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Abstract—Improved lower bounds on the worst-case and the
average-case rate-memory tradeoffs for the Maddah-Ali&Niesen
coded-caching scenario are presented. For any number of users
and files and for arbitrary cache sizes, the multiplicative gap
between the exact rate-memory tradeoff and the new lower bound
is less than 2.315 in the worst-case scenario and less than 2.507
in the average-case scenario.

I. INTRODUCTION

We consider the canonical coded-caching scenario by
Maddah-Ali and Niesen [1] with a single transmitter and
K receivers, where each receiver is equipped with a cache
memory of equal size. Communication takes place in two
phases. In a first caching phase the transmitter stores contents
(arbitrary functions of files) at the receivers’ cache memories.
In a subsequent delivery phase it conveys one of the files stored
in its library to each of the receivers. The main challenge in
this configuration is that during the caching phase it is not
known which receiver demands which specific file from the
library. The cache contents thus need to be designed so as to
be useful for many possible demands.

Traditional caching systems store the same most popular
files in each and every cache memory. This allows the receivers
to retrieve these files locally without burdening the common
communication link from the transmitter to the receivers. Re-
cently [1], it has been shown that much larger gains, so called
global caching gains, are possible if the various receivers
store different parts of the files in their cache memories. In
this case, the transmitter can simultaneously serve multiple
receivers during the delivery phase by sending coded data,
thus reducing the rate on the communication link from the
transmitter to the receivers.

The main quantity of interest in this work is the rate-
memory tradeoff—i.e., the minimum required delivery rate,
as a function of the available cache memories, so that all
receivers reliably recover their demanded files. Several recent
works [1]-[15] have presented upper and lower bounds on
the rate-memory tradeoff. The related scenario where delivery
communication takes place over a noisy broadcast channel was
considered in [16]-[20].

More specifically, the works in [1]-[11], [14], [15] in-
vestigated the worst-case rate-memory tradeoff where the
communication rate cannot depend on the specific demand.
The previously best lower and upper bounds for this worst-
case rate-memory tradeoff have been shown to match the exact

rate-memory tradeoff up to a multiplicative gap of 4 [9]. In
this paper we provide a new lower bound and show that it
matches the exact rate-memory tradeoff up to a multiplicative
gap of 2.315.

The works in [12]-[14] investigated the average rate-
memory tradeoff when the communication rate can depend
on the specific demand, and the rate of interest is the average
rate over all possible demands. The previously best lower and
upper bounds for this average rate-memory tradeoff have been
shown to match up to a multiplicative gap of 4.7 [13]. Here we
present a new lower bound and show that it matches the exact
rate-memory tradeoff up to a multiplicative gap of 2.507.

II. DETAILED PROBLEM SETUP

The transmitter has a library of N independent messages
Wi,...,Wn, where each W is uniformly distributed over
{1,...,2F} for F a positive integer. Each of the K receivers
is provided with a cache memory of size F'M bits. Suppose
that each receiver will demand exactly one message from the
library. We denote the demand of Receiver k by d, € N :=
{1,..., N}. Le., Receiver k demands message W, .

Communication takes place in two phases: a caching phase
and a delivery phase. In the first cache phase, the transmitter
sends an individual cache message Vj € {1,...,|2"™]|}, to
each of the K receivers. Since the demands di,--- ,dx are
unknown at this time, the cache messages will be functions of
the entire library:'

Vk::gk(Wl7"'7WN>7 k€{1’7K}7

where gp: {1,..., 28V = {1,...,[2FM|}.
In the delivery phase, the transmitter is given the demand
vector d = (dy, . ..,dg), and it generates the delivery-symbol

X:Zfd(W17"'7WN)7 fd:{l"“72F}N_>X’

where X is the delivery alphabet that we will specify shortly.

We assume that d is also revealed to all receivers (this
communication takes zero rate), and that a common noise-free
bit-pipe connects the transmitter to the receivers. Each Re-
ceiver k € {1,..., K} thus observes the delivery-symbol X,
and can recover its desired message as

Wi == pr.a(X, Vi),

! Allowing for randomized caching functions does not change the rate-
memory tradeoff studied in this paper.



where @ a: X x {1,...,[2"M]} — {1,..., 2}
We are left with specifying the delivery alphabet X. We
distinguish two scenarios:
o In the worst-case scenario, the delivery alphabet X’ does
not depend on the demand vector d.
In this scenario, a rate-memory pair (R, M) is achiev-
able if for every € > 0 and sufficiently large message
lengths F', there exist caching, encoding, and decoding
functions with delivery alphabet

X ={1,... [2F B+ (1)

so that for each demand vector d € MK, each Receiver k
can perfectly reconstruct its desired message:

W, = W, . )

o In the average-case scenario, the delivery alphabet X
depends on the demand vector d.
In this scenario, a rate-memory pair (R, M) is achievable
if for each demand vector d € NX, each ¢ > 0, and
sufficiently large message lengths F', there exist caching,
encoding, and decoding functions with delivery alphabet

Xa={1,...,[2FR]}, 3)

so that each Receiver k € {1,...,K} can perfectly
reconstruct its desired message, (2), and
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The main focus of this paper is on the rate-memory tradeoffs
of the worst-case and the average-case scenarios:

Definition 1: Given the cache memory size M, we define the
rate-memory tradeoffs It} (M) and I;,,(M) as the infimum
of all rates R such that the rate-memory pair (R, M) is
achievable for the worst-case and the average-case scenarios,
respectively.

The problem is interesting for M < N. For M > N each
receiver can store all the library in its cache memory and there
is no need to transmit anything during the delivery phase. We
henceforth assume M < N.

III. MAIN RESULTS
Define N := min{K, N} and N := {1,2,..

LN

A. Worst-Case Scenario

Theorem 1: For all M € [0, N),

Riora(M) > R (M),
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Fig. 1: Upper and lower bounds of R} (M) for K = 16 and
N = 64.

Proof: Can be obtained from the lower bound on the
capacity-memory tradeoff in degraded noisy broadcast chan-
nels with receiver caching in [17]. A direct proof is presented
in the extended version [21]. [ |

Figure 1 compares this new lower bound on R}, . (M) with
the existing lower bounds in [1] and [6]. The figure also
shows upper bounds from [14]. The red solid upper bound
is for centralized caching, as considered in this paper. The
green dashed upper bound is for decentralized caching. For
simplicity, the latter upper bound is used to derive the gap
results in the following Theorem 2.

The lower bound R, (M) matches the exact rate-memory
tradeoff up to a constant factor of 2.315, see the following
Theorem 2 and Remark 1.

Theorem 2: Trrespective of the number of users K, the
library size N, and the memory size M € [0, N):

Riorst (M)

worst

m S max max ¢(a,€),

£€7+ a€(0,1)

l/a
{+a
(1- ()"
—1 :
- (l—a) b
Proof: See Section V. [ |

Remark 1: For any ¢ € Z%, the function a — ¢(a,l)
is continuous and bounded over (0,1), see also Figure 2.

where

a(f+1)
(1—a)t

¢(a,l) :=

Numerical evaluation® shows that for £ € {1,...,10%}:
a ,0) < 2.315.
2590005
Moreover,

max max
(€Z+: £>10% a€(0,1)

¢(a,l) < max  max ¥(a,b), (6)

~ b€(0,10—4) a€(0,1)

2All numerical evaluations in this paper are performed by applying the
MATLAB function fmincon with the sequential quadratic programming
(SQP) method.
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Fig. 2: The functions ¢(a,¢) fora € (0,1) and £ = 1,...,10%
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Fig. 3: The function 1 (a, b) over (a,b) € (0,1) x (0,107%).

where

a(14b) (1 _ (1+ab>“1b)
1—a 1+b
=00 - D

P(a,b) =
(@.5) 1—17a+ab+%ln(1—a+ab)

The function (a, b) — 1(a, b) is continuous and bounded over
(0,1) x (0,107%), see also Figure 3. Numerical evaluation
shows that

b) < 2.315. 8
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Inequality (6) is derived because the objective function
on the right-hand side can be easily plotted over the entire
optimization domain, which is not true for the left-hand side.
B. Average-Case Scenario

Theorem 3: For all M € [0, N),

Ry (M) > R (M),
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Fig. 4: Upper and lower bounds on R, (M) for K = 16 and
N = 64.

where

RIOW(M>

avg

‘= max { Ze{rﬂ%i(K} [(1 — (1 — %)Z) (N — éM)] )

e [ (1= 3) )= ] |

Proof: See Section IV. ]
Figure 4 compares this new lower bound on R, (M) with
the existing lower bounds in [13] and the upper bounds in
[14]. The red solid upper bound is for centralized caching, as
considered in this paper. The green dashed upper bound is for
decentralized caching and also from [14].

Lower bound R;Vg(M) matches the exact rate-memory
tradeoff up to a multiplicative gap of 2.507, see the following
Theorem 4 and Remark 2.

Theorem 4: Trrespective of the number of users K, the
library size N, and the memory size M € [0, N):

R;Vg(M) < max max (U U)
RE¥(M) = we@1ve(o/z
where
n(u,v)

(urv-va-0%) (1- (-2 -0 )
; |

Proof: Omitted. See [21]. [ |
Remark 2: The function 7 is continuous and bounded over
(0,1] x (0,1/2]. Numerical evaluation shows that

,v) < 2.507. 9
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Fig. 5: The function n(u,v) over (u,v) € (0,1) x (0, 1).

IV. PROOF OF THEOREM 3

Lemma 5: Fix £ € N and a demand vector d € NK
whose first £ entries are dy, ..., dy. Fix also ¢ > 0 and assume
a sufficiently large F' with caching, encoding, and decoding
functions so that (2) holds for all k£ € {1,..., K}. Then,

V4
1
Rq+e > nd(€)ff E I(de;Vl, - ,Vk|Wd1, ceey de—l)?
k=1

(10)
where kq(¢) denotes the number of distinct demands at
Receivers 1,...,¢:

ka(l) == {dy,...,de}|.

Proof: Omitted. See [21]. [ |
For any ¢ € {1,..., K}, let Q,” be the set of all ordered
length-¢ vectors (dy,...,d;) € N¥ where repetitions are
allowed. In the average-case scenario, the random demand
vector D := (Dy,..., Dg) is uniform over Q.
Fix now an ¢ € {1,..., K}, and average Inequality (10)
over all demand vectors d E Q7> This yields:

Ep[Rp + ¢ > Ep[xp(¢) }:ﬁm (1)
where

B 1= = I(Wp,;V1|D), (12)
and for k =2,....,¢:
B == %I(WDk;Vl,...,Vk\WDI, .., Wp,_,,D). (12b)

The following two lemmas and letting e — 0 and thus F' —
00, conclude the proof.
Lemma 6:

EDMDMH::N<1—(L—%)6. (13)

Proof: Omitted. See [21]. [ |

Lemma 7: Parameters 1, ..., B¢ satisfy
I ¢
. M kM
> B < min {IED [kp(0)] - ~ ZN} (14)
k=1 k=1
Proof: We only prove
¢ ¢
kM
}:mSE:Wf (15)
k=1 k=1
See [21] for the proof of
¢
(M
> Bk <Ep[sn(0)] - 5= (16)
k=1
To prove (15), we show that for each k € {1,...,¢}:
kM
m<wf (17)
In fact, defining Dy, := (Dy, ..., D), we have:
Fﬁk ES I(WDk;Vlw .. ,Vk|WD1,. . '7WDk—17D)
= I(WDk;Vl,.. 7Vk|WD17~ . ~7WDk,1aDk)
= k: Z de7V1a-~-aVk|Wd1a"'7de—1>
deQ;f
N
Z:}: 5V, VW)
deQ"" =1
(@) 1
gﬁ;zjfm@uﬁmwhuwm%)
deQ} |
® 1
< NF 2 kM
deQif |
_ kFM
=
where (a) holds because the messages are independent
and because H(A,...,Ar) < ZzL:1 H(A;) for any
random L-tuple (A;,...,Ar); and (b) holds because

I(Wy,...,Wn;Vy,...,Vi|W5) cannot exceed kFM. [ ]

V. PROOF OF THEOREM 2
We wish to uniformly bound the gap

R:/Ol'bt( )
Ryo (M)’
irrespective of K, N > 1 and M € [0, N).
Recall the achievable rate-memory tradeoff from [14, Corol-
lary 2]. For any pair of positive integers K, N > 1, define

Ryma (K, N, M)

) {]X (1-a-9")

Since Ryma (K, N,M) upper bounds the worst-case rate-
memory tradeoff under a decentralized caching assumption

§(K,N,M) := (18)

if M =0,
it M € (0,N).



[14], it must also upper bound the rate-memory tradeoff under
centralized caching as considered here. (In fact, decentralized
caching imposes additional constraints on the caching func-
tions g, compared to our setup here.) Thus, for all K, N:

R\tlorst(M) < Ryma(K, N, M), M e [O,N) (19)
We have
K,N,M K,N,M
£(K, N, M) < UGN M) RmA( M
Rworst(M) Rworst( , N, M)
where
¢
RO (K, N,M) I 21
WOFS[( '/\7_ 2:: ( + 1) ( )
and where the second inequality holds because RI%% (M) >
R (K,N,M) for all K, N,M.
Define
_¢ . =
My = Nt ifLe{o1,... N1},
0 if{=N

The function R (K, N, M) is piecewise-linear with N line

segments over the intervals
[Meg1, Me],
M1, Mo),

tefl,...,N—1} (22a)

(22b)

where the last interval is half-open.

We next upper bound Rywma(K,N,M) by a function
Ryma(K, N, M) that is piecewise-linear over the same inter-
vals (22). For every £ € N and M € [My, M;_1), define

_ M-M
Ryma (K, N,M) := M If/l Ryma(K, N, M)
-1 — My
My — M
—— R K,N,M
M, — M, YA ( 1)
Notice that since Ryma (K, N, M) is convex,
EYMA(KaNaM) ZRYMA(KaNaM)a M € [ ) (23)
Plugging (23) into (20), we obtain:
R K,N,M
E(K,N,M) < IY“VfA(—) = Z(K,N,M). (24
RWOTQ[(K’ N’ M)

Now, since the upper bound =(K, N, M) is continuous and
bounded in M € [0, N), and because it is quasiconvex [22]
in M over each of the N intervals (22),° the maximum of
E(K,N,M) over each interval is attained at the boundary.
Moreover, since =(K, N, M) is constant over the last interval
[M1, Mp), we obtain that

max &(K,N,M) < maXH(K N, My). (25)
Me[o,N) eN
Notice that irrespective of K, N € Z*:
N
Z2(K,N,My)=—==1 26
( [ N) N (26)

3A linear-fractional function is always quasiconvex.

When N = 1 (i.e., only one file or only one user), In-
equalities (25) and (26) imply that (K, N,M) = 1 for all
M € [0, N), and hence our lower bound is exact. When N > 2,
then defining a := ¢/N, it can be shown [21] that for all

te{l,...,N—1}:
£/a
a(f+1) l4a
(1—a)t (1 - (Jril) )
-1
1-(1-a) Zj:() é%aj

1), combined with (26) this concludes the proof.

Z(K,N,My) < =: ¢(a, ).

Since a € [+,
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