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Abstract—We consider a lossless multi-terminal source coding
problem with one transmitter, two receivers and side information.
The achievable rate region of the problem is not well understood.
In this paper, we characterise the rate region when the side
information at one receiver is conditionally less noisy than the
side information at the other, given this other receiver’s desired
source. The conditionally less noisy definition includes degraded
side information and a common message as special cases, and
it is motivated by the concept of less noisy broadcast channels.
The key contribution of the paper is a new converse theorem
employing a telescoping identity and the Csiszár sum identity.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider the multi-terminal source coding problem shown
in Fig. 1. A discrete memoryless source emits an independent
and identically distributed (iid) sequence of correlated random
variables (X,Y, U, V ). The Transmitter observes the (X,Y )-
component, Receiver 1 observes the U -component, and Re-
ceiver 2 observes the V -component. The Transmitter jointly
compresses X and Y to a binary stream of rate R, and it sends
this stream over a noiseless channel to both receivers. We wish
to determine the smallest rate, R∗, at which Receivers 1 and 2
can reliably recover the X and Y -components respectively.

The described problem is a special case of the rate-distortion
functions in [1], [2]. Single-letter expressions for R∗ are
known in the following three special cases: (i) equal source
components X = Y [8]; (ii) complementary side information
U = Y and V = X [3]; and (iii) degraded side information
(X,Y )(−−U(−−V [1].

In this paper, we determine R∗ for the case where
H(Y |U) ≤ H(Y |V ) and the side information U at Receiver 1
is conditionally less noisy than the side information V at
Receiver 2 given Y . Our definition of conditionally less noisy
side information includes (i) and (iii) as special cases. The
definition is motivated by the less noisy condition for discrete
memoryless broadcast channels [4], [5]. The key contribution
of the paper is a new converse theorem for this class of
sources. The converse makes use of a telescoping identity [6]
and the Csiszár sum identity [5, Sec. 2.3].

We now describe the problem statement more formally. Let
X , Y , U and V denote the finite alphabets of X , Y , U and
V respectively. We identify the n-fold Cartesian product of
these alphabets using boldfaced notation; for example, X is
the n-fold product of X .
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Fig. 1. Almost lossless source coding with side information at two receivers.

Let

(X,Y ,U ,V ) , (X1, Y1, U1, V1), (X2, Y2, U2, V2),

. . . , (Xn, Yn, Un, Vn)

be a string of n-iid drawings of (X,Y, U, V ). An n-blockcode
consists of three (possibly stochastic) maps

f : X ×Y →M (1a)
g1 :M× U → X (1b)
g2 :M× V → Y , (1c)

where M is a finite set whose cardinality depends on n. The
Transmitter sends M , f(X,Y ), Receiver 1 decodes X̂ ,
g1(M,U), and Receiver 2 decodes Ŷ , g2(M,V ).

A rate R ≥ 0 is said to be achievable if for each ε > 0 there
exists a code (f, g1, g2) for some sufficiently large n such that

1

n
log |M| ≤ R+ ε

and

P
[
X̂ 6= X or Ŷ 6= Y

]
≤ ε.

Let

R∗ , inf
{
R ≥ 0 : R is achievable

}
.



II. PREVIOUS RESULTS AND LESS NOISY SETUPS

The best achievability result (upper bound to R∗) can be
distilled from [1], [2], [7] and is summarised next.

Lemma 1 (Achievability): We have

R∗ ≤ min
[
max

{
I(X,Y ;W |U), I(X,Y ;W |V )

}
+H(X|W,U) +H(Y |W,V )

]
,

where the minimisation is taken over every discrete finite aux-
iliary random variable W jointly distributed with (X,Y, U, V )
such that

W(−−(X,Y )(−−(U, V ).

The upper bound in Lemma 1 is known to be tight in the
following three special cases.

Proposition 1 (Previous Optimality Results):
(i) If X = Y , then [7]–[9]

R∗ = max
{
H(X|U), H(X|V )

}
.

(ii) If U = Y and V = X , then [3], [9], [10]

R∗ = max
{
H(X|Y ), H(Y |X)

}
.

(iii) If (X,Y )(−−U(−−V is a Markov chain, then the side
information is said to be degraded and [1], [2]

R∗ = H(Y |V ) +H(X|Y, U). (2)

Remarks:
(i) The rate R∗ depends on the joint distribution of (X,Y,

U, V ) only via the marginal distributions of (X,Y, U)
and (X,Y, V ).

(ii) The side information is said to be stochastically de-
graded if the joint pmf of (X,Y, U, V ) is such that
there exists some (X ′, Y ′, U ′, V ′) with degraded side
information and marginals (X ′, Y ′, U ′) and (X ′, Y ′, V ′)
matching those of (X,Y, U) and (X,Y, V ). Proposi-
tion 1, (iii), generalises to stochastically degraded side
information by the previous remark.

Definition 1: We say that U is conditionally less noisy than
V given Y if

I(C;U |Y ) ≥ I(C;V |Y )

holds for every discrete auxiliary random variable C jointly
distributed with (X,Y, U, V ) such that

C(−−(X,Y )(−−(U, V ).

The next lemma shows that cases (i) and (iii) of Proposi-
tion 1 satisfy our conditionally less noisy Definition 1. The
lemma is proved in Section IV.

Lemma 2: If
(i) X(−−Y(−−V or

(ii) (X,Y )(−−U(−−V ,
then U is conditionally less noisy than V given Y .

The Markov condition in (i) is more general than the equal
source components X = Y assumption of Proposition 1, (i).
It is also quite natural in practice as it implies, in some sense,
that V is closer to Y than it is to X; for example, V might be
an old version of Y . The Markov condition in (ii) is precisely
that used to define degraded side information.

Definition 1 is motivated by the less noisy condition for
discrete memoryless broadcast channels [4], [5]. Recently,
Villard and Piantanida [11] introduced a less noisy condition
for information-theoretic security for source coding. In our
notation, their less noisy condition is expressed as follows: U
is said to be less noisy than V if [11]

I(C;U) ≥ I(C;V )

holds for all C satisfying C(−−(X,Y )(−−(U, V ). Notice
that this requirement implies, for example, that H(Y |U) ≤
H(Y |V ) and H(X|U) ≤ H(X|V ). In contrast, our con-
ditional less noisy definition implies, for example, that
H(X|Y,U) ≤ H(X|Y, V ).

The next example shows that conditionally less noisy does
not imply degraded or less noisy.

Example 1: Let X and U be independent Bernoulli-p and
Bernoulli-q random variables, for p, q ∈ (0, 0.5). Let Y =
V = X ⊕U . Then, X(−−Y(−−V and by Lemma 2, (i), U is
conditionally less noisy than V given Y . In contrast, the setup
is not degraded, stochastically degraded or less noisy. To see
this last fact, choose C = Y to obtain I(C;V ) = H(Y ) and
I(C;U) = H(Y )−H(Y |U) = H(Y )−H(X).

III. MAIN RESULT

The main results of this paper are summarised next in
Lemma 3 and Theorem 1. Lemma 3 is proved in Section IV.

Lemma 3 (Converse): If U is conditionally less noisy than
V given Y , then

R∗ ≥ H(Y |V ) +H(X|Y, U).

Theorem 1: If U is conditionally less noisy than V given
Y and H(Y |U) ≤ H(Y |V ), then

R∗ = H(Y |V ) +H(X|Y,U).

Proof: Lemma 1 and Lemma 3 together characterise
R∗ for those conditionally less noisy sources with H(Y |U) ≤
H(Y |V ). To see this, choose W = Y in Lemma 1 to get

R∗ ≤ max{H(Y |U), H(Y |V )}+H(X|Y,U). �

The theorem recovers the result for degraded side informa-
tion in (2), because by Lemma 2, (ii), this setup satisfies the
conditionally less noisy definition and by the data-processing
inequality we have H(Y |U) ≤ H(Y |V ).

Example 2: Let Y, Z be independent Bernoulli 1/2 and 1/3
random variables. Let X = Y ⊕ Z. Let U and V be the
outcomes of passing Y through a BEC(2/3) and a BSC(1/4)
respectively, see Fig. 2. By Lemma 2, (i), the example satisfies
the conditionally less noisy definition 1. Moreover, H(Y |U) =
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Fig. 2. Binary channels defining the side information in Example 2: (a)
Binary Erasure Channel (BEC) with erasure probability 2/3; and (b) Binary
Symmetric Channel (BSC) with crossover probability 1/4.

2/3 is smaller than H(Y |V ) = Hb(1/4) ≈ 0.8113, where
Hb(·) denotes the binary entropy function. Therefore, the
result in Theorem 1 applies, and

R∗ = Hb(1/4) +Hb(1/3).

This result does not follow from Proposition 1, (iii), because
2/3 > 1/2 and thus the side information U and V is not
(stochastically) degraded with respect to Y [5, p. 121], [12],
and hence with respect to (X,Y ).

IV. PROOF OF LEMMAS 2 AND 3
A. Lemma 2

(i) Suppose that V(−−Y(−−X is a Markov chain. Consider
any C for which C(−−(X,Y )(−−(U, V ). We have

0 ≤ I(C;V |Y )

= H(V |Y )−H(V |C, Y )

(a)

≤ H(V |X,Y )−H(V |C,X, Y )

= I(C;V |X,Y )

(b)
= 0,

where (a) follows from V(−−Y(−−X and (b) follows
from C(−−(X,Y )(−−(U, V ). Thus, I(C;V |Y ) = 0 and
as a consequence is no larger than I(C;U |Y ). �

(ii) Suppose that (X,Y )(−−U(−−V is a Markov chain.
Consider any C for which C(−−(X,Y )(−−U(−−V . We
have

I(C;V |Y ) ≤ I(C;U, V |Y )

≤ I(C;U |Y ) + I(C;V |Y, U)

= I(C;U |Y ). �

B. Lemma 3
We will make use of the following telescoping identity: for

arbitrarily distributed (A1, B1), (A2, B2), . . . , (An, Bn) we
have [6, Sec. G]

n∑
i=1

I(Ai
1;B

n
i+1) =

n∑
i=1

I(Ai−1
1 ;Bn

i ). (3)

A consequence of (3), which will also be useful, is the
classic Csiszár sum identity [5, Sec. 2.4]

n∑
i=1

I(Ai;B
n
i+1|Ai−1

1 ) =

n∑
i=1

I(Bi;A
i−1
1 |Bn

i+1). (4)

Suppose that U is conditionally less noisy than V given Y
and (f, g1, g2) has a joint error probability P[X̂ 6= X or Ŷ 6=
Y ] ≤ ε. We have

R+ ε ≥ 1

n
log |M|

≥ 1

n
H(M)

≥ 1

n
H(M |V )

≥ 1

n
I(X,Y ;M |V)

=
1

n

[
I(Y ;M |V ) + I(X;M |Y ,V )

]
=

1

n

[
H(Y |V )−H(Y |M,V ) + I(X;M |Y ,V )

]
(a)

≥ H(Y |V )− ε(n, ε) + 1

n
I(X;M |Y ,V ), (5)

where (a) follows from the fact that the tuples Y ,V are iid,
from Fano’s inequality and

ε(ε, n) ,
h(ε)

n
+ ε log |X × Y|.

Consider the conditional mutual information term in (5). We
have

I(X;M |Y ,V )

= H(M |Y ,V )−H(M |X,Y ,V )

(a)
= H(M |Y ,V )−H(M |X,Y ,U)

= H(M |Y )− I(M ;V |Y )−H(M |X,Y ,U)

= H(M |Y ,U) + I(M ;U |Y )− I(M ;V |Y )

−H(M |X,Y ,U)

= I(X;M |Y ,U) + I(M ;U |Y )− I(M ;V |Y )

= I(X;M |Y ,U) + I(M ;Y ,U)− I(M ;Y ,V )

= H(X|Y ,U)−H(X|M,Y ,U) + I(M ;Y ,U)

− I(M ;Y ,V )

(b)

≥ nH(X|Y, U)− ε(n, ε) + I(M ;Y ,U)

− I(M ;Y ,V ), (6)

where (a) follows because M(−−(X,Y )(−−(U ,V ); and (b)
follows from the fact that X,Y ,U are iid and from Fano’s
inequality.

Consider (5) and (6). If it were the case that

I(M ;Y ,U)− I(M ;Y ,V ) ≥ 0, (7a)

or, equivalently,

I(M ;U |Y )− I(M ;V |Y ) ≥ 0, (7b)

then (6) would imply that R + ε can be further lower bound
by

H(Y |V ) +H(X|Y,U)− 2ε(n, ε),

which would complete the converse since 2ε(n, ε) → 0 as
ε→ 0. Since

M(−−(X,Y )(−−(U ,V )



is a Markov chain, the inequality (7) is a multi-letter condi-
tionally less noisy condition. To complete the converse, we
convert (7) into a single-letter form by constructing a discrete
auxiliary random variable C such that C(−−(X,Y )(−−(U, V )
and

I(M ;Y ,U)− I(M ;Y ,V ) = n (I(C;Y,U)− I(C;Y, V )) .

The inequality (7) will then follow directly from Definition 1.

Using the telescoping identity (3), we first expand the
mutual information I(M ;Y ,U):

I(M ;Y ,U)

=

n∑
i=1

[
I(M,V n

i+1, Y
n
i+1;U

i
1, Y

i
1 )

− I(M,V n
i , Y

n
i ;U i−1

1 , Y i−1
1 )

]
=

n∑
i=1

[
I(Ui, Yi;M,V n

i+1, Y
n
i+1|U i−1

1 , Y i−1
1 )

− I(Vi, Yi;U i−1
1 , Y i−1

1 |M,V n
i+1, Y

n
i+1)

]
=

n∑
i=1

[
I(Ui, Yi;M,U i−1

1 , V n
i+1, Y

i−1
1 , Y n

i+1)

− I(Vi, Yi;U i−1
1 , Y i−1

1 |M,V n
i+1, Y

n
i+1)

]
=

n∑
i=1

[
I(Ui, Yi;Ci)

− I(Vi, Yi;U i−1
1 , Y i−1

1 |M,V n
i+1, Y

n
i+1)

]
, (8)

where we have set

Ci = (M,U i−1
1 , V n

i+1, Y
i−1
1 , Y n

i+1).

Using the same telescoping identity, we now expand the
mutual information I(M ;Y ,V ) in the other direction:

I(M ;Y ,V )

=

n∑
i=1

[
I(M,U i−1

1 , Y i−1
1 ;V n

i , Y
n
i )

− I(M,U i
1, Y

i
1 ;V

n
i+1, Y

n
i+1)

]
=

n∑
i=1

[
I(Vi, Yi;M,U i−1

1 , Y i−1
1 |V n

i+1, Y
n
i+1)

− I(Ui, Yi;V
n
i+1, Y

n
i+1|M,U i−1

1 , Y i−1
1 )

]
=

n∑
i=1

[
I(Vi, Yi;M,U i−1

1 , V n
i+1, Y

i−1
1 , Y n

i+1)

− I(Ui, Yi;V
n
i+1, Y

n
i+1|M,U i−1

1 , Y i−1
1 )

]
=

n∑
i=1

[
I(Vi, Yi;Ci)

− I(Ui, Yi;V
n
i+1, Y

n
i+1|M,U i−1

1 , Y i−1
1 )

]
. (9)

Subtract (9) from (8) and divide by n to get
1

n

[
I(M ;Y ,U)− I(M ;Y ,V )

]
=

1

n

n∑
i=1

[
I(Ci;Ui, Yi)− I(Ci;Vi, Yi)

+ I(Ui, Yi;V
n
i+1, Y

n
i+1|M,U i−1

1 , Y i−1
1 )

− I(Vi, Yi;U i−1
1 , Y i−1

1 |M,V n
i+1, Y

n
i+1)

]
(a)
=

1

n

n∑
i=1

[
I(Ci;Ui, Yi)− I(Ci;Vi, Yi)

]
(b)
= I(C;U, Y )− I(C;V, Y )

(c)

≥ 0, (10)

where (a) follows from the Csiszár sum identity (4); (b)
follows from standard time-sharing and cardinality-bounding
arguments in which C is a discrete finite auxiliary random
variable with C(−−(X,Y )(−−(U, V ); and (c) follows from
Definition 1. This establishes the desired Inequality (7). �

V. EXTENSION TO THREE RECEIVERS

We now extend1 the setup in Fig. 1 to include a third source
component Z and a third receiver, see Fig. 3. Let

(X,Y ,Z,U ,V ) , (X1, Y1, Z1, U1, V1),

. . . , (Xn, Yn, Zn, Un, Vn)

denote n-iid drawings of arbitrarily distributed discrete finite
alphabet random variables (X,Y, Z, U, V ). Suppose that Re-
ceiver 1 requires lossless copies of X and Z; Receiver 2
requires lossless copies of Y and Z; and Receiver 3 requires
a lossless copy of Z. A code (f, g1, g2, g3) for this setup is
defined analogously to (1). Let (X̂, Ẑ1), (Ŷ , Ẑ2) and Ẑ3

denote the reconstructions at receivers 1, 2 and 3 respectively.
A rate R ≥ 0 is achievable if there exists a sequence of codes
with rate approaching R and vanishing joint error probability.
Let R† denote the smallest achievable rate. The setup of Fig. 1
can be recovered by choosing Z to be constant. The next
lemma is a generalisation of Lemma 3.

Lemma 4 (Converse): If U is conditionally less noisy than
V given (Y,Z), then

R† ≥ H(Z) +H(Y |V,Z) +H(X|U, Y, Z).

Proof: The proof mirrors that of Lemma 3. Specifically,

R+ ε ≥ 1

n
H(M)

≥ 1

n

[
I(M ;Z) +H(M |Z)

]
(∗)
≥ 1

n

[
H(Z)− nε†(n, ε) +H(M |Z,V )

]
≥ 1

n

[
H(Z) + I(X,Y ;M |Z,V )

]
− ε†(n, ε)

1The extension to three receivers was motivated by the three receiver
broadcast channel with degraded message sets [13], [14].
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Fig. 3. (Almost) lossless source coding with three receivers.

≥ 1

n

[
H(Z) + I(Y ;M |Z,V )

+ I(X;M |Y ,Z,V )
]
− ε†(n, ε)

(∗)
≥ 1

n

[
H(Z) +H(Y |Z,V )

+ I(X;M |Y ,Z,V )
]
− 2ε†(n, ε)

= H(Z) +H(Y |Z, V )

+
1

n
I(X;M |Y ,Z,V )− 2ε†(n, ε)

(11)

where both steps marked with a (*) use Fano’s inequality and
have ε†(n, ε) vanishing as n→∞ and ε→ 0. The conditional
mutual information term in (11) takes the same form as that
in (5), with (Y ,Z) in place of Y . In particular, repeating the
steps leading to (6), we obtain

I(X;M |Y ,Z,V ) ≥ nH(X|Y,Z, U)− ε†(n, ε)
+ I(M ;Y ,Z,U)− I(M ;Y ,Z,V ). (12)

To complete the converse, we need only prove the inequality

I(M ;Y ,Z,U)− I(M ;Y ,Z,V )

= I(M ;U |Y ,Z)− I(M ;V |Y ,Z)

≥ 0.

As before, this inequality is a multi-letter version of the
conditional less noisy definition. We can transform it into a
single-letter form by using the telescoping identity (3) and the
Csiszár sum identity (4) and by choosing

Ci = (M,U i−1
1 , V n

i+1, Y
i−1
1 , Zi−1

1 , Y n
i+1, Z

n
i+1). �

The next achievability result can be easily distilled from [2,
Thm. 2]. We omit the details.

Lemma 5:

R† ≤ min
[
I(X,Y, Z;W123) + I(X,Y, Z;W12|W123)

−min
{
I(W12;U |W123), I(W12;V |W123)

}
+ I(X,Y, Z,W12;W13|W123)

+ I(X,Y, Z,W12,W13;W23|W123)

−min
{
I(W23;W12, V |W123), I(W23;W13|W123)

}

+H(X|W123,W12,W13, U)

+H(Y |W123,W12,W23, V )

+H(Z|W123,W13,W23)
]
,

where the minimisation is taken over all discrete finite aux-
iliary random variables (W123,W12,W13,W23) for which
(W123,W12,W13,W23)(−−(X,Y, Z)(−−(U, V ).

The next, and final, result of the paper is a generalisation
of Theorem 1 to three receivers.

Theorem 2: If U is conditionally less noisy than V given
(Y, Z) and H(Y |U,Z) ≤ H(Y |V,Z), then

R† = H(Z) +H(Y |Z, V ) +H(X|Y,Z, U).

Proof: The upper bound of Lemma 5 is equal to the lower
bound of Lemma 4 on selecting W13 and W23 to be constant,
W123 = Z and W12 = (Y, Z).
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