple in D1(k, `) is referred to as D1(1|k, `). Also, we denote by D−1

j the inverse map of Dj , j ∈ {0, 1, 2}.
Finally, we randomly and independently assign an index m1(k0, k1, k2) to each index tuple (k0, k1, k2) ∈ [2nRu0 ]×

[2nRu1 ]× [2nRu2 ] according to a uniform pmf over [2nR1 ]. Similarly, we randomly and independently assign an index
m2(`0, `1, `2) to each index tuple (`0, `1, `2) ∈ [2nRv0 ]× [2nRv1 ]× [2nRv2 ] according to a uniform pmf over [2nR2 ].
We refer to each subset of index tuples with the same index mj as a bin Bj(mj), j ∈ {1, 2}.

Central Processor: Upon seeing (m1,m2), the central processor finds (k0, k1, k2) ∈ B1(m1) and (`0, `1, `2) ∈
B2(m2) such that

(un0 (k0), un1 (k1), un2 (k2), vn0 (`0), vn1 (`1), vn2 (`2)) ∈ T (n)
ε′ .

If there is more than one such tuple, choose an arbitrary one among them. If no such tuple exists, choose
(k0, k1, k2, `0, `1, `2) = (1, 1, 1, 1, 1, 1). Then, the central processor splits D−1

0 (k0, `0) into three subindices w(0)
0 ,

w
(1)
0 , and w

(2)
0 of rates R00, R01, and R02, respectively. Also, for j ∈ {1, 2}, the central processor splits the

index D−1
j (kj , `j |k0, `0) into two subindices w(1)

j and w(2)
j of rates Rj1 and Rj2, respectively. Finally, the central

processor sends the index tuple (w
(0)
0 , w

(1)
0 , w

(1)
1 , w

(1)
2 ) to BS 1 and (w

(0)
0 , w

(2)
0 , w

(2)
1 , w

(2)
2 ) to BS 2. The encoding

operation at the central processor is illustrated in Figure 3.
BS: BS 1 forwards (w

(1)
0 , w

(1)
2 ) to BS 2 over the cooperation link. BS 2 forwards (w

(2)
0 , w

(2)
1 ) to BS 1 over the

cooperation link. Given (w
(0)
0 , w

(1)
0 , w

(2)
0 ), both BSs can recover D−1

0 (k0, `0) and thus the common indices (k0, `0).
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Fig. 3. Illustration of the encoding operation at the central processor in the G-DS scheme.

Then, BS j ∈ {1, 2}, can recover D−1
j (kj , `j |k0, `0) from (w

(1)
j , w

(2)
j ) and (k0, `0). Finally, BS j transmits the

symbol xji(u0i(k0), v0i(`0), uji(kj), vji(`j)) at time i ∈ [n].
Decoding: Let ε > ε′. User 1 declares that m̂1 is sent if it is the unique message such that for some (k0, k1, k2) ∈

B1(m̂1) it holds that (un0 (k0), un1 (k1), un2 (k2), yn1 ) ∈ T (n)
ε ; otherwise it declares an error. Decoder 2 declares that

m̂2 is sent if it is the unique message such that (vn0 (`0), vn1 (`1), vn2 (`2), yn2 ) ∈ T (n)
ε for some (`0, `1, `2) ∈ B2(m̂2);

otherwise it declares an error.
Analysis of Error Probability: Let (M1,M2) be the messages and let (K0,K1,K2, L0, L1, L2) be the indices

chosen at the encoder. In order to have a lossless transmission over the digital links, it requires that

R00 +R01 +R11 +R21 ≤ C1,

R00 +R02 +R12 +R22 ≤ C2,

R01 +R21 ≤ C21,

R02 +R12 ≤ C12.

Also, we note that

R00 +R01 +R02 = log |D0|,
R11 +R12 = log |D1(K0, L0)|,
R21 +R22 = log |D2(K0, L0)|.

Thus, after applying Fourier-Motzkin elimination to remove R00 and (Rj1, Rj2), j ∈ {0, 1, 2}, we have

log |D0|+ log |D1(K0, L0)| ≤ C1 + C12, (9)

log |D0|+ log |D2(K0, L0)| ≤ C2 + C21, (10)

log |D0|+ log |D1(K0, L0)|+ log |D2(K0, L0)| ≤ C1 + C2. (11)

We denote by A the intersection of the random events (9), (10), and (11). From Lemma 1 proved in Appendix A,
the random event A happens with high probability as n→∞ if

C1 + C12 ≥ Ru0 +Rv0 − I(U0;V0) +Ru1 +Rv1 − I(U1;V1)− I(U0, V0;U1, V1),

C2 + C21 ≥ Ru0 +Rv0 − I(U0;V0) +Ru2 +Rv2 − I(U2;V2)− I(U0, V0;U2, V2),

C1 + C2 ≥ Ru0 +Rv0 − I(U0;V0) +Ru1 +Rv1 − I(U1;V1)− I(U0, V0;U1, V1)

+Ru2 +Rv2 − I(U2;V2)− I(U0, V0;U2, V2).
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Besides the error event Ac, the decoding at User 1 fails if one or more of the following events occur:

Es = {(Un0 (k0), Un1 (k1), Un2 (k2), V n
0 (`0), V n

1 (`1), V n
2 (`2)) /∈ T (n)

ε′

for all (k0, k1, k2) ∈ B1(M1), (`0, `1, `2) ∈ B2(M2)},
Ed0 = {(Un0 (K0), Un1 (K1), Un2 (K2), Y n

1 ) /∈ T (n)
ε },

Ed1 = {(U0(K0), Un1 (k1), Un2 (K2), Y n
1 ) ∈ T (n)

ε for some k1 6= K1},
Ed2 = {(U0(K0), Un1 (K1), Un2 (k2), Y n

1 ) ∈ T (n)
ε for some k2 6= K2},

Ed3 = {(U0(K0), Un1 (k1), Un2 (k2), Y n
1 ) ∈ T (n)

ε for some k1 6= K1, k2 6= K2}
Ed4 = {(U0(k0), Un1 (K1), Un2 (K2), Y n

1 ) ∈ T (n)
ε for some k0 6= K0},

Ed5 = {(U0(k0), Un1 (k1), Un2 (K2), Y n
1 ) ∈ T (n)

ε for some k0 6= K0, k1 6= K1},
Ed6 = {(U0(k0), Un1 (K1), Un2 (k2), Y n

1 ) ∈ T (n)
ε for some k0 6= K0, k2 6= K2},

Ed7 = {(U0(k0), Un1 (k1), Un2 (k2), Y n
1 ) ∈ T (n)

ε for some k0 6= K0, k1 6= K1, k2 6= K2}.

Thus, the average error probability for M1 is upper bounded as

P({M̂1 6= M1}) ≤ P(Es) + P(Ac) + P(Ed0 ∩ Ecs ∩ A) +

7∑
i=1

P(Edi).

From Lemma 2 proved in Appendix B, the term P(Es) tends to zero as n→∞ if∑
i∈Ωu

Rui +
∑
j∈Ωv

Rvj

> 1{Ωu = {0, 1, 2}}R1 + 1{Ωv = {0, 1, 2}}R2 + Γ(U(Ωu), V (Ωv)),

for all Ωu,Ωv ⊆ {0, 1, 2} such that |Ωu|+ |Ωv| ≥ 2.
Next, due to the codebook construction and the conditional typicality lemma [10, p. 27], P(Ed0 ∩ Ecs ∩A) tends

to zero as n→∞. Finally, using the joint typicality lemma [10, p. 29],
∑7

i=1 P(Edi) tends to zero as n→∞ if

Ru1 < I(U1;U0, U2, Y1)− δ(ε),
Ru2 < I(U2;U0, U1, Y1)− δ(ε),

Ru1 +Ru2 < I(U1, U2;U0, Y1) + I(U1;U2)− δ(ε),
Ru0 < I(U0;U1, U2, Y1)− δ(ε),

Ru0 +Ru1 < I(U0, U1;U2, Y1) + I(U0;U1)− δ(ε),
Ru0 +Ru2 < I(U0, U2;U1, Y1) + I(U0;U2)− δ(ε),

Ru0 +Ru1 +Ru2 < I(U0, U1, U2;Y1) + I(U0;U1, U2) + I(U1;U2)− δ(ε).

The average error probability for M2 can be bounded in a similar manner and then we have the additional rate
conditions

Rv1 < I(V1;V0, V2, Y2)− δ(ε),
Rv2 < I(V2;V0, V1, Y2)− δ(ε),

Rv1 +Rv2 < I(V1, V2;V0, Y2) + I(V1;V2)− δ(ε),
Rv0 < I(V0;V1, V2, Y2)− δ(ε),

Rv0 +Rv1 < I(V0, V1;V2, Y2) + I(V0;V1)− δ(ε),
Rv0 +Rv2 < I(V0, V2;V1, Y2) + I(V0;V2)− δ(ε),

Rv0 +Rv1 +Ru2 < I(V0, V1, V2;Y2) + I(V0;V1, V2) + I(V1;V2)− δ(ε).

Finally, the theorem is established by letting ε tend to zero.
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IV. GENERALIZED COMPRESSION SCHEME

This section is devoted to compression-based schemes, where our contributions are as follows:
• For the downlink 2-BS 2-user C-RAN, we generalize the original compression scheme in [5] in two directions:

1) We introduce a cloud center and incorporate BS cooperation; and 2) we derive a single-letter rate region
for general discrete memoryless channels on the second hop.

• We simplify the achievable rate region of the DDF scheme for the general downlink N -BS L-user C-RAN
with BS cooperation.We provide a performance analysis of the DDF scheme under the memoryless Gaussian
model and show that the DDF scheme achieves within a constant gap (independent of transmission power)
from the capacity region.

A. Performance and Coding Scheme

We start with a high-level summary of the proposed G-Compression scheme. The encoding is based on superpo-
sition coding and multicoding. Each message mj , j ∈ {1, 2}, is associated with a set of independently generated
codewords Unj (mj , `j) of size 2nR̃j . Then, we generate three codebooks X0,X1,X2 using superposition coding:
the codebook X0 contains the cloud centers Xn

0 (k0) and the codebooks X1 and X2 contain the satellite codewords
Xn

1 (k1|k0) and Xn
2 (k2|k0), respectively.

Given (m1,m2), we apply joint typicality encoding to find an index tuple (k0, k1, k2, `1, `2) such that (Un1 (m1, `1),
Un2 (m2, `2), Xn

0 (k0), Xn
1 (k1), Xn

2 (k2)) are jointly typical. In words, we first apply Marton’s coding on the messages
m1 and m2. Then, the auxiliaries Un1 (m1, `1) and Un2 (m2, `2) are compressed into three descriptions Xn

0 (k0),
Xn

1 (k1|k0), and Xn
2 (k2|k0).

The next step is to convey (k0, k1) to BS 1 and (k0, k2) to BS 2, during which the cooperation links are used to
reduce the workload of the digital links from the central processor to the BSs. Finally, each user j ∈ {1, 2} applies
joint typicality decoding to recover the auxiliary Unj (mj , `j) and thus can recover the desired message mj .

Theorem 2: A rate pair (R1, R2) is achievable for the downlink 2-BS 2-user C-RAN with BS cooperation if

R1 < I(U1;Y1) + min


0,
C1 + C12 − I(U1;X0, X1),
C2 + C21 − I(U1;X0, X2)

 ,

R2 < I(U2;Y2) + min


0,
C1 + C12 − I(U2;X0, X1),
C2 + C21 − I(U2;X0, X2)

 ,

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+ min


0,
C1 + C12 − I(U1, U2;X0, X1),
C2 + C21 − I(U1, U2;X0, X2),
C1 + C2 − I(U1, U2;X0, X1, X2)− I(X1;X2|X0)

 ,

2R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+C1 + C2 + C12 + C21 − I(U1, U2;X0, X1, X2)− I(X1;X2|X0),

+I(U1;Y1)− I(U1;X0),

R1 + 2R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+C1 + C2 + C12 + C21 − I(U1, U2;X0, X1, X2)− I(X1;X2|X0),

+I(U2;Y2)− I(U2;X0),

2R1 + 2R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+C1 + C2 + C12 + C21 − I(U1, U2;X0, X1, X2)− I(X1;X2|X0)

+I(U1;Y1) + I(U2;Y2)− I(U1;U2)− I(U1, U2;X0),

for some joint pmf pU1,U2,X0,X1,X2
.

Proof: Codebook generation: Fix a joint pmf pU1,U2,X0,X1,X2
. For j ∈ {1, 2}, randomly and independently gen-

erate sequences unj (mj , `j), according to
∏n
i=1 pUj (uji), for (mj , `j) ∈ [2nRj ]×[2nR̃j ]. Randomly and independently
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Fig. 4. Illustration of the encoding operation at the central processor in the G-Compression scheme.

generate sequences xn0 (k0), according to
∏n
i=1 pX0

(x0i), for k0 ∈ [2nR
′
0 ]. Finally, for j ∈ {1, 2}, randomly and inde-

pendently generate sequences xnj (kj |k0), each according to
∏n
i=1 pXj |X0

(xji|x0i(k0)), for (k0, kj) ∈ [2nR
′
0 ]×[2nR

′
j ].

Central Processor: Upon seeing (m1,m2), the central processor finds an index tuple (k0, k1, k2, `1, `2) such that

(un1 (m1, `1), un2 (m2, `2), xn0 (k0), xn1 (k1|k0), xn2 (k2|k0)) ∈ T (n)
ε′ .

If there is more than one such tuple, choose an arbitrary one among them. If no such tuple exists, choose
(k0, k1, k2, `1, `2) = (1, 1, 1, 1, 1). Then, the central processor splits k0 into three subindices k(0)

0 , k(1)
0 , and k(2)

0 of
rates R′00, R′01, and R′02, respectively. Also, for j ∈ {1, 2}, the central processor splits kj into two subindices k(1)

j

and k(2)
j of rates R′j1 and R′j2, respectively. Finally, the central processor sends the index tuple (k

(0)
0 , k

(1)
0 , k

(1)
1 , k

(1)
2 )

to BS 1 and (k
(0)
0 , k

(2)
0 , k

(2)
1 , k

(2)
2 ) to BS 2. The encoding operation at the central processor is illustrated in Figure 4.

BS: BS 1 forwards (k
(1)
0 , k

(1)
2 ) to BS 2 over the cooperation link. BS 2 forwards (k

(2)
0 , k

(2)
1 ) to BS 1 over the

cooperation link. Thus, BS j ∈ {1, 2} learns the value of (k0, kj) and transmits xnj (kj |k0).
Decoding: Let ε > ε′. For j ∈ {1, 2}, upon seeing ynj , user j finds the unique pair (m̂j , ˆ̀

j) such that
(unj (m̂j , ˆ̀

j), y
n
j ) ∈ T (n)

ε and declares that m̂j is sent; otherwise it declares an error.
Analysis of Error Probability: Let (M1,M2) be the messages and let (K0,K1,K2, L1, L2) be the indices chosen

at the central processor. In order to have a lossless transmission over the digital links, it requires that

R′00 +R′01 +R′11 +R′21 ≤ C1,

R′00 +R′02 +R′12 +R′22 ≤ C2,

R′01 +R′21 ≤ C21,

R′02 +R′12 ≤ C12.

Note that R′00 +R′01 +R′02 = R′0 and R′j1 +R′j2 = R′j , j ∈ {1, 2}.
Assuming the above conditions are satisfied, the decoding at user 1 fails if one or more of the following events

occur:

E0 = {(Un1 (M1, `1), Un2 (M2, `2), Xn
0 (k0), Xn

1 (k1|k0), Xn
2 (k2|k0)) /∈ T (n)

ε′

for all (k0, k1, k2, `1, `2)},
E1 = {(Un1 (M1, L1), Y n

1 ) /∈ T (n)
ε },

E2 = {(Un1 (m1, `1), Y n
1 ) ∈ T (n)

ε for some (m1, `1) 6= (M1, L1)}.



13

The average error probability for M1 is upper bounded as

P({M̂1 6= M1}) ≤ P(E0) + P(E1 ∩ Ec0) + P(E2).

By extending [10, Lemma 14.1, p. 351], it can be shown that the term P(E0) tends to zero as n → ∞ if
R̃1 + R̃2 > I(U1;U2) + δ(ε′) and

R′0 +
∑
k∈S

R′k +
∑
j∈D

R̃j > I(U(D);X0, X(S)) + 1{S = {1, 2}}I(X1;X2|X0)

+1{D = {1, 2}}I(U1;U2) + δ(ε′),

for all D,S ⊆ {1, 2}. Next, due to the codebook construction and the conditional typicality lemma [10, p. 27],
P(E1 ∩ Ec0) tends to zero as n → ∞. Finally, using the joint typicality lemma [10, p. 29], P(E2) tends to zero as
n→∞ if

R1 + R̃1 < I(U1;Y1)− δ(ε).

The average error probability for M2 can be bounded in a similar manner and then we have the additional rate
condition

R2 + R̃2 < I(U2;Y2)− δ(ε).

Using the Fourier–Motzkin elimination to project out R̃1, R̃2, and R′0j , R
′
j , j ∈ {0, 1, 2}, we obtain the rate

conditions in Theorem 2. Finally, the theorem is established by letting ε→ 0.

B. Distributed Decode–Forward for Broadcast

The DDF scheme for broadcast [9], which is developed for general memoryless broadcast relay networks,
in particular applies to downlink C-RAN with arbitrary N BSs and L users.2 The following theorem states its
performance in this setup. For convenience, we denote X̃ = (W1, · · · ,WN ), X̆j = (Xj , (Wkj : k 6= j)), j ∈ [N ],
and Y̆k = (Wk, (Wkj : j 6= k)), k ∈ [N ].

Theorem 3 (Lim, Kim, Kim [9, Theorem 2]): A rate tuple (R1, · · · , RL) is achievable for the downlink N -BS
L-user C-RAN with BS cooperation if∑

`∈D
R` < I(X̃, X̆(S); Ũ(Sc), U(D)|X̆(Sc))−

∑
k∈Sc

[
I(Ũk; Ũ(Sck), X̃, X̆N |X̆k, Y̆k) + I(X̆k; X̆(Sck))

]
−
∑
`∈D

I(U`;U(D`), Ũ(Sc), X̃, X̆N |Y`), (12)

for all S ⊆ [N ], D ⊆ [L] for some pmf pŨN ,UL,X̃,X̆N , where Sck = Sc ∩ [k − 1] and D` = D ∩ [`− 1].
The following proposition shows that, in Theorem 3, it is without loss in optimality to restrict the distribution

of (ŨN , UL, X̃, X̆N ) in the following manner:
1) pŨN ,UL,X̃,(XN ,{Wkj}) = pŨN ,X̃,{Wkj}pUL,XN ;
2) Ũk = (Wk, (Wkj : j 6= k));
3) pWN ,{Wkj} =

∏N
k=1 pWk

∏
(j,k):j 6=k pWkj

;
4) Wk ∼ Uniform([2Ck ]); and
5) Wkj ∼ Uniform([2Ckj ]).
Proposition 1: A rate tuple (R1, · · · , RL) lies in the achieved rate region (12) of the DDF scheme for the

downlink N -BS L-user C-RAN with BS cooperation if and only if there exists some joint pmf pXN ,UL such that∑
`∈D

R` <
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj − Γ(X(Sc), U(D)), (13)

for all S ⊆ [N ] and D ⊆ [L] such that |D| ≥ 1.

2The problem statement in Section II has to be expanded to general number of BSs and users and to allow symbol-wise operations.
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M1M1 ProcessorProcessor
CentralCentral BS 1BS 1 User 1User 1 M̂1M̂1

C1C1 pY1jX1
pY1jX1

Fig. 5. The system considered in Example 3.

Remark 3: For the case in which N = 2 and L = 2, it can be shown easily that setting X0 = ∅ in the rate region
in Theorem 2 one recovers (13). Thus, for the network model in Figure 2, our generalized compression scheme
(G-Compression) outperforms the DDF scheme for broadcast [9, Theorem 2]. ♦

Since downlink C-RAN is a special instance of memoryless broadcast relay networks, the DDF scheme achieves
any point in the capacity region of an N -BS L-user C-RAN to within a gap of (1 +N +L)/2 bits per dimension
under the memoryless Gaussian model [9, Corollary 8]. The following theorem tightens this gap for downlink
C-RANs. The proof is deferred to Appendix D.

Theorem 4: Consider the downlink of any N -BS L-user C-RAN with BS cooperation. Under the memoryless
Gaussian model, the DDF scheme for broadcast achieves within L

2 + min{N,L logN}
2 bits per dimension from the

capacity region.

V. COMPARISON AND NUMERICAL EVALUATIONS

In this section, we evaluate and compare our G-DS scheme and G-Compression scheme in two useful examples.
In the first example, the G-DS scheme (as well as the data-sharing scheme) is optimal, whereas the G-Compression
scheme is strictly suboptimal. In the second example the opposite is true. In the second part of this section, we
provide numerical results for the memoryless Gaussian model.

A. Examples

Example 3 (One BS and One User): Consider the special case with only one BS and one user, as depicted in
Figure 5. (Our model reduces to this scenario when the DM-IC is of the form pY1,Y2|X1,X2

= pY1,Y2|X1
and when

C2 = R2 = 0.) Decode-and-forward [17] is optimal in this special case and rate R1 is achievable whenever

R1 < min

{
C1,max

pX1

I(X1;Y1)

}
.

Furthermore, compress-and-forward [17] is also optimal since the first hop is noiseless. This performance is also
recovered by the G-DS scheme; see Corollary 4 specialized to R2 = 0 and the choice of auxiliaries V = ∅ and
X1 = U .

The G-Compression scheme and the DDF scheme for broadcast achieve all rates R1 that satisfy:

R1 < I(U1;Y1),

R1 < C1 + I(U1;Y1)− I(U1;X1)

= C1 − I(U1;X1|Y1),

for some pmf pU1,X1
s.t. U1 (−− X1 (−− Y1 form a Markov chain.

If the second hop is deterministic, i.e., Y1 is a deterministic function of X1, then the G-Compression scheme
with U1 = Y1 achieves the capacity.

However, if the second hop is not deterministic, then setting U1 = Y1 violates the Markov condition U1 (−
− X1 (−− Y1. In general, the G-Compression scheme is suboptimal. To see this, consider a DM-IC satisfying
pY1|X1

(y1|x1) < 1 for all (x1, y1) ∈ X1 × Y1, i.e., for all inputs x1 ∈ X1, the output Y1 is not a deterministic
function of x1. Then, for every pmf pX1

, the corresponding joint pmf pX1,Y1
is indecomposable.3 Next, let us

assume that 0 < C1 < maxpX1
I(X1;Y1). Now we show that the G-Compression scheme is not capacity achieving

by contradiction.
If the G-Compression scheme is capacity achieving, then it holds that the capacity-achieving distribution pU1,X1

satisfies that I(U1;X1|Y1) = 0, i.e., U1 (−− Y1 (−− X1 form a Markov chain. However, since U1 (−− X1 (−− Y1

3A joint pmf pX,Y is said to be indecomposable [18, Problem 15.12, p. 345] if there are no functions f and g with respective domains
X and Y so that 1) P(f(X) = g(Y )) = 1 and 2) f(X) takes at least two values with non-zero probability.
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M̂2M̂2

C1C1

C2C2

X1X1

X2X2

Y1Y1

Y2Y2

Fig. 6. The system considered in Example 4.

also form a Markov chain, the indecomposability of the joint pmf pX1,Y1
implies that the capacity-achieving

distribution pU1,X1
satisfies that U1 is independent of (X1, Y1) (see [18, Problem 16.25, p. 392]) and thus I(U1;Y1) =

0, which contradicts that the joint pmf pU1,X1
achieves the capacity C1 > 0. ♦

Example 4 (Z-Interference Channel): Consider the case where C1 = C2 = 1, C12 = C21 = 0, X1 = X2 = {0, 1},
Y1 = X1, and Y2 = X1⊕X2. The system is depicted in Figure 6. Now we show that the rate pair (R1, R2) = (1, 1),
which is on the boundary of the capacity region, is achievable by the G-Compression scheme but not by the G-DS
scheme.

The following scheme achieves the desired rate pair (R1, R2) = (1, 1). Fix a blocklength n and denote by
Bn
` := (B`,1, . . . , B`,n) the n-bits representation of M`, ` ∈ {1, 2}. The central processor sends all bits Bn

1 to
BS 1, and it sends the x-or bits Bn

⊕ := (B1,1 ⊕B2,1, . . . , B1,n ⊕B2,n) to BS 2. BS 1 sends inputs Xn
1 = Bn

1 over
the DM-IC and BS 2 sends inputs Xn

2 = Bn
⊕.

The same performance is achieved by the G-Compression scheme when the auxiliaries (U1, U2) are chosen i.i.d.
Bernoulli(1/2), and X0 = ∅, X1 = U1, and X2 = U1 ⊕ U2.

Now let us investigate the G-DS scheme. We consider the following relaxed conditions, where the inequalities
do not need to be strict:

R1 +R2

(a)

≤ I(U0, U1, U2;Y1) + I(V0, V1, V2;Y2)− I(U0, U1, U2;V0, V1, V2),

2R1 +R2

(b)

≤ C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0)− I(U1, V1;U2, V2|U0, V0),

where (a) follows by combining (2), (3), and (4) with Ωu = Ωv = {0, 1, 2} and (b) follows by combining two
times of (2) with (Ωu,Ωv) = ({0, 1, 2}, {0, 1, 2}) and (Ωu,Ωv) = ({0, 1, 2}, ∅), (3) with Ωu = {1, 2}, (5), and (6).

If (R1, R2) = (1, 1) is achievable by the G-DS scheme, then there must exist a joint pmf pU0,V0,U1,V1,U2,V2
and

functions xk(u0, v0, uk, vk), k ∈ {1, 2}, such that
1) I(U0, U1, U2;V0, V1, V2) = 0;
2) I(U1, V1;U2, V2|U0, V0) = 0;
3) I(U0, U1, U2;Y1) = 1;
4) I(V0, V1, V2;Y2) = 1;
5) I(U1, U2;Y1|U0) = 1.
However, the above constraints cannot be satisfied simultaneously. To see this, let us assume that the first four
conditions hold, which imply that
1) (U0, U1, U2) is independent of (V0, V1, V2);
2) the Markov chains U1 (−− U0 (−− U2 and V1 (−− V0 (−− V2 hold; and
3) H(X1|U0, U1, U2) = H(X1 ⊕X2|V0, V1, V2) = 0.
Thus,

I(X1;V0, V1|U0, U1) = I(X1, U0, U1;V0, V1)

≤ I(X1, U0, U1, U2;V0, V1),
(a)
= I(U0, U1, U2;V0, V1) = 0,
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where (a) follows since H(X1|U0, U1, U2) = 0. Since X1 is a function of (U0, V0, U1, V1) by construction, we
have H(X1|U0, U1) = H(X1|U0, V0, U1, V1) = 0, i.e., X1 is a function of (U0, U1). Finally, it holds that

0 = H(X1 ⊕X2|V0, V1, V2)

≥ H(X1 ⊕X2|U0, U2, V0, V1, V2)

= H(X1|U0, U2, V0, V1, V2)
(a)
= H(X1|U0),

where (a) follows since X1 is a function of (U0, U1); (U0, U1, U2) is independent of (V0, V1, V2); and U1 (−−
U0 (−− U2 form a Markov chain. From all above we obtain that constraint 5) cannot be satisfied since Y1 is a
function of U0, which concludes that the G-DS scheme cannot achieve the rate pair (1, 1). ♦

B. Numerical Evaluation for the Memoryless Gaussian Model

In this subsection, we compare the achieved sum rates of the various coding schemes under the memoryless
Gaussian model. We are mainly interested in the scenarios where the G-DS scheme outperforms the G-Compression
scheme and the reverse compute–forward. Evaluating the G-DS scheme directly is challenging, so we evaluate the
special cases with restricted correlation structures and then apply time sharing on them. To summarize, we evaluate
the following schemes

1) G-DS scheme I, II, and III (Corollaries 1, 2, and 3),
2) G-Compression scheme (Theorem 2), and
3) reverse compute–forward with power allocation [6].

For simplicity, we consider the symmetric case, i.e., C1 = C2 = C, C12 = C21 = T , g11 = g22 = 1, and
|g12| = |g21|. Then, the achievable sum rate R1 +R2 can be upper bounded using the cut-set bound as

R1 +R2 < min{2C,R?sum}, (14)

where R?sum denotes the optimal sum rate assuming C =∞, which can be computed by evaluating the corresponding
Gaussian MIMO broadcast channel. We will use the cut-set bound (14) as a reference for comparison.

Now let us specify our choice of auxiliary random variables for the various schemes. Except for the G-DS scheme
II, all other schemes are evaluated based on dirty paper coding. Let S(k) be a 2×1 jointly Gaussian random vector
with zero-mean entries and covariance matrix K(k), for k ∈ {1, 2}. We assume that S(1) and S(2) are independent.
For notational convenience, we denote g2 =

[
g21 g22

]
.

1) Description I: U0 = S(1), V0 = S(2) + AS(1), and
[
X1

X2

]
= S(1) + S(2), where

A = K(2)gT2

(
1 + g2K

(2)gT2

)−1
g2.

Note that Xk = Uk + Vk, k ∈ {1, 2}. We optimize over the covariance matrices K(1) and K(2) that satisfy the
average power constraints.

2) Description II: The random variables (U0, V0, U1, V1, U2, V2) are i.i.d. N (0, 1) and X1 = a1U0 + a2V0 +
a3U1 + a4V1 and X2 = b1U0 + b2V0 + b3U2 + b4V2 for some aj , bj ∈ R, j ∈ {1, 2, 3, 4}. We optimize over
the coefficients (aj , bj : j ∈ {1, 2, 3, 4}) that satisfy the average power constraints.

3) Description III: [
U1

U2

]
= S(1),[

V1

V2

]
= S(2) + AS(1),[

X1

X2

]
= (I + A)S(1) + S(2),
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(d) P = 100, (g12, g21) = (0.5,−0.5).

Fig. 7. Achieved sum-rates of the G-DS schemes I, II, and III under the symmetric memoryless Gaussian model. Here T = 0 and
g11 = g22 = 1.

where I is the 2× 2 identity matrix and A is a 2× 2 real-valued matrix. Note that Xk = Uk +Vk, k ∈ {1, 2}.4
We optimize over the covariance matrices K(1), K(2) and the precoding matrix A that satisfy the average power
constraints.

4) Compression: U1 = S(1), U2 = S(2) + AS(1), and
[
X1

X2

]
= S(1) + S(2) + W, where

A = K(2)gT2

(
1 + g2(K(2) + K(w))gT2

)−1
g2,

and W is a 2 × 1 jointly Gaussian random vector with zero-mean entries and covariance matrix K(w),
independent of (S(1),S(2)). Finally, we let X0 be an N (0, 1) random variable such that X0 and (S(1),S(2),W)
are jointly Gaussian. We optimize over the covariance matrices K(1), K(2), and K(w) that satisfy the average
power constraints and over the covariances of X0 with each of (S(1),S(2),W).

First, let us compare the G-DS schemes with different correlation structures. We assume that T = 0. In Figure
7, we fix g12 = 0.5 and consider (P, g21) ∈ {1, 100} × {0.5,−0.5}. From the evaluation results, we make the
following observations and remarks for the considered setup:
• In general, the G-DS scheme I using only common codewords performs well in the strong-fronthaul regime,

i.e., when C is large. By contrast, the G-DS scheme III using only private codewords performs well in the
weak-fronthaul regime.

• Introducing correlation among codewords is useful. In fact, time sharing between the G-DS schemes I and III
outperforms the G-DS scheme II for all values of link capacity C.

• The G-DS scheme III is more beneficial in the low-power regime, i.e., when P is small.
• When the channel gain matrix G is well-conditioned, linear beamforming performs as good as dirty paper coding,

which is the reason why the G-DS scheme II outperforms the G-DS scheme I in Figures 7(b) and 7(d).

4We remark that since the BSs do not have full information about S(1) and S(2), setting
[
X1

X2

]
= S(1) + S(2) is not allowed because the

resulting Xk is not a function of (Uk, Vk), k ∈ {1, 2}. Also, due to this fact, the precoding matrix A = K(2)gT
2

(
1 + g2K

(2)gT
2

)−1

g2 is
in general suboptimal.
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(c) P = 10, (g12, g21) = (0.5, 0.5).
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(d) P = 10, (g12, g21) = (0.5,−0.5).
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(e) P = 100, (g12, g21) = (0.5, 0.5).
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(f) P = 100, (g12, g21) = (0.5,−0.5).

Fig. 8. Achieved sum-rates of the G-DS scheme, the G-Compression scheme, and the reverse compute–forward scheme with power control
under the symmetric memoryless Gaussian model. Here T = 0 and g11 = g22 = 1.

We remark that the achieved sum rate of the G-DS scheme I can be simply expressed as min{C + T, 2C,R?sum}.
Thus, when T = 0, the G-DS scheme I is optimal for the regime where C ≥ R?sum.

Next, we compare the G-DS scheme (time sharing among the G-DS schemes I, II, and III) with the G-
Compression scheme and the reverse compute–forward scheme. In Figure 8, we fix g12 = 0.5 and consider
(P, g21) ∈ {1, 10, 100}×{0.5,−0.5}. From the evaluation results, we make the following observations and remarks
for the considered setup:
• The G-DS scheme achieves the optimal sum rate when the link capacity C is relatively small or relatively large.

The range of optimality depends on the power and the channel conditions. In general, in the low-power regime
and/or when the channel gain matrix is ill-conditioned, the G-DS scheme has a more apparent advantage over
the other two schemes.

• The G-Compression scheme achieves a better performance in the high-power regime. As P increases, the G-
Compression scheme outperforms the other two schemes in the middle range of link capacity.

• The reverse compute–forward has a good performance when the link capacity C is relatively small, especially
when P is large. However, the reverse compute–forward suffers from non-integer penalty and thus its achieved
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Fig. 9. Achieved sum-rates of the G-DS scheme, the G-Compression scheme, and the reverse compute–forward scheme with power control
under the symmetric memoryless Gaussian model. Here P = 100 and [ g11 g12

g21 g22
] =

[
1 0.5
−0.5 1

]
.

sum rate cannot reach R?sum even if the link capacity C is large.
Finally, we consider BS cooperation, i.e., the case where T > 0.5 Figure 9 plots the achieved sum rates for

the case of (P, g12, g21) = (100, 0.5,−0.5). It turns out that for the symmetric case, only the G-DS scheme can
benefit from the cooperation links. In particular, as the link capacity T increases to two, the G-DS scheme already
outperforms the G-Compression scheme for all values of C. Recall that the G-DS scheme I achieves the sum rate
min{C + T, 2C,R?sum}. Since the cut-set bound is min{2C,R?sum}, we see that increasing T is beneficial when
R1 + R2 < C + T is the dominating constraint. By contrast, for the symmetric case the G-Compression scheme
cannot benefit from the cooperation links because the dominating rate constraints do not involve C12 and C21:

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+ min

{
0,
C1 + C2 − I(U1, U2;X0, X1, X2)− I(X1;X2|X0)

}
, (15)

which can be rewritten as

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2),

R1 +R2 < C1 + C2 − I(U1;X0, X1, X2|Y1)− I(U2;U1, X0, X1, X2|Y2)− I(X1;X2|X0).

If the channel gain matrix is asymmetric, the G-Compression scheme can benefit from the cooperation links,
but the gain eventually saturates as T increases, again due to the dominating constraint (15). Figure 10 plots the
achieved sum rates for the case of P = 100 and [ g11 g12

g21 g22
] =

[
1 0.25
1 −0.25

]
. As can been seen, as T increases from 0.8

to 1.2, there is little improvement for the G-Compression scheme. By contrast, the G-DS scheme keep benefiting
from the cooperation links before coinciding with the cut-set bound, especially when the link capacity C is large.

APPENDIX A
EXPECTED SIZE OF INDEPENDENTLY GENERATED CODEBOOKS

The following lemma is a simple extension of [10, Problem 3.8, p. 73] (see also [19]).
Lemma 1: Let (U, V,W ) ∼ pU,V,W . Let Wn be generated according to

∏n
i=1 pW (wi). Consider two independently

generated codebooks C1 = {Un(1), · · · , Un(2nR1)} and C2 = {V n(1), · · · , V n(2nR2)}. The codewords of C1 are

5We note that the reverse compute–forward has not been extended for the scenario with BS cooperation. We only include it here as a
reference.
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Fig. 10. Achieved sum-rates of the G-DS scheme, the G-Compression (G-C) scheme, and the reverse compute–forward scheme with power
control (R. C.-F.) under the memoryless Gaussian model. Here P = 100 and [ g11 g12
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.

generated independently each according to
∏n
i=1 pU (ui). The codewords of C2 are generated independently each

according to
∏n
i=1 pV (vi). Define the set

C = {(un, vn) ∈ C1 × C2 : (un, vn,Wn) ∈ T (n)
ε (U, V,W )}.

Then, there exists δ(ε) > 0 that tends to zero as ε→ 0 such that

E[|C|] ≤ 2n(R1+R2−I(U ;V )−I(U,V ;W )+δ(ε)).

Proof:

E[|C|] =

2nR1∑
m=1

2nR2∑
`=1

P((Un(m), V n(`),Wn) ∈ T (n)
ε )

= 2n(R1+R2)P((Un(1), V n(1),Wn) ∈ T (n)
ε )

= 2n(R1+R2)
∑

wn∈T (n)
ε

pWn(wn)
∑

(un,vn)∈T (n)
ε (U,V |wn)

pUn(un)pV n(vn)

≤ 2n(R1+R2)
∑

wn∈T (n)
ε

pWn(wn)
∑

(un,vn)∈T (n)
ε (U,V |wn)

2−n(H(U)−δ(ε))2−n(H(V )−δ(ε))

= 2n(R1+R2)
∑

wn∈T (n)
ε

pWn(wn)|T (n)
ε (U, V |wn)|2−n(H(U)+H(V )−2δ(ε))

≤ 2n(R1+R2)2n(H(U,V |W )+δ(ε))2−n(H(U)+H(V )−2δ(ε))

= 2n(R1+R2−I(U ;V )−I(U,V ;W )+3δ(ε)).

APPENDIX B
MULTIVARIATE COVERING LEMMA WITH NON-CARTESIAN PRODUCT SETS

Lemma 2: Let (U0, U1, U2, V0, V1, V2) ∼ pU0,U1,U2,V0,V1,V2
. For j ∈ {0, 1, 2}, randomly and independently generate

sequences Unj (kj), kj ∈ [2nRuj ] , each according to
∏n
i=1 pUj (uji). For j ∈ {0, 1, 2}, randomly and independently
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generate sequences V n
j (`j), `j ∈ [2nRvj ] , each according to

∏n
i=1 pVj (vji). Randomly and independently assign

an index m1(k0, k1, k2) to each index tuple (k0, k1, k2) ∈ [2nRu0 ] × [2nRu1 ] × [2nRu2 ] according to a uniform
pmf over [2nR1 ]. Randomly and independently assign an index m2(`0, `1, `2) to each index tuple (`0, `1, `2) ∈
[2nRv0 ]× [2nRv1 ]× [2nRv2 ] according to a uniform pmf over [2nR2 ]. Denote

E(m1,m2) = {(Un0 (k0), Un1 (k1), Un2 (k2), V n
0 (`0), V n

1 (`1), V n
2 (`2)) /∈ T (n)

ε

for all (k0, k1, k2) ∈ B1(m1), (`0, `1, `2) ∈ B2(m2)}.

For each (m1,m2) ∈ [2nR1 ]×[2nR2 ], there exists δ(ε) that tends to zero as ε→ 0 such that limn→∞ P(E(m1,m2)) =
0, if ∑

i∈Ωu

Rui +
∑
j∈Ωv

Rvj > 1{Ωu = {0, 1, 2}}R1 + 1{Ωv = {0, 1, 2}}R2 + Γ(U(Ωu), V (Ωv)),

for all Ωu,Ωv ⊆ {0, 1, 2} such that |Ωu|+ |Ωv| ≥ 2.
Proof: The proof follows similar steps as the proof of the multivariate covering lemma. The only difference

is that now the set of index tuples is not the usual Cartesian product. By symmetry, it suffices to investigate the
case (m1,m2) = (1, 1). For notational convenience, hereafter we denote Bj(1) = Bj , j ∈ {1, 2}.

Let

A = {(k0, k1, k2, `0, `1, `2) : (Un0 (k0), Un1 (k1), Un2 (k2), V n
0 (`0), V n

1 (`1), V n
2 (`2)) ∈ T (n)

ε ,

(k0, k1, k2) ∈ B1, (`0, `1, `2) ∈ B2}.

Then, we have

P(E(1, 1)) = P(|A| = 0)

≤ P
(
(|A| − E[|A|])2 ≥ E[|A|]2

)
(a)

≤ Var(|A|)
E[|A|]2

where (a) follows from Chebyshev’s inequality. For convenience, denote

φ(k0, k1, k2, `0, `1, `2) = 1{(Un0 (k0), Un1 (k1), Un2 (k2), V n
0 (`0), V n

1 (`1), V n
2 (`2)) ∈ T (n)

ε }.

Then, the set size |A| conditioned on the random bin assignments B1 and B2 can be expressed as

E[|A||B1,B2] =
∑

(k1,k2)∈B1

∑
(`1,`2)∈B2

φ(k0, k1, k2, `0, `1, `2).

For a0, a1, a2, b0, b1, b2 ∈ {1, 2}, let

p(a0, a1, a2, b0, b1, b2)

= E[φ(1, 1, 1, 1, 1, 1)φ(a0, a1, a2, b0, b1, b2)],

Q(a0, a1, a2, b0, b1, b2)

= |{(k0, k1, k2, `0, `1, `2, k
′
0, k
′
1, k
′
2, `
′
0, `
′
1, `
′
2) :

(k0, k1, k2) ∈ B1, (`0, `1, `2) ∈ B2, (k
′
0, k
′
1, k
′
2) ∈ B1, (`

′
0, `
′
1, `
′
2) ∈ B2,

F (a0)
0 ,F (a1)

1 ,F (a2)
2 ,G(b0)

0 ,G(b1)
1 ,G(b2)

2 }|,
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where F (1)
j =

(
F (2)
j

)c
= {kj = k′j} and G(1)

j =
(
G(2)
j

)c
= {`j = `′j}, for j ∈ {0, 1, 2}. Then, we have

E[|A||B1,B2]

=
∑

(k0,k1,k2)∈B1

∑
(`0,`1,`2)∈B2

E[φ(k0, k1, k2, `0, `1, `2)]

= Q(1, 1, 1, 1, 1, 1)p(1, 1, 1, 1, 1, 1),

E[|A|2|B1,B2]

=
∑

(k0,k1,k2)∈B1

∑
(`0,`1,`2)∈B2

∑
(k′

0,k
′
1,k

′
2)∈B1

∑
(`′0,`

′
1,`

′
2)∈B2

E[φ(k0, k1, k2, `0, `1, `2)φ(k′0, k
′
1, k
′
2, `
′
0, `
′
1, `
′
2)]

=
∑

a0,a1,a2,b0,b1,b2

Q(a0, a1, a2, b0, b1, b2)p(a0, a1, a2, b0, b1, b2).

Hence

Var(|A|)
E[|A|]2

=
E[E[|A|2|B1,B2]]− (E[E[|A||B1,B2]])2

(E[E[|A||B1,B2]])2

=

∑
(a0,a1,a2,b0,b1,b2)6=(2,2,2,2,2,2)

E[Q(a0, a1, a2, b0, b1, b2)]p(a0, a1, a2, b0, b1, b2)

(E[Q(1, 1, 1, 1, 1, 1)]p(1, 1, 1, 1, 1, 1))2

Denote I = Γ(U0, U1, U2, V0, V1, V2). By the joint typicality lemma [10, p. 29], it holds that

p(1, 1, 1, 1, 1, 1) ≥ 2−n(I+δ(ε)),

p(a0, a1, a2, b0, b1, b2) ≤ 2
−n(I+

∑
i∈Ωcu

H(Ui)+
∑
j∈Ωcv

H(Vj)−H(U(Ωcu ),V (Ωcv )|U(Ωu),V (Ωv))−δ(ε)),

where Ωu =
⋃2
j=0 κj(aj), Ωv =

⋃2
j=0 κj(bj), and

κj(x) =

{
{j} if x = 1,

∅ otherwise.

Also, for all a0, a1, a2, b0, b1, b2 ∈ {1, 2}, we have

E[Q(a0, a1, a2, b0, b1, b2)] = 2n(
∑2
i=0 aiRui+

∑2
j=0 bjRvj−(1+1{

⋃2
i=0{ai=2})R1−(1+1{

⋃2
j=0{bj=2})R2).

Finally, (16) and thus (16) can be further upper bounded using (16),(16),(16). It can be checked that the
corresponding upper bound tends to zero as n → ∞ if the condition (16) holds, which establishes the lemma.

APPENDIX C
PROOF OF PROPOSITION 1

We first establish the achievability. To achieve (13), we set pŨN ,UL,X̃,(XN ,{Wkj}) = pŨN ,X̃,{Wkj}pUL,XN , where

1) Ũk = (Wk, (Wkj : j 6= k));
2) pWN ,{Wkj} =

∏N
k=1 pWk

∏
(j,k):j 6=k pWkj

;
3) Wk ∼ Uniform([2Ck ]); and
4) Wkj ∼ Uniform([2Ckj ]).
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Next, we show that the rate expression in (12) can be upper bounded by the rate expression in (13) and thus
establish the converse. Indeed, we have

I(X̃, X̆(S); Ũ(Sc), U(D)|X̆(Sc))−
∑
k∈Sc

[
I(Ũk; Ũ(Sck), X̃, X̆N |X̆k, Y̆k) + I(X̆k; X̆(Sck))

]
−
∑
`∈D

I(U`;U(D`), Ũ(Sc), X̃, X̆N |Y`)

(a)
= I(X̃, X̆N ; Ũ(Sc), U(D)|X̆(Sc))−

∑
k∈Sc

[
I(Ũk; Ũ(Sck), X̃, X̆N )− I(Ũk; Y̆k, X̆k)

]
−
∑
k∈Sc

I(X̆k; X̆(Sck))−
∑
`∈D

[
I(U`;U(D`), Ũ(Sc), X̃, X̆N )− I(U`;Y`)

]
=
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

I(Ũk; Y̆k, X̆k) + I(X̃, X̆(S); Ũ(Sc), U(D)|X̆(Sc))

−
∑
k∈Sc

I(X̆k; X̆(Sck))−

[∑
k∈Sc

H(Ũk) +
∑
`∈D

H(U`)−H(Ũ(Sc), U(D)|X̃, X̆N )

]
=
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

I(Ũk; Y̆k|X̆k)

−
∑
k∈Sc

I(X̆k; X̆(Sck))−

[∑
k∈Sc

H(Ũk|X̆k) +
∑
`∈D

H(U`)−H(Ũ(Sc), U(D)|X̆(Sc))

]

=
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

I(Ũk; Y̆k|X̆k)−

[∑
k∈Sc

H(Ũk|X̆k)−H(Ũ(Sc)|X(Sc), U(D))

]

−
∑
k∈Sc

I(X̆k; X̆(Sck))−

[∑
`∈D

H(U`)−H(U(D)|X̆(Sc))

]

≤
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

H(Y̆k)−
∑
k∈Sc

I(X̆k; X̆(Sck))−

[∑
`∈D

H(U`)−H(U(D)|X̆(Sc))

]
≤
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj −
∑
k∈Sc

I(X̆k; X̆(Sck))−
∑
`∈D

I(U`;U(D`), X̆(Sc))

≤
∑
`∈D

I(U`;Y`) +
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj −
∑
k∈Sc

I(Xk;X(Sck))−
∑
`∈D

I(U`;U(D`), X(Sc)),

where (a) follows since Y̆k is a function of (X̃,XN ) and since (X̃, ŨN , UL) (−− XN (−− Y L form a Markov
chain. Finally, we note that∑

k∈Sc
I(Xk;X(Sck)) +

∑
`∈D

I(U`;U(D`), X(Sc)) = Γ(X(Sc), U(D)).

APPENDIX D
PROOF OF THEOREM 4

First, we state the cut-set bound for the capacity region of the memoryless Gaussian C-RAN model. The proof
follows by applying the standard cut-set argument (see [20, Theorem 15.10.1]) to the considered model and then
specializing it to the memoryless Gaussian case.

Proposition 2: If a rate tuple (R1, · · · , RL) is achievable for the downlink N -BS L-user C-RAN with BS
cooperation, then it must satisfy the inequality∑

`∈D
R` ≤

∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj +
1

2
log det

(
I + G(D,S)K(S|Sc)GT (D,S)

)
,
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for all S ⊆ [N ] and all nonempty subsets D ⊆ [L] for some covariance matrix K � 0 with Kjj ≤ P . Here K(S|Sc)
is the conditional covariance matrix of X(S) given X(Sc) for XN ∼ N (0,K) and G(S,D) is defined such that[

Y (D)
Y (Dc)

]
=

[
G(D,S) G(D,Sc)
G(Dc,S) G(Dc,Sc)

] [
X(S)
X(Sc)

]
+

[
Z(D)
Z(Dc)

]
.

Now we are ready to prove Theorem 4. First, note that (13) can also be expressed as∑
`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj + I(X(S);U(D)|X(Sc))

−
∑
k∈Sc

I(Xk;X(Sck))−
∑
`∈D

I(U`;U(D`), XN |Y`),

Then, we set Xk to be i.i.d. N (0, P ) for all k ∈ [N ] and

U` =

N∑
k=1

g`kXk + Ẑ`,

where Ẑ` ∼ N (0, 1) are mutually independent and independent of (XN , Y L). Then, we have∑
`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj +
1

2
log det

(
I + PG(D,S)GT (D,S)

)
−
∑
`∈D

1

2
log

(
1 +

∑
k∈S g

2
`kP

1 +
∑

k∈S g
2
`kP

)
,

which can be further relaxed as∑
`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj +
1

2
log det

(
I + PG(D,S)GT (D,S)

)
− |D|

2
.

On the other hand, the cut-set bound for the Gaussian case is given by∑
`∈D

R` ≤
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj +
1

2
log det

(
I + G(D,S)K(S|Sc)GT (D,S)

)
,

(a)
=
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj +
1

2
log det

(
I + GT (D,S)G(D,S)K(S|Sc)

)
,

where (a) follows from Sylvester’s determinant identity. The term det
(
I + GT (D,S)G(D,S)K(S|Sc)

)
can be upper

bounded in two different ways. Note that the symmetric matrices GT (D,S)G(D,S) and K(S|Sc) are positive semi-
definite. When S is an empty set, the inner bound matches the cut-set bound. In the following, we consider the
case |S| ≥ 1.

First, we have

det
(
I + GT (D,S)G(D,S)K(S|Sc)

)
≤ det

(
I + PGT (D,S)G(D,S)

)
· det

(
I +

1

P
K(S|Sc)

)
(a)

≤ det
(
I + PG(D,S)GT (D,S)

)
· 2|S|,

where (a) follows from Sylvester’s determinant identity and Hadamard’s inequality.
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Second, denote by λj(A) the j-th largest eigenvalue of the symmetric matrix A. For notational convenience, we
denote G′ = GT (D,S)G(D,S) and K′ = K(S|Sc). Note that the matrix G′ has at most |D| nonzero eigenvalues
and λ1(K′) ≤ tr(K′) ≤ |S|P . Thus, we have

det
(
I + G′K′

)
=

|S|∏
i=1

(
1 + λi(G

′K′)
)

(a)

≤
|S|∏
i=1

(
1 + λi(G

′)λ1(K′)
)

≤
|S|∏
i=1

(
1 + λi(G

′)|S|P
)

= det
(
I + |S|PG(D,S)GT (D,S)

)
≤ det

(
I + PG(D,S)GT (D,S)

)
· |S||D|,

where (a) follows from [21, 7.3.P16].
To summarize, the cut-set bound can be relaxed as∑

`∈D
R` ≤

∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj + det
(
I + PG(D,S)GT (D,S)

)
+

1

2
min{|S|, |D| log |S|}.

Comparing the relaxed inner bound (16) and outer bound (16), we conclude that the DDF scheme achieves within
min

{
L+N

2 , L+L logN
2

}
bits per dimension from the cut-set bound and thus from the capacity region.
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