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Abstract

Improved lower bounds on the average and the worst-case rate-memory tradeoffs for the Maddah-Ali&Niesen
coded caching scenario are presented. For any number of users and files and for arbitrary cache sizes, the
multiplicative gap between the exact rate-memory tradeoff and the new lower bound is less than 2.315 in the
worst-case scenario and less than 2.507 in the average-case scenario.

I. INTRODUCTION

We consider the canonical coded caching scenario by Maddah-Ali and Niesen [1] with a single transmitter and
K receivers, where each receiver is equipped with a cache memory of equal size (see in Figure 1). Communication
takes place in two phases. In a first caching phase the transmitter stores contents (arbitrary functions of files) at
the receivers’ cache memories. In a subsequent delivery phase it conveys one of the files stored in its library to
each of the receivers. The main challenge in this configuration is that during the caching phase it is not known
which receiver demands which specific file from the library. The cache contents thus need to be designed so as to
be useful for many possible demands.

Traditional caching systems store the same most popular files in each and every cache memory. This allows the
receivers to retrieve these files locally without burdening the common communication link from the transmitter to
the receivers. Recently [1], it has been shown that much larger gains, so called global caching gains, are possible
if the various receivers store different parts of the files in their cache memories. In this case, the transmitter can
simultaneously serve multiple receivers during the delivery phase by sending coded data, and thus significantly
reduced the required communication rate on the common link connecting the transmitter to the receivers.

The main quantity of interest in this work is the rate-memory tradeoff —i.e., the minimum required delivery rate,
as a function of the available cache memories, so that all receivers reliably recover their demanded files. Several
recent works [1]–[17] have presented upper and lower bounds on the rate-memory tradeoff. More specifically, the
works in [1]–[12], [14] investigated the worst-case rate-memory tradeoff where the communication rate cannot
depend on the specific demand. (The works in [4], [5], [14] determined the exact rate-memory tradeoff if the
caching contents are restricted to parts of messages. This caching strategy is however known to be suboptimal in
general.) The currently best lower and upper bounds for this worst-case rate-memory tradeoff have been shown to
match up to a multiplicative gap of 4 [10].

The works in [13], [14] investigated the average rate-memory tradeoff where the communication rate can depend
on the specific demand, and the rate of interest is the average required rate over all possible demands. The currently
best lower and upper bounds for this average rate-memory tradeoff have been shown to match up to a multiplicative
gap of 4.7 [13].

In this paper we provide new lower bounds on the worst-case and the average rate-memory tradeoffs. The new
lower bounds match the exact worst-case and average rate-memory tradeoffs up to multiplicative gaps of 2.315 and
2.507, respectively. More precisely, these gaps are with respect to the upper bounds on the rate-memory tradeoffs
under decentralized caching in [14]. An upper bound on the rate-memory tradeoff under decentralized caching
is also an upper bound on the rate-memory tradeoff under centralized caching considered here, because in the
decentralized caching the cache content at a given receiver has to be chosen according to a specific distribution,
whereas in centralized caching any content can be cached that satisfies the cache memory constraints.
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Fig. 1: Coded caching scenario with K receivers having equal cache size FM bits.

Many other variations of the caching problem have been studied. For example, the online caching problem [18];
caching with non-uniform demands [19]–[21]; caching of correlated files [22]–[24] where Wyner’s and Gac-Körner’s
common information play an important role [22]; caching in noisy broadcast channels [25]–[27], [29]–[43] where
perfomance can be improved through joint cache-channel coding [25], [26], [32], state-information [33], [34], [34],
[37], [39], or massive MIMO [36]; caching in Gaussian interference networks [44]–[46]; caching in hierarchical
networks [54], [56], [57]; and caching in cellular networks [46]–[53] where it allows to cancel inter-cell interference
[47].

II. DETAILED PROBLEM SETUP

The transmitter has a library of N independent messages W1, . . . ,WN , where each Wd is uniformly distributed
over {1, . . . , 2F } for F a positive integer. Each of the K receivers is provided with a cache memory of size FM
bits, see Figure 1. Suppose that each receiver will demand exactly one message from the library. We denote the
demand of receiver k by

dk ∈ N := {1, . . . , N}.
and thus the message demanded by receiver k is Wdk . Let

d := (d1, . . . , dK)

denote the receivers’ demand vector. The communications process takes place in two phases: a caching phase and
a delivery phase.

During a period of low network-congestion and before the receivers’ demand vector d is known, the transmitter
sends an individual cache message Vk ∈

{
1, . . . ,

⌊
2FM

⌋}
, to each of the K receivers. Since d is unknown at this

time, the cache messages will be functions of the entire library. For every k ∈ {1, . . . ,K}:1

Vk := gk(W1, . . . ,WN ),

gk : {1, . . . , 2F }N → {1, . . . , b2FMc}.
In the delivery phase, the transmitter is given the receivers’ demands d = (d1, . . . , dK), and it generates the

delivery-symbol X sent over the common noise-free bit-pipe as:

X := fd(W1, . . . ,WN ),

fd :
{

1, . . . , 2F
}N → X ,

where X is the delivery alphabet that we will specify shortly.
We also assume that d is known to all receivers (e.g., d can be communicated to the receivers with zero

transmission rate). Each receiver k ∈ {1, . . . ,K} perfectly observes the delivery-symbol X , and can thus recover
its desired message as

Ŵk := ϕk,d(X,Vk),

1Allowing for randomized caching functions does not change the results of this paper.
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ϕk,d : X × {1, . . . , b2FMc} →
{

1, . . . , 2F
}
.

We are left with specifying the delivery alphabet X . We distinguish two scenarios:
• In the worst-case scenario, the delivery alphabet X does not depend on the demand vector d.

In this scenario, a rate-memory pair (R, M) is achievable if for every ε > 0 and sufficiently large message
lengths F , there exist caching, encoding, and decoding functions with delivery alphabet

X =
{

1, . . . , b2F (R+ε)c
}
, (1)

so that for each demand vector d ∈ NK , each receiver k can perfectly reconstruct its desired message:

Ŵk = Wdk . (2)

• In the average-case scenario, the delivery alphabet X depends on the demand vector d.
In this scenario, a rate-memory pair (R, M) is achievable if for each demand vector d ∈ NK , each ε > 0,
and sufficiently large message lengths F , there exist caching, encoding, and decoding functions with delivery
alphabet

Xd = {1, . . . , b2FRdc}, (3)

so that each Receiver k ∈ {1, . . . ,K} can perfectly reconstruct its desired message, (2), and

1

NK

∑
d∈NK

Rd ≤ R+ ε. (4)

The main focus of this paper is on the rate-memory tradeoffs of the worst-case and the average-case scenarios:

Definition 1: Given the cache memory size M, we define the rate-memory tradeoffs R?worst(M) and R?avg(M) as the
infimum of all rates R such that the rate-memory pair (R, M) is achievable for the worst-case and the average-case
scenarios, respectively.

The problem is interesting for
M < N. (5)

For M ≥ N each receiver can store all the library in its cache memory and there is no need to transmit anything
during the delivery phase. We henceforth assume that (5) holds.

III. MAIN RESULTS

Define N̄ := min{K,N} and N̄ := {1, 2, . . . , N̄}.

A. Worst-Case Scenario

Our first result is a lower bound on the rate-memory tradeoff in the worst-case scenario. It is proved in
Section IV-B. Alternatively, it can also be extracted from the converse result for general degraded broadcast channels
in [28].

Theorem 1: For all M ∈ [0, N),
R?worst(M) ≥ Rlow

worst(M), (6)

where

Rlow
worst(M) := max

{
max
`∈N̄

[
`−M

`2

N

]
,

max
`∈N̄

[
`−M

∑̀
k=1

k

N − k + 1

]}
.

Figure 2 compares this new lower bound on R?worst(M) with the existing lower bounds in [1] and [6]. The figure
also shows upper bounds from [14]. The red solid upper bound is for centralized caching, as considered in this
paper. The green dashed upper bound is for decentralized caching. For simplicity, the latter upper bound is used
to derive the gap results in the following Theorem 2.
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Fig. 2: Upper and lower bounds on R?worst(M) for K = 16 and N = 64.

Theorem 2: Irrespective of the number of users K, the library size N , and the memory size M ∈ [0, N):

R?worst(M)

Rlow
worst(M)

≤ max
`∈Z+

max
a∈(0,1)

φ(a, `),

where

φ(a, `) :=

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

≤ 2.315

Proof: See Section V.

Remark 3: For any ` ∈ Z+, the function a 7→ φ(a, `) is continuous and bounded over (0, 1), see also Figure 3.
Numerical evaluation2 shows that for ` ∈ {1, . . . , 104}:

max
a∈(0,1)

φ(a, `) ≤ 2.315.

Moreover,
max

`∈Z+ : `>104
max
a∈(0,1)

φ(a, `) ≤ max
b∈(0,10−4)

max
a∈(0,1)

ψ(a, b), (7)

where

ψ(a, b) :=

a(1+b)
1−a

(
1−

(
1+ab
1+b

) 1

ab

)
1− (1−a)b

1−a+ab + 1−a
a ln (1− a+ ab)

. (8)

The function (a, b) 7→ ψ(a, b) is continuous and bounded over (0, 1) × (0, 10−4), see also Figure 4. Numerical
evaluation shows that

max
b∈(0,10−4)

max
a∈(0,1)

ψ(a, b) ≤ 2.315. (9)

Proof: Inequality (7) is proved in Section V-B.

2All numerical evaluations in this paper are performed by applying the MATLAB function fmincon with the sequential quadratic
programming (SQP) method.
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B. Average-Case Scenario

Theorem 4: For all M ∈ [0, N),

R?avg(M) ≥ Rlow
avg(M),

where

Rlow
avg(M)

:= max

{
max

`∈{1,...,K}

[(
1−

(
1− 1

N

)`)
(N − `M)

]
,

max
`∈{1,...,K}

[(
1−

(
1− 1

N

)`)
N − `(`+ 1)

2N
M

]}
.

Proof: See Section IV-C.

Figure 5 compares this new lower bound on R?avg(M) with the existing lower bounds in [13] and the upper
bounds in [14]. The red solid upper bound is for centralized caching, as considered in this paper. The green dashed
upper bound is for decentralized caching and also from [14].
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Fig. 5: Upper and lower bounds on R?avg(M) for K = 16 and N = 64.

As the following theorem and remark show, the multiplicative gap between the lower bound of Theorem 4 and
R?avg(M) is at most 2.507.

Theorem 5: Irrespective of the number of users K, the library size N , and the memory size M ∈ [0, N):

R?avg(M)

Rlow
avg(M)

≤ max
u∈(0,1]

max
v∈(0,1/2]

η(u, v),

where

η(u, v)

:=

(
u+ v − v (1− v)

u

v

)(
1−

(
1− v

u+v (1− v)
u

v

) 1

v

)
(1− v)

u

v

(
1−

(
1 + u

2

)
(1− v)

u

v

) .

Proof: See Section VI.

Remark 6: The function η is continuous and bounded over (0, 1]× (0, 1/2]. Numerical evaluation shows that

max
u∈(0,1]

max
v∈(0,1/2]

η(u, v) ≤ 2.507. (10)

IV. PROOF OF THEOREMS 1 AND 4

A. Auxiliary Lemmas

The following two lemmas will be used in the proofs of Theorems 1 and 4.

The next lemma is stated for the average-case scenario. It applies readily also to the worst-case scenario if rate
Rd is replaced by R.

Lemma 7: Fix a number ` ∈ N̄ and a demand vector d ∈ NK whose first ` entries are d1, . . . , d`. Fix also a
small ε > 0 and assume a sufficiently large F with caching, encoding, and decoding functions so that (2) holds for
all k ∈ {1, . . . ,K}. Then,

Rd + ε ≥ κd(`)− 1

F

∑̀
k=1

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
), (11)

where κd(`) denotes the number of distinct demands for receivers 1, . . . , `:

κd(`) := |{d1, . . . , d`}|. (12)
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Proof: For any k ∈ {1, . . . , `}:
I(X;Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1

)

(a)
= H(Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1

)

= H(Wdk |Wd1 , . . . ,Wdk−1
)

−I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

(b)
= F · 1

{
dk /∈ {d1, . . . , dk−1}

}
−I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1

), (13)

where (a) holds because (2) implies that H(Wdk |X,V1, . . . ,Vk,Wd1 , . . . ,Wdk−1
) = 0; and (b) holds by the

independence of the messages and because H(Wd) = F for any d ∈ N .
On the other hand, ∑̀

k=1

I(X;Wdk |V1, . . . ,Vk,Wd1 , . . . ,Wdk−1
)

≤
∑̀
k=1

I(X;Wdk ,Vk|V1, . . . ,Vk−1,Wd1 , . . . ,Wdk−1
)

= I(X;Wd1 , . . . ,Wd` ,V1, . . . ,V`)
≤ H(X) ≤ F (Rd + ε). (14)

Combining (13) and (14) establishes the lemma.

Lemma 8: Let L be a positive integer, A1, . . . , AL be an independent random L-tuple, and V be a random variable
arbitrarily correlated with A1, . . . , AL. For any subset S ⊆ {1, . . . , L}, denote by AS the subset {As, s ∈ S}.
Then, for all l ∈ {1, . . . , L},

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

I(AS ;V) ≤ l

L
I(A1, . . . , AL;V). (15)

Proof: Consider any l ∈ {1, . . . , L}. We have

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

I(AS ;V)
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(a)
=

1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

∑
j∈S

H(Aj)

− 1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

H(AS |V)

=

(
L−1
l−1

)(
L
l

) L∑
j=1

H(Aj)−
1(
L
l

) ∑
S⊆{1,...,L}:
|S|=l

H(AS |V)

(b)

≤ l

L

L∑
j=1

H(Aj)−
l

L
H(A1, . . . , AL|V)

(c)
=

l

L
I(A1, . . . , AL;V),

where (a) and (c) follow since A1, . . . , AL are independent and (b) follows from the generalized Han Inequality
(see [60, Theorem 17.6.1]).

B. Proof of Theorem 1

Fix ` ∈ N̄ and restrict attention to receivers 1, . . . , ` and their cache memories. Let Qdist
` be the set of all ordered

`-dimensional demand vectors (d1, . . . , d`) with all distinct entries. So,

|Qdist
` | =

(
N

`

)
`!. (16)

Notice that for d ∈ Qdist
` , we have κd(`) = `, and averaging Inequality (11)3 over all demand vectors d ∈ Qdist

`
yields the following inequality:

R+ ε ≥ `−
∑̀
k=1

αk, (17)

where

α1 :=
1(
N
`

)
`!

∑
d∈Qdist

`

1

F
I(Wd1 ;V1), (18a)

and for k = 2, . . . , `:

αk :=
1(
N
`

)
`!

∑
d∈Qdist

`

1

F
I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1

).

(18b)

The following lemma and letting ε→ 0 and thus F →∞, concludes the proof.

Lemma 9: Parameters α1, . . . , α` satisfy∑̀
k=1

αk ≤ min

{
`2

N
M,

∑̀
k=1

kM

N − k + 1

}
. (19)

Proof: We first prove that for each k ∈ {1, . . . , `}:

αk ≤
kM

N − k + 1
, (20)

3In (11) Rd needs to be replaced by R because here we consider a worst-case scenario.
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which establishes the upper bound ∑̀
k=1

αk ≤
∑̀
k=1

kM

N − k + 1
. (21)

For each partial demand vector d̃ = (d1, . . . , dk−1), let Wd̃ := {Wd1 , . . . ,Wdk−1
}. We have:

Fαk

=
1

`!
(
N
`

) ∑
d∈Qdist

`

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

=
1

`!
(
N
`

) ∑
d̃∈Qdist

k−1

∑
d∈Qdist

` :

(d1,...,dk−1)=d̃

I(Wdk ;V1, . . . ,Vk|Wd̃)

(a)
=

1

`!
(
N
`

) ∑
d̃∈Qdist

k−1

∑
j∈N\d̃

I(Wj ;V1, . . . ,Vk|Wd̃)

·
(
N − k
`− k

)
(`− k)!

=
1

k!
(
N
k

) ∑
d̃∈Qdist

k−1

∑
j∈N\d̃

I(Wj ;V1, . . . ,Vk|Wd̃)

(b)
=

1

k!
(
N
k

) ∑
d̃∈Qdist

k−1

[
H(W1, . . . ,WN |Wd̃)−

∑
j∈N\d̃

H(Wj |V1, . . . ,Vk,Wd̃)
]

(c)

≤ 1

k!
(
N
k

) ∑
d̃∈Qdist

k−1

I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃)

(d)

≤
(k − 1)!

(
N
k−1

)
k!
(
N
k

) kFM

=
kFM

N − k + 1
, (22)

where (a) holds because for each value of ` and j there are
(
N−k
`−k
)
(` − k)! ordered demand vectors d =

(d1, . . . , dK) ∈ Qdist
` with (d1, . . . , dk−1) = d̃ and with dk = j; (b) holds by the independence of the messages;

(c) holds because for any random tuple (A1, . . . , AL) it holds that
∑L

l=1H(Al) ≥ H(A1, . . . , AL); and (d) holds
because I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃) cannot exceed kFM. This concludes the proof of (20) and thus of (21).

We now prove ∑̀
k=1

αk ≤
`2M

N
. (23)

For each d ∈ Qdist
` :

I(Wd1 ;V1) +
∑̀
k=2

I(Wdk ;V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)

≤ I(Wd1 ,Wd2 , . . . ,Wd` ;V1, . . . ,V`). (24)

So,

F

(
N

`

)
`! ·
∑̀
k=1

αk
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=
∑

d∈Qdist
`

[
I(Wd1 ;V1)

+
∑̀
k=2

I(Wdk ;V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)

]
≤
∑

d∈Qdist
`

I(Wd1 ,Wd2 , . . . ,Wd` ;V1 . . . ,V`)

= `!
∑

d∈Qdist
` :

d1<d2···<d`

I(Wd1 ,Wd2 , . . . ,Wd` ;V1 . . . ,V`)

(a)

≤ `!

(
N

`

)
`

N
I(W1, . . . ,WN ;V1, . . . ,V`)

≤ `

N
`!

(
N

`

)
`FM,

where (a) follows from Lemma 8.

C. Proof of Theorem 4

For any ` ∈ {1, . . . ,K}, let Qrep
` be the set of all ordered length-` vectors (d1, . . . , d`) ∈ N `, where repetitions

are allowed. Notice that:
|Qrep

` | = N `. (25)

Recall also that in the average-case scenario under investigation, the demand vector d := (d1, . . . , dK) is uniform
over Qrep

K . Let D := (D1, . . . , DK) ∼ Uniform(NK).
Fix now an ` ∈ {1, . . . ,K}, and average Inequality (11) over all demand vectors d ∈ Qrep

K . This yields:

ED[RD + ε] ≥ ED[κD(`)]−
∑̀
k=1

βk, (26)

where

β1 :=
1

F
I(WD1

;V1|D), (27a)

and for k = 2, . . . , `:

βk :=
1

F
I(WDk

;V1, . . . ,Vk|WD1
, . . . ,WDk−1

,D). (27b)

The following two lemmas and letting ε→ 0 and thus F →∞, conclude the proof.

Lemma 10:
ED

[
κD(`)

]
= N

(
1−

(
1− 1

N

)`)
. (28)

Proof:

ED

[
κD(`)

]
= ED

[∑̀
k=1

1
{
Dk /∈ {D1, . . . , Dk−1}

}]

=
∑̀
k=1

ED

[
1
{
Dk /∈ {D1, . . . , Dk−1}

}]

=
∑̀
k=1

(
1− 1

N

)k−1

= N

(
1−

(
1− 1

N

)`)
. (29)
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Lemma 11: Parameters β1, . . . , β` satisfy∑̀
k=1

βk ≤ min

{
ED

[
κD(`)

]
· `M
N
,
∑̀
k=1

kM

N

}
. (30)

Proof: We first prove that for each k ∈ {1, . . . , `}:

βk ≤
kM

N
, (31)

which establishes the upper bound ∑̀
k=1

βk ≤
∑̀
k=1

kM

N
. (32)

Defining Dk := (D1, . . . , Dk), we have:

Fβk = I(WDk
;V1, . . . ,Vk|WD1

, . . . ,WDk−1
,D)

= I(WDk
;V1, . . . ,Vk|WD1

, . . . ,WDk−1
,Dk)

=
1

Nk

∑
d∈Qrep

k

I(Wdk ;V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

=
1

Nk

∑
d̃∈Qrep

k−1

N∑
j=1

I(Wj ;V1, . . . ,Vk|Wd̃)

(a)

≤ 1

Nk

∑
d̃∈Qrep

k−1

I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃)

(b)

≤ 1

Nk

∑
d̃∈Qrep

k−1

kFM

=
kFM

N
,

where (a) holds because the messages are independent and because H(A1, . . . , AL) ≤∑L
l=1H(Al) for any random

L-tuple (A1, . . . , AL); and (b) holds because I(W1, . . . ,WN ;V1, . . . ,Vk|Wd̃) cannot exceed kFM. This concludes
the proof of (31) and thus (32).

We now prove ∑̀
k=1

βk ≤ ED

[
κD(`)

]
· `M
N
. (33)

Let Ddist
` be a vector containing all distinct elements of D` := (D1, . . . , D`). Notice that Ddist

` is of length
κD`

(`). Also, following the definition of the previous section, WD`
:= {WD1

, . . . ,WD`
} = WDdist

`
. We have:

F
∑̀
k=1

βk

= I(WD1
;V1|D)

+
∑̀
k=2

I(WDk
;V1, . . . ,Vk|WD1

,WD2
, . . . ,WDk−1

,D)

≤ I(WD`
;V1, . . . ,V`|D)

≤ I(WD`
;V1, . . . ,V`|D`)

= I
(
WD`

;V1, . . . ,V`
∣∣D`, κD`

(`)
)
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=
∑̀
i=1

P(κD`
(`) = i)I

(
WD`

;V1, . . . ,V`
∣∣D`, κD`

(`) = i
)

(a)
=
∑̀
i=1

P(κD`
(`) = i)I

(
WDdist

`
;V1, . . . ,V`

∣∣Ddist
` , κD`

(`) = i
)

(b)
=
∑̀
i=1

P(κD`
(`) = i)

∑
d̃∈Qdist

i :

d̃1<d̃2···<d̃i

1(
N
i

)I(Wd̃;V1, . . . ,V`)

(c)

≤
∑̀
i=1

P(κD(`) = i)
i

N
I(W1, . . . ,WN ;V1, . . . ,V`)

(d)

≤
∑̀
i=1

P(κD(`) = i) · i · `FM
N

= ED

[
κD(`)

]`FM
N

,

where (a) holds because of the Markov chain V1, . . . ,V`−(WDdist
`
, κD`

(`)−D`; (b) holds because given κD`
(`) = i

the probability that Ddist
` equals a specific vector d̃ ∈ Qdist

i equals
(
N
i

)−1
; (c) follows from Lemma 8; and (d) follows

since I(W1, . . . ,WN ;V1, . . . ,V`) cannot be larger than `FM.

V. PROOF OF THE GAP-RESULTS IN THEOREM 2 AND REMARK 3

A. Proof of Theorem 2

We wish to uniformly bound the gap

ξ(K,N,M) :=
R?worst(M)

Rlow
worst(M)

, (34)

irrespective of K,N ≥ 1 and M ∈ [0, N).
We recall the achievable rate-memory tradeoff from [14, Corollary 2]. For any pair of positive integers K,N ≥ 1,

define

RYMA(K,N,M)

:=

{
N̄ if M = 0,

N−M
M

(
1−

(
1− M

N

)N̄)
if M ∈ (0, N).

Since RYMA(K,N,M) upper bounds the rate-memory tradeoff under a decentralized caching assumption [14], it
must also upper bound the rate-memory tradeoff under centralized caching as considered here. (In fact, decentralized
caching imposes additional constraints on the caching functions gk compared to our setup here.) Thus, for any
number of users K and files N :

R?worst(M) ≤ RYMA(K,N,M), M ∈ [0, N). (35)

We thus have

ξ(K,N,M) ≤ RYMA(K,N,M)

Rlow
worst(M)

≤ RYMA(K,N,M)

Rworst(K,N,M)
, (36)

where we defined

Rworst(K,N,M) := max
`∈N̄

∑̀
j=1

(
1− jM

N − j + 1

)
(37)
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and where the second inequality holds because for all K,N,M:

Rlow
worst(M) ≥ max

`∈N̄

`− ∑̀
j=1

jM

N − j + 1


= Rworst(K,N,M). (38)

Define

M` :=

{
N−`
`+1 if ` ∈ {0, 1, . . . , N̄ − 1},
0 if ` = N̄ .

Note that
0 = MN̄ < MN̄−1 < · · · < M0 = N.

The function Rworst(K,N,M) is piecewise-linear with N̄ line segments over the intervals

[M`+1,M`], ` ∈ {1, . . . , N̄ − 1} (39a)

[M1,M0), (39b)

where the last interval is half-open, see (5).
We next upper bound RYMA(K,N,M) by a function RYMA(K,N,M) that is piecewise-linear over the same

intervals (39). Specifically, for every ` ∈ N̄ , define for M ∈ [M`,M`−1):

RYMA(K,N,M) :=
M−M`

M`−1 −M`
·RYMA(K,N,M`)

+
M`−1 −M

M`−1 −M`
·RYMA(K,N,M`−1).

Notice that
RYMA(K,N,M`) = RYMA(K,N,M`), ∀` ∈ {1, . . . , N̄},

whereas for general M ∈ [0, N):
RYMA(K,N,M) ≥ RYMA(K,N,M), (40)

because RYMA(K,N,M) is convex.
Plugging (40) into (36), we obtain:

ξ(K,N,M) ≤ RYMA(K,N,M)

Rworst(K,N,M)
=: Ξ(K,N,M). (41)

Now, since the upper bound Ξ(K,N,M) is continuous and bounded in M ∈ [0, N), and because it is quasiconvex
[59] in M over each of the N̄ intervals (39),4 the maximum of Ξ(K,N,M) over each interval is attained at the
boundary. Furthermore, since RYMA(K,N,M0) = Rworst(K,N,M0) = 0, for M ∈ [M1,M0):

Ξ(K,N,M)

=
M−M1

M0−M1
RYMA(K,N,M1) + M0−M

M0−M1
· 0

M−M1

M0−M1
Rworst(K,N,M1) + M0−M

M0−M1
· 0

=
RYMA(K,N,M1)

Rworst(K,N,M1)

= Ξ(K,N,M1). (42)

Thus, Ξ(K,N,M) is constant over the last interval [M1,M0) and we obtain that

max
M∈[0,N)

ξ(K,N,M) ≤ max
`∈N̄

Ξ(K,N,M`). (43)

4A linear-fractional function is always quasiconvex.
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Irrespective of K,N ∈ Z+, we have:

Ξ(K,N,MN̄ ) =
N̄

N̄
= 1. (44)

When N̄ = 1 (i.e., only one file or only one user), Inequalities (43) and (44) imply that the gap ξ(K,N,M) = 1
for all M ∈ [0, N), and hence our lower bound is exact.

We therefore assume in the following that N̄ ≥ 2. For ` ∈ {1, . . . , N̄ − 1}, we have

Ξ(K,N,M`) =

N−N−`

`+1
N−`

`+1

(
1−

(
1− 1

N
N−`
`+1

)N̄)
∑`

j=1

(
1− j

N−j+1
N−`
`+1

)

=

`(N+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
∑`

j=1

(
1 +

(
1− N+1

N−j+1

)
N−`
`+1

)

=

`(N+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
`(N+1)
`+1 − (N−`)(N+1)

`+1

∑`
j=1

1
N−j+1

=

`(`+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N̄)
`− (N − `)∑`

j=1
1

N−j+1

≤
`(`+1)
N−`

(
1−

(
`(N+1)
(`+1)N

)N)
`− (N − `)∑`

j=1
1

N−j+1

a=`/N
=

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

=: φ(a, `).

Note that since ` ∈ {1, . . . , N̄ − 1},
a ∈ [1/N, 1). (45)

Therefore,

max
K∈Z+

max
N∈Z+

max
M∈[0,N)

ξ(K,N,M) ≤ max
`∈Z+

max
a∈(0,1)

φ(a, `),

which concludes the proof.

B. Proof of Inequality (7)

We have a closer look at the denominator of the function φ(a, `).
Notice that 1

n ≤
∫ n
n−1

dt
t for all n ≥ 2. Therefore,

`−1∑
j=0

1

`− aj =

`−1∑
j=0

1

`(1− a) + a(`− j)

i=`−j
=

∑̀
i=1

1

`(1− a) + ai

=
1

`(1− a) + a
+

1

a

∑̀
i=2

1

`(1− a)/a+ i
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≤ 1

`(1− a) + a
+

1

a

∑̀
i=2

∫ `(1−a)/a+i

`(1−a)/a+i−1

1

t
dt

=
1

`(1− a) + a
+

1

a

∫ `(1−a)/a+`

`(1−a)/a+1

1

t
dt

=
1

`(1− a) + a
+

1

a
ln

(
`

`(1− a) + a

)
.

(46)

We use (46) to upper bound the function φ(a, `):

φ(a, `) =

a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− (1− a)

∑`−1
j=0

1
`−aj

≤
a(`+1)
(1−a)`

(
1−

(
`+a
`+1

)`/a)
1− 1−a

`(1−a)+a − 1−a
a ln

(
`

`(1−a)+a

)
b=1/`

=

a(1+b)
1−a

(
1−

(
1+ab
1+b

) 1

ab

)
1− (1−a)y

1−a+ab + 1−a
a ln (1− a+ ab)

= ψ(a, b).

Noting also that if ` > 104, then b < 10−4, this concludes the proof of (7).

VI. PROOF OF THE GAP-RESULT IN THEOREM 5

We wish to uniformly bound the gap

θ(K,N,M) :=
R?avg(M)

Rlow
avg(M)

, (47)

irrespective of K,N ≥ 1 and M ∈ [0, N).
Since RYMA(K,N,M) upper bounds the rate-memory tradeoff for the worst case, it must also upper bound the

rate-memory tradeoff for the average case. Thus, for any number of users K and files N :

R?avg(M) ≤ RYMA(K,N,M), M ∈ [0, N). (48)

We thus have

θ(K,N,M) ≤ RYMA(K,N,M)

Rlow
avg(M)

≤ RYMA(K,N,M)

Ravg(K,N,M)
, (49)

where we defined

Ravg(K,N,M) := max
`∈N̄

∑̀
k=1

[(
1− 1

N

)k−1

− k

N
M

]
,

and where the second inequality holds because for all K,N,M:

Rlow
avg(M) ≥ max

`∈N̄

[(
1−

(
1− 1

N

)`)
N − `(`+ 1)

2N
M

]
= max

`∈N̄

∑̀
k=1

[(
1− 1

N

)k−1

− k

N
M

]
.
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Define

M̃` :=

{
N
`+1

(
1− 1

N

)` if ` ∈ {0, 1, . . . , N̄ − 1},
0 if ` = N̄ .

Note that 0 = M̃N̄ < M̃N̄−1 < · · · < M̃0 = N . The function Ravg(K,N,M) is piecewise-linear with N̄ line
segments over the intervals

[M̃`+1, M̃`], ` ∈ {1, . . . , N̄ − 1} (50a)

[M̃1, M̃0), (50b)

where the last interval is half-open, see (5).
We next upper bound RYMA(K,N,M) by a function RYMA(K,N,M) that is piecewise-linear over the same

intervals (50). Specifically, for every ` ∈ N̄ , define for M ∈ [M̃`, M̃`−1):

RYMA(K,N,M) :=
M− M̃`

M̃`− 1− M̃`

·RYMA(K,N, M̃`)

+
M̃`−1 −M

M̃`−1 − M̃`

·RYMA(K,N, M̃`−1).

Notice that
RYMA(K,N, M̃`) = RYMA(K,N, M̃`), ∀` ∈ {1, . . . , N̄},

whereas for general M ∈ [0, N):
RYMA(K,N,M) ≥ RYMA(K,N,M), (51)

because RYMA(K,N,M) is convex.
Plugging (51) into (49), we obtain:

θ(K,N,M) ≤ RYMA(K,N,M)

Ravg(K,N,M)
=: Θ(K,N,M). (52)

Following similar arguments as in the proof of Theorem 2, we have

max
M∈[0,N)

θ(K,N,M) ≤ max
`∈N̄

Θ(K,N, M̃`). (53)

Irrespective of K,N ∈ Z+, we have:

Θ(K,N, M̃N̄ ) =
N̄

N(1− (1− 1/N)N̄ )

=
x

1− ((1− 1/N)N )x

∣∣∣
x=N̄/N

(a)

≤ x

1− e−x
∣∣∣
x=N̄/N

(b)

≤ 1

1− e−1
,

where (a) follows since (1−1/ζ)ζ ≤ e−1 for all ζ > 1 and (b) follows since x 7→ x
1−e−x is an increasing function.

This implies that when N̄ = 1 (i.e., one file or one user), then Θ(K,N,M) ≤ 1
1−e−1 ≤ 1.582 for all M ∈ [0, N).

In the following, we assume that N̄ ≥ 2. As for ` ∈ {1, . . . , N̄ − 1}, we have

Θ(K,N,M`)

=

N− N

`+1(1− 1

N )
`

N

`+1(1− 1

N )
`

(
1−

(
1− 1

N
N
`+1

(
1− 1

N

)`)N̄)
N −

(
N + `

2

) (
1− 1

N

)`
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=

(
`+1
N − 1

N

(
1− 1

N

)`)(
1−

(
1− 1

`+1

(
1− 1

N

)`)N̄)
(
1− 1

N

)` (
1−

(
1 + `

2N

) (
1− 1

N

)`)

≤

(
`+1
N − 1

N

(
1− 1

N

)`)(
1−

(
1− 1

`+1

(
1− 1

N

)`)N)
(
1− 1

N

)` (
1−

(
1 + `

2N

) (
1− 1

N

)`)
(a)
=

(
u+ v − v (1− v)u/v

)(
1−

(
1− v

u+v (1− v)u/v
)1/v

)
(1− v)u/v

(
1−

(
1 + u

2

)
(1− v)u/v

)
=: η(u, v),

where (a) follows by a change of variable u = `/N and v = 1/N . Note that since ` ∈ {1, . . . , N̄−1} and assuming
N̄ ≥ 2,

u ∈
[

1

N
,
N̄ − 1

N

]
and v ∈ (0, 1/2].

Also, it holds that 1
1−e−1 < maxu∈(0,1] maxv∈(0,1/2] η(u, v). Therefore,

max
K∈Z+

max
N∈Z+

max
M∈[0,N)

θ(K,N,M) ≤ max
u∈(0,1]

max
v∈(0,1/2]

η(u, v),

which concludes the proof.
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