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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We explore the interplay between interfer-
ence, cooperation and connectivity in heterogeneous wireless
interference networks. Specifically, we consider a 4-user locally-
connected interference network with pairwise clustered decoding
and show that its degrees of freedom (DoF) are bounded above
by 12

5 . Interestingly, when compared to the corresponding fully
connected setting which is known to have 8

3 DoF, the locally
connected network is only missing interference-carrying links,
but still has lower DoF, i.e., eliminating these interference-
carrying links reduces the DoF. The 12

5 DoF outer bound is
obtained through a novel approach that translates insights from
interference alignment over linear vector spaces into correspond-
ing sub-modularity relationships between entropy functions.

I. INTRODUCTION

The broadcast nature of the wireless medium gives rise to
three fundamental aspects of wireless networks.

1) Interference – among concurrent transmissions. This is
the greatest challenge faced by a wireless network.

2) Cooperation – among nodes, e.g., by relaying simul-
taneously overheard transmissions to their desired des-
tinations. This is the greatest opportunity present in a
wireless network.

3) Local Connectivity – enforced by wireless propagation
path loss, it limits the range over which signals can be
heard. Therefore, it limits both the harmful impact of
interference and the benefits of cooperation.

Understanding the complex interplay between these three
factors is essential to understanding the capacity limits of
wireless networks. In this work we seek to illuminate a few
interesting aspects of the problem by focusing on a specific
network topology that involves all three elements.

A. The Problem
The network we consider is a K user interference net-

work where transmitters 1, 2, · · · ,K wish to send independent
messages W1,W2, · · · ,WK to their respective destination
decoders 1, 2, · · · ,K over a heterogeneous two-hop network
comprised of an intermediate stage of K receive nodes. Each
source is heard by three receive nodes in its neighborhood
through noisy wireless channels. Specifically, Source k is
heard by Receivers k−1, k, k+1. Destination decoder k is able
to access each of the received signals from Receivers k and
k + 1 through orthogonal, noiseless channels, which provides
the destination decoder the opportunity for pairwise clustered

decoding, i.e., the joint processing of the two received signals
to decode its desired message. Note that clustered processing
is also of practical interest because, by definition, it limits the
scope of cooperation. The heterogeneous nature of the network
lies in the assumption of noise-free, orthogonal communication
links from the first hop receivers to the final destination
decoders, e.g., wired links of much higher capacity than the
wireless channels of the first hop, so that the bottleneck
remains the first hop. For ease of exposition – i.e., in order
to keep the network size small and to avoid edge effects at
the same time – we assume a “wrap-around” model as the
number of users is restricted to K = 4 and the user indices
are interpreted modulo 4 as shown in Fig. 1 (User 4 can be
alternatively thought of as User 0, but we prefer to number the
users as 1,2,3,4). In the full paper [8], we show that the results
reported here remain valid in an extended network of K users
without the wrap-around assumption, when K is large enough
to ignore edge-effects.

Fig. 1. 4 User Interference Channel with Pairwise Clustered Decoding

Fig. 1 shows the channel model with two kinds of links,
indicated with solid red and dashed grey lines. We distinguish
between two different connectivity settings.

1) Locally Connected: The network of Fig. 1 is locally
connected if and only if all the channel coefficients
corresponding to the solid red lines take non-zero values
while the channel coefficients for the dashed grey lines
are set to zero.

2) Fully Connected: The network of Fig. 1 is fully
connected if and only if all the channel coefficients take
non-zero values.

Problem Statement: Our goal in this paper is to explore
the DoF of the network shown in Fig. 1 — to introduce new
achievability and outer bounding techniques that might find
use in other settings as well, and to distill interesting insights
into the impact of connectivity on the DoF of the cooperative
network.



B. Prior Work
Of the vast amount of literature on cooperative wireless

networks, the most closely related to this work are references
[1], [2], [3], [4], [5]. In particular, the fully connected setting
of Fig. 1 is shown to have DoF = 8

3 in [5]. This is identical
to the 4-user SIMO (single input multiple output) interference
channel setting without clustered decoding, where each user
has one transmit and two receive antennas, and for which
it is also established that the DoF = 8/3 in [1]. While the
outer bound and achievable precoding scheme extend from
[1] to [5] in a relatively straightforward manner, the proof
of achievability of 8

3 DoF in the fully connected clustered
decoding setting of Fig. 1 is highly non-trivial, because of the
strong spatial dependencies among desired and interference
carrying channels (due to the sharing of receive antennas
among decoders). Moving beyond the fully connected setting,
clustered decoding with local connectivity is studied in [2], [3],
[4], under a variety of Wyner-type connectivity patterns and
decoding-cluster formations. However, the locally connected
setting of Fig. 1 does not fall under any of the models
addressed in these works. Furthermore, the tools used to obtain
the DoF inner bounds and outer bounds in [2], [3], [4] appear
to be insufficient to find the DoF of the pairwise clustered
decoding model of Fig. 1.

C. Contribution
Our main contribution is an outer bound on the DoF

of the locally connected setting of Fig. 1. Specifically, we
show that for every locally connected channel realization, the
interference network shown in Fig. 1, has DoF ≤ 12

5 .
Further, we show that this is the best possible DoF outer

bound that could be valid for every locally connected channel
realization, by constructing an explicit example where the
outer bound is achieved.

D. Significance
We believe the contribution is interesting for two reasons.
First, as mentioned earlier in this section, the interplay

between interference, cooperation and connectivity is of funda-
mental interest. This work illuminates some surprising aspects
of the impact of connectivity on the DoF of cooperative inter-
ference networks. Specifically, our outer bound (DoF ≤ 12

5 )
for the locally connected setting (with only solid red channels
present) is strictly lower than the result of [5] that DoF = 8

3
for the fully connected setting. This is surprising because the
missing links in the locally connected setting apparently carry
only undesired interference. Yet, removing these interference-
carrying links reduces the capacity, to the extent that even the
DoF are strictly reduced. For instance, consider the dashed
link from Transmitter 1 to Receiver 3. Since the signals
from Receiver 3 are only available to Destination decoders
2 and 3, neither of which is interested in the message W1

originating at Transmitter 1, it is somewhat surprising that
removing this dashed channel reduces the DoF. Note that in the
standard interference channel, removing interference carrying
links cannot reduce capacity at all, much less reduce the DoF.

A naive (and incorrect) explanation for the DoF loss could
be that removing an interfering link reduces DoF because
with two interfering links from the same undesired transmitter
the decoder had the opportunity to cancel interference, which
it cannot do with only one interfering link. Indeed, this is
not the case. As we show in Section V, there is no DoF
loss from removing the interfering links in a similar setting
where each decoder has access to two receive antennas with
the same local connectivity pattern but without the spatial
dependencies introduced by shared receive antennas due to
pairwise clustered decoding. Thus, the DoF outer bound is an
illuminating indicator of the complex manner in which local
connectivity impacts not only the capacity, but also the degrees
of freedom of an interference network with collaborating
nodes.

Second, the derivation of the outer bound itself follows a
novel approach relative to prior work on related problems.
While previously obtained DoF outer bounds in [2], [3], [5]
follow from a common genie-aided multiple-access channel
argument, the outer bound derived here fundamentally relies
on the sub-modularity property of entropy functions, more
commonly exploited in network coding converses [6], [7].
While the sub-modularity of entropy functions is an elemen-
tary property by itself, it is the manner in which this property is
applied that is quite insightful. Specifically, first, linear vector
space dimension counting arguments are formulated based on
the understanding of the role of interference alignment in
this problem, and then these arguments are translated into
information theoretic inequalities based on the equivalent sub-
modularity properties of vector spaces and entropy functions1.
We expect that the general insights obtained in this work will
be useful beyond the network of Fig. 1.

II. SYSTEM MODEL

We begin by specifying the assumptions for the 4-user
locally connected interference network with pairwise clustered
decoding, as shown in Fig. 1 and described in the previous
section. We assume that channel coefficients corresponding
to the solid red links in Fig. 1 are allowed to vary over
time, can take any non-zero values, and that global channel
state information (CSI) is available at all nodes. The channel
coefficients for all the dashed grey links in Fig.1 are zero, i.e.,
these channels are not present.

The symbol received at Receiver k over the nth channel
use, Yk(n), is expressed as:

Yk(n) = Hkk(n)Xk(n) + Hk,k−1(n)Xk−1(n)
+Hk,k−1Xk−1(n) + Zk(n)

where Hij(n) is the channel coefficient from Transmitter j to
first hop Receiver i, Xi is the symbol sent from Transmitter i
and Zk is the zero mean unit variance additive white Gaussian

1Due to space limitations, a description of the linear vector space alignment
arguments that provide the intuition for the information theoretic converse is
omitted here, and only the information theoretic converse is presented by
itself. A detailed description of the insights behind this approach is relegated
to the full paper [8].



noise (AWGN) signal experienced by Receiver k. The input
signals are assumed to have power ρ. Because we are inter-
ested primarily in DoF, we use ρ and SNR interchangeably.
The user index is interpreted in a cyclic wrap-around fashion.

There is pairwise clustered decoding so that the signals
Y n

1 , Y n
2 are jointly processed to decode message W1; Y n

2 , Y n
3

to decode W2; Y n
3 , Y n

4 to decode W3; and Y n
4 , Y n

1 to decode
W4.

The capacity region C(ρ) of this network is a set of
achievable rate tuples R(ρ) = (R1(ρ), . . . , R4(ρ)) such that
each user can simultaneously decode its own message with
arbitrarily small error probability. The maximum sum rate of
this channel is defined as R(ρ) = maxR(ρ)∈C(ρ)

∑4
k=1 Rk(ρ).

The capacity in the high SNR regime can be characterized
through DoF, i.e., DoF= limρ→∞ R(ρ)/ log ρ.

Notation: We use the notation o(x) to represent any function
f(x) such that limx→∞

f(x)
x = 0.

III. DOF OUTER BOUND

Theorem 1: The 4-user locally connected interference chan-
nel has DoF ≤ 12

5 for all non-zero channel realizations.
Proof: Consider the achievable rate of User 1:

nR1 ≤ I(W1; Y n
1 , Y n

2 ) + o(n) (1)
≤ I(W1; Y n

1 , Y n
2 |W2) + o(n) (2)

= h(Y n
1 , Y n

2 |W2) − h(Y n
1 , Y n

2 |W1,W2) + o(n) (3)
= h(Y n

1 , Y n
2 |W2) − n(R3 + R4 + o(log ρ)) + o(n) (4)

≤ h(Y n
1 |W2) + h(Y n

2 |W2)
−n(R3 + R4 + o(log ρ)) + o(n) (5)

≤ h(Y n
1 |W1) + h(Y n

1 |W4) − h(Y n
1 |W1,W4)

+h(Y n
2 |W2) − n(R3 + R4 + o(log ρ)) + o(n) (6)

= h(Y n
1 |W1) + h(Y n

1 |W4) − n(R2 + o(log ρ))
+h(Y n

2 |W2) − n(R3 + R4 + o(log ρ)) + o(n). (7)

Here, (1) follows from Fano’s inequality. (4) follows from
the invertibility of upper/lower triangular channel matrices
(regardless of the values of the channel coefficients as long
as they are all non-zero), which implies that from the two
output signals Y n

1 , Y n
2 , once we remove the signals due to

W1,W2, we obtain an interference-free 2× 2 MIMO channel
to transmitters 3, 4 which can be inverted to reconstruct the
signals Xn

3 , Xn
4 with noise distortion that will depend on

the channel coefficients but is independent of SNR. From
these noisy inputs, one can construct signals statistically
equivalent to the outputs (Y n

3 , Y n
4 , Y n

1 ), again within noise
tolerance that does not depend on SNR, and from these
outputs, possibly by reducing noise by an amount indepen-
dent of SNR, one can decode messages W3,W4. All these
operations only have an o(log(SNR)) impact on rate, and so
we obtain h(Y n

1 , Y n
2 |W1,W2) = h(Y n

3 , Y n
4 , Y n

1 |W1,W2) +
n o(log(SNR)) = n(R3 + R4 + o(log(SNR))) + o(n) as
in (4). (5) follows from chain rule of differential entropy
and because dropping conditioning cannot decrease differential
entropy. (6) follows from Lemma 1 shown in the Appendix.

Note that it is the use of Lemma 1 that invokes the sub-
modularity property of entropy functions. The intuition that
Lemma 1 should be applied in this manner comes from an
interference alignment perspective, to be elaborated upon in
the full paper. Finally, (7) follows from the observation that
from Y n

1 , once all interference due to W1,W4 is removed,
we obtain an interference-free AWGN channel to transmitter
2, from which W2 can be decoded subject to noise reduction
operations that only have an o(log(SNR)) impact. Therefore
h(Y n

1 |W1,W4) = n(R2 + o(log(SNR))) + o(n) as in (7).
What we have so far is the first set of bounds:

n(R1 + R2 + R3 + R4 + o(log ρ)) ≤
h(Y n

1 |W1) + h(Y n
1 |W4) + h(Y n

2 |W2) + o(n) (8)
n(R2 + R3 + R4 + R1 + o(log ρ)) ≤

h(Y n
2 |W2) + h(Y n

2 |W1) + h(Y n
3 |W3) + o(n) (9)

n(R3 + R4 + R1 + R2 + o(log ρ)) ≤
h(Y n

3 |W3) + h(Y n
3 |W2) + h(Y n

4 |W4) + o(n) (10)
n(R4 + R1 + R2 + R3 + o(log ρ)) ≤

h(Y n
4 |W4) + h(Y n

4 |W3) + h(Y n
1 |W1) + o(n) (11)

where (8) is obtained by rearranging the terms in (7) and
the remaining inequalities (9) to (11) follow by symmetry by
simply cyclically advancing the user indices.

Next we obtain the second set of bounds:

nR1 ≤ I(Y n
1 , Y n

2 ; W1) + o(n) (12)
= h(Y n

1 , Y n
2 ) − h(Y n

1 , Y n
2 |W1) + o(n) (13)

= h(Y n
1 , Y n

2 ) − I(Y n
1 , Y n

2 ; W2|W1)
−h(Y n

1 , Y n
2 |W1,W2) + o(n) (14)

≤ h(Y n
1 , Y n

2 ) − I(Y n
1 ; W2|W1)

−n(R3 + R4 + o(log ρ)) + o(n) (15)
= h(Y n

1 , Y n
2 ) − h(Y n

1 |W1) + h(Y n
1 |W1,W2)

−n(R3 + R4 + o(log ρ)) + o(n) (16)
= h(Y n

1 , Y n
2 ) − h(Y n

1 |W1) + n(R4 + o(log ρ))
−n(R3 + R4 + o(log ρ)) + o(n) (17)

≤ 2n(log ρ + o(log ρ)) − h(Y n
1 |W1)

−n(R3 + o(log ρ)) + o(n) (18)

and again starting from (14) in an alternative fashion:

nR1 ≤ h(Y n
1 , Y n

2 ) − I(Y n
1 , Y n

2 ; W2|W1)
−h(Y n

1 , Y n
2 |W1,W2) + o(n) (19)

≤ h(Y n
1 , Y n

2 ) − I(Y n
2 ; W2|W1)

−n(R3 + R4 + o(log ρ)) + o(n) (20)
= h(Y n

1 , Y n
2 ) − h(Y n

1 |W1) + h(Y n
2 |W1,W2)

−n(R3 + R4 + o(log ρ)) + o(n) (21)
= h(Y n

1 , Y n
2 ) − h(Y n

1 |W1) + n(R3 + o(log ρ))
−n(R3 + R4 + o(log ρ)) + o(n) (22)

≤ 2n(log ρ + o(log ρ)) − h(Y n
2 |W1)

−n(R4 + o(log ρ)) + o(n). (23)



Remark: In arriving at (17) we use the substitution
h(Y n

1 |W1,W2) = n(R4 + o(log(SNR))) + o(n). This is
derived explicitly in the Appendix as Lemma 2. Similar substi-
tution is made in arriving at (22) as well. These substitutions
make use of the assumption that the mapping from messages
Wi to the codewords Xn

i is deterministic and invertible. It
is evident that this assumption does not incur any loss of
generality in our setting, where it can be argued that the
best deterministic codebook will perform at least as well as a
randomized coding scheme.

Thus, we have the second set of inequalities:

h(Y n
1 |W1) ≤ n(2 log ρ − R1 − R3 + o(log ρ)) + o(n) (24)

h(Y n
2 |W1) ≤ n(2 log ρ − R1 − R4 + o(log ρ)) + o(n) (25)

h(Y n
2 |W2) ≤ n(2 log ρ − R2 − R4 + o(log ρ)) + o(n) (26)

h(Y n
3 |W2) ≤ n(2 log ρ − R2 − R1 + o(log ρ)) + o(n) (27)

h(Y n
3 |W3) ≤ n(2 log ρ − R3 − R1 + o(log ρ)) + o(n) (28)

h(Y n
4 |W3) ≤ n(2 log ρ − R3 − R2 + o(log ρ)) + o(n) (29)

h(Y n
4 |W4) ≤ n(2 log ρ − R4 − R2 + o(log ρ)) + o(n) (30)

h(Y n
1 |W4) ≤ n(2 log ρ − R4 − R3 + o(log ρ)) + o(n) (31)

where (24), (25) are rearranged forms of (18), (23), re-
spectively, and the remaining inequalities (26) to (31) are
the symmetric versions of (24), (25) obtained by cyclically
advancing the indices.

Substituting the right-hand side of the inequalities (24) to
(31) wherever the corresponding left-hand side appears in the
inequalities (8) to (11), and adding up all the inequalities, we
obtain:

4n(R+o(logρ))≤12(2n logρ)−6n(R+o(logρ))+o(n) (32)

where R = R1 + R2 + R3 + R4. Rearranging terms, dividing
by n and taking the limit n → ∞ we have:

4R ≤ 24 log ρ − 6R + o(log ρ). (33)

Now applying the limit ρ → ∞ on the sum rate outer bound,
we have the DoF outer bound:

DoF = lim
ρ→∞

R

log ρ
≤ 12

5
. (34)

IV. A LOCALLY CONNECTED EXAMPLE WITH 12/5 DOF

The DoF outer bound shown in the previous section holds
for all locally connected channel realizations. In this section
we prove that a better outer bound is not possible in the same
sense, by providing an example of a locally connected channel
realization where 12/5 DoF are achieved.

For the locally connected 4-user interference channel we
consider in this article, consider a 5 symbol extension. So each
transmitter and receiver has access to a 5× 5 MIMO channel
over 5 time lots. Note that these MIMO channels have a diag-
onal structure due to the nature of symbol extensions. In order
to achieve 12/5 DoF, each user needs to send 3 symbols over
5 times slots. We artificially construct the channel matrices

between each transmitter Tj and each receiver Ri as follows.
The channel matrix from Tj to Ri is denoted as Hij . Here I,
O stand for the identity and zero matrices, respectively, and
the diagonal matrix G = diag([1 2 3 4 5]).

Fig. 2. The channel matrices for the artificial example

Each transmitter uses the same three beamforming vectors
w, Gw and G2w to send its three symbols u[k]

1 , u[k]
2 and u[k]

3

where w = [1 1 1 1 1]T and k is the user index. In order to
see how this scheme works, let us consider, without loss of
generality, the received signal vector at user 1.

Besides its own output Y 1 over 5 time slots, user 1 can also
access its neighboring output Y 2. Thus, user 1 is able to see a
10 dimensional space. The received signal of user 1 over the

5 time slots, y[1] =
[
Y

T
1 Y

T
2

]T
, is given by:

y[1] =

[
H11

H21

]
x[1]

︸ ︷︷ ︸
desired signal

+

[
H12

H22

]
x[2]+

[
H13

H23

]
x[3]+

[
H14

H24

]
x[4]

︸ ︷︷ ︸
interference

+z[1] (35)

where z[1] is the noise vector and x[k] is the 5 × 1 transmit
signal vector of user k which is given by:

x[k] =
[
w Gw G2w

]
︸ ︷︷ ︸

!B[k]

[
u[k]

1 u[k]
2 u[k]

3

]T

︸ ︷︷ ︸
!u[k]

. (36)

In order to preserve a 3 dimensional space for user 1’s
desired signals, we need to align the 9 interference streams (3
per interferer) into a 7 dimensional space. In other words, we
need to ensure that the rank of the following matrix HI, whose
column vectors span the space occupied by the interference,
is no larger than 7:

HI =
[

H12B[2] H13B[3] H14B[4]

H22B[2] H23B[3] H24B[4]

]
. (37)

Since the numerical values of all quantities are known, this is
easily verified. It turns out that the second and third column
vectors align in the space spanned by the fourth, fifth, seventh
and eighth column vectors.

What remains to be shown is that the 3 dimensions carrying
the three desired symbols are linearly independent with the
remaining 7 column vectors carrying interference. For this,
we prove the following matrix consisting of the ten column
vectors (eliminating the second and third column vectors of
HI which align with the remaining interference) has full rank.

H =

[
H11B

[1] Gw 0 0 0 G2w G3w G4w
H21B

[1] w Gw G2w G3w 0 0 0

]
. (38)

This is also easily verified by explicitly evaluating the
determinant of this channel matrix. Similar analysis can be
carried out to user 2, 3 and 4 due to cyclical symmetry in the
construction of channels.



V. CHANNEL CONNECTIVITY AND COOPERATION

As mentioned briefly in the introduction, we have shown
that for the network shown in Fig. 1, the locally connected
setting has strictly smaller DoF than the fully connected
setting, even though the additional channel coefficients in
the fully connected setting apparently carry only undesired
interference.

In order to take a more refined look at this phenomenon, we
investigate if the DoF loss is caused by the pairwise clustered
cooperation at the receiver side, or local channel links connec-
tivity. In Fig.3, we show an equivalent representation of the
network in Fig.1 using the style of SIMO interference channel,
but introducing spatial dependencies between some channel
coefficients. Specifically, the channel coefficient associated
with the second antenna of Receiver k is identical to that
associated with the first antenna of Receiver k + 1.

Fig. 3. 4 User Interference Channel with Cooperative Receivers

First, let us consider the impact of clustered decoding alone,
by removing the locally connected assumption. Consider the
network in Fig.3 in the fully connected setting, i.e., coefficients
of all solid and dashed links are generic and non-zero. In this
case, whether each decoder has access to two independent
receive antennas (not shared with any other decoder), or the
decoders share receive antennas as in Fig. 1, in both cases
DoF = 8/3. Thus, the spatial dependencies between channel
coefficients induced by clustered decoding (sharing of received
antennas between decoders) do not not affect the DoF of this
channel.

Second, we consider the role of local connectivity but with-
out the spatial dependencies introduced by clustered decoding.
Let us remove the dashed links in Fig.3. Again, if there are
no spatial dependencies between any channel links, then it
forms a classical SIMO interference channel with dashed links
disconnected. Interestingly, we can show that for this network,
the DoF is still equal to 8/3, in spite of the local connectivity.

Thus, we find that the spatial dependencies caused by
clustered decoding do not reduce the DoF if the channel is
fully connected. Similarly, the local connectivity does not
reduce the DoF if there are no spatial dependencies caused by
clustered decoding (shared receive antennas across decoders).
That is, individually, neither clustered decoding, nor local
connectivity causes a loss of DoF. However, as shown by the
outer bound, when taken together, the spatial dependencies
caused by clustered decoding in conjunction with the local
connectivity, translate into a DoF loss.

VI. CONCLUSION

We derived a new information theoretic outer bound on
the degrees of freedom (DoF) for a 4-user locally connected
interference channel with pairwise clustered decoding. Inter-
estingly, we found that removing interference-carrying links
decreases the DoF. The outer bound derivation incorporates
novel elements and insights that may be useful beyond the
problem considered in this work.

The DoF with generic channels (i.e., in the almost surely
sense) remain open for the locally connected 4-user inter-
ference channel with pairwise clustered decoding. For more
than 4 users and generic channels, the DoF remain open for
both the fully connected and locally connected cases with
pairwise clustered decoding, although it is known that there is
a loss of DoF relative to the corresponding SIMO interference
channel for the fully connected case. Interestingly, for more
than 4 users there is a gap between the best outer bound valid
for all non-zero channel realizations in the fully connected
case (which continues to be 2/3 DoF per user and can be
shown to be achievable for certain realizations) and smaller
outer bounds that can be shown to be valid for almost all
channel coefficients. For example, the fully connected K user
interference network with M sized clustered decoding has a
straightforward DoF outer bound of 1/2 + (M − 1)/K per
user (based on the usual multiple-access type outer bounding
arguments) that is valid for almost all values of channel
coefficients. Interestingly, this shows that the DoF per user
in the fully connected setting lose all benefits of clustered
decoding as the network size becomes large, for almost all
channel realizations. Similar DoF characterizations for generic
channel realizations in the locally connected setting remain a
challenging open problem.
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APPENDIX

Lemma 1:

h(Y n
1 |W2)+h(Y n

1 |W1,W4)≤h(Y n
1 |W1)+h(Y n

1 |W4) (39)

Proof:

h(Y n
1 |W2) + h(Y n

1 |W1,W4) (40)
= 2h(Y n

1 ) − I(W2; Y n
1 ) − I(Y1; W1,W4) (41)

≤ 2h(Y n
1 ) − I(Y1; W1,W4) (42)

= 2h(Y n
1 ) − I(Y n

1 ; W1) − I(Y1; W4|W1) (43)
≤ 2h(Y n

1 ) − I(Y n
1 ; W1) − I(Y1; W4) (44)

= h(Y n
1 |W1) + h(Y n

1 |W4) (45)

where (44) follows from (43) because I(A; B|C) ≥ I(A; B)
when A is independent of C.

Lemma 2:

h(Y n
1 |W1,W2) = n(R4 + o(log(SNR))) + o(n) (46)

Proof: We use Hij to denote the channel coefficient between
Receiver i and Transmitter j. Zi is the additive white Gaussian
noise term at Receiver i.

nR4 = H(W4) (47)
= I(W4; H14X

n
4 + Zn

1 ,H44X
n
4 + Zn

4 )
+H(W4|H14X

n
4 + Zn

1 ,H44X
n
4 + Zn

4 ) (48)
= I(W4; H14X

n
4 + Zn

1 ,H44X
n
4 + Zn

4 ) + o(n) (49)
= I(W4; H14X

n
4 + Zn

1 )
+I(W4; H44X

n
4 + Zn

4 |H14X
n
4 + Zn

1 ) + o(n) (50)
= I(W4; H14X

n
4 + Zn

1 ) + n o(log(SNR)) + o(n) (51)
= I(W4; Y n

1 |W1,W2) + n o(log(SNR)) + o(n) (52)
= h(Y n

1 |W1,W2) − h(Y n
1 |W1,W2,W4)

+n o(log(SNR)) + o(n) (53)
= h(Y n

1 |W1,W2) − h(Zn
1 ) + n o(log(SNR))+o(n) (54)

= h(Y n
1 |W1,W2) + n o(log(SNR)) + o(n) (55)

where (49) follows from Fano’s inequality, (52) follows from
the assumption of deterministic and invertible mapping from
messages to codewords. Note that o(log(SNR)) terms in this
set of equations can be described more tightly as O(1) terms,
i.e., bounded terms that do not increase with SNR. However,
for our purpose, since we are primarily interested in the DoF,
it suffices to highlight only their o(log(SNR)) character.


