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Abstract—A coding scheme for the discrete memoryless broad- transmitter exploits feedback to identify information fuse
cast channel with (possible noisy) feedback is proposed, drthe  for decoding, and describes this information efficiently on
corresponding achievable region derived. The scheme is b subsequent transmissions, thereby improving the reagiver

on a block-Markov strategy where in each block the transmiter .
sends fresh data and update information that allows the redeers observed channel outputs. To this end, a block-Markov-strat

to improve the channel outputs observed in the previous bidc €9y is adopted, where in each block the transmitter sends a
The region is analyzed for two specific broadcast channels:)1 combination of fresh data and compressed update informatio
A generalization of Dueck’s channel, where it is shown thatdr  pertaining to the previous block, using a no-feedback code.
noiseless output-feedback the region coincides with the pacity |y itively, this approach may be beneficial if a large pdrt o
region; 2) A noisy version of Bla}ckwells channel, yvhere it $ the update information is common to both receivers
shown that for noiseless — and in some cases noisy — output- P ’ ) o
feedback, the region improves upon the no-feedback capagit ~ 1he region achieved by our feedback scheme is shown to
region. exceed the no-feedback capacity region for some DMBCs
with noisy or noiseless feedback: A generalization of Digeck
DMBC is discussed in Subsection VI-A, and a noisy version
We consider a broadcast setup where a single transmitbéBlackwell's DMBC [9] in Subsection VI-B.
communicates with two receivers, and where the transmitter
has access to a feedback signal. Specifically, we study the ) i )
capacity region of the discrete memoryless broadcast etann e describe the channel model in more detail. The goal of
(DMBC) with generalized feedbackGeneralized feedback the communication is that the tran_smltter conveys a private
refers to a scenario where the feedback signal can be moddygFsageM: to a Receiver 1, a private Messagé; to a
as observing the DMBC'’s inputs and outputs through a discrdt€ceiver 2, and a common messaig to both receivers.
memoryless channel. Special cases of generalized feedback! N€ three messagesly, M;, and M, are assumed to be
noiseless/noisy output-feedbagioiseless/noisy feedback forindependent and uniformly distributed over the finite sets

short), where the transmitter observes a noiseless/neisjon {1,. S [27fe [}, {1, (200 ]}, and {1, 277 ]} re-
of the receivers’ channel outputs. spectively, wheren denotes the blocklength anly, R, R2

Most previous results on the DMBC with feedback focu@re the corr.esp_onding common and private trapsmissioa.rate
on noiseless feedback. El Gamal [4] proved that for phylsical Communication takes place over a DMBC with generalized
degraded DMBCs the noiseless-feedback capacity coincidggdback. This channel is characterized by a quadrupleit fin
with the no-feedback capacity. In contrast, Dueck [7] ar@Phabetst, V1,)», andy, and a conditional probability law
Kramer [8] showed by the way of examples that for othefy,yv,7|x (¥1: 42, ylx) wherex € X, y1 € V1, y2 € Jb, and
DMBCs the noiseless-feedback capacity can exceed the go= Y. Given that at time the transmitter feeds the symbol
feedback capacity. x¢ to the channel, then Receiver 1 and Receiver 2 observe the

Determining the feedback capacity of the DMBC is still aghannel outputg; ; € V1 andy.; € V> respectively and the
open problem. In fact, it is even unknown whether feedbattansmitter observes the generalized feedback ), with
increases the capacity region of a general (non-physicalmobabilityPYIYJ‘X(ylyt,ygyt,g7t|xt).
degraded) DMBC. This is partly because even the no-feedback hanks to feedback, the transmitter can produce its time-
capacity region is generally unknown, and partly since @annel inputX; as a function of the Messagéd,, M1, Ms

computable single-letter achievable region for the DMB@nd of the previously observed feedback outpﬂ'fs‘l def

|I. INTRODUCTION

II. CHANNEL MODEL

with feedback is missing. Kramer [8] proposed a multi-lettqy; ... v, ;) :
achievable region for the DMBC with noisy or noiseless (n) ~
feedback. X, = ¢} (Mo,ﬂfl,]WQ,Yt’l) . L

.In this Paper We propose a coding scheme for th? DMBﬁwe DMBC and its feedback channel are memoryless which is
with generalized feedback, and present a correspondigtesin captured by the following Markov relation fare {1,...,n}:

letter achievable region. Our approach is motivated by Rsec ~ -
example [7], and is based on the following high-level idelae T (VLY Vi) o Xy —o— (Yig, You, Vi)



Wherer*1 def (Yi1,Yio,..., Y1), forie {1,2}. such that (Uy, Uy, Us)——X——(Y7,Ys) forms a Markov
After n channel uses Rece|ver i decodes its intended mehain.
sagesM, and M; for ¢ € {1,2}. Namely, Receivef produces

the guess: B. Lossy Gray-Wyner Coding with Side Information

R R ) o _ Let {(X, Y14, Y2,)} ), be ani.i.d. sequence of triplets of
(Mo,i, M;) = @, (Y;"), i€{l,2}. (2)  discrete random variables, with marginal distributiBgy, y,
A rate triplet(Ro, Ry, R,) is called achievable if for every We consider a setting where a sender observes the se-
blocklength n there exists a set oh encoding functions quenceX™, Receiver 1 observes the side-informatiby,
(n) and two decoding funct|on®(”) and @ (") such and Receiver 2 observes the side-informafigh The sender

can noiselessly communicate with the receivers by sending
that the probab|I|ty of decoding error, i.e., the probapithat a common message from the sgt,...,[2"R0|} to both
(Mo, My) # (Mo, My) or (Mo, My) # (M2, M), receivers, a private message from the §et..., [2"F )
to Receiver 1 only, and another private message from the
set{1,...,[2""2]} to Receiver 2 only. Fix two conditional

t)t: the setl_of (;’:u;hledvsbli rate t_ftlp|e(§_%of,1tR;1_1,R22 IS ca:]IIed distributionsPy, | x and Py, x. The goal of the communication
€generalized-teedback capacity regiontnis Setup, and We i 1 angyre that for a giveh> 0, Receiver; can construct a

dﬁnOtﬁ.it bﬁCIGQ”F? Tthelst[Jpr_emulrln ((j)f_the Sumﬁl ti}fb %\éer ksequencé/i” such that X™, V") € T;*(Pxy;) for i € {1,2},
all achievable rate triplets is called igeneralized-teedback, i, 5 probability of failure no larger than. A rate triplet

sum-rate capacityand we denote it by cenrgs.
The described generalized-feedback setup includes as s ?g;r?eld {/zvithgsasglistz Eewachlevable if that goal can be

cial cases thano-feedbacksetup where the feedback outputs

are deterministic, e.g|)| = 1; the noiseless-feedbacsetup Theorem 2. A nonnegative rate tripletRy, 1, R2) is achiev-
where the feedback output coincides with the pair of chanradle for the lossy Gray-Wyner problem with side information
outputs, i.e.,Y = (¥1,Y3); and thenoisy-feedbacksetup above, if it satisfies

where the feedback outputs and the channel inputs and sutput ) ‘

satisfy the Markov relationX;——(Y; ;, Ys;,)——Y; for all FRo > max I(X; VolYs),

tends to 0 as the blocklengthtends to infinity. The closure

t € {1,...,n}. In these special cases, we denote the sum- Ry > I(X;V1|Vo, Y1)
rate capacities beoFB,Za CNoiseIessFBZa and CNoisyFB,Z- Ry > [(X; V2|VO, Y2) (3)
IIl. PRELIMINARIES where (Vy, Vi, Va)——X ——(Y1, Y,) forms a Markov chain.

Our generalized-feedback scheme appearing in Section V B
has two main building blocks: The Marton's scheme forroof We outline the construction, see [10] for details.
the DMBC without feedback [6], [12], and a source-codin 1) CodebookngfrjgtatlonIndependently generate che-
scheme for a lossy version of the Gray-Wyner problem Wl\ﬂ\ ooks C; with 2 codewords by randomly drawing
side-information (see [2], [3] for the lossless case). lis th® | the entries of the codebook i.l.d. according By, for
section, we review the region achieved by Marton’s schente S ﬁR {0,1,2} respectively. I:grtmon each codebodk into
and present an achievable region for the lossy Gray-Wy ' blns each containing™™ codewords. All codebooks

problem. We outline the coding scheme achieving this reglogscg\/lzralle?otro teh?ls(;r}lder Codebofs C:} are revealed to
(3

We use the notion of strong typicality as defined in [1]. .
For a distributionPx over a finite alphabet’, we denote by 2) Lossy Gray-Wyner Encoder.The_ sender observes
a sequenceX™, and looks for a triplet of codewords

75" (Px) the set of alln-length sequences® € A™ that ares- o Trm n "
strongly-typical with respect to (w.r.t.) the laRy. Similarly, (V;? VI V') € _CO x €1 X Cy, such that(X™, V', V; ) €
for a law Py, ...x, over a product alphabet; x - -- x X}, we 7" (Pxvyv;) for i € {1,2}. It then sends the index, of

n ) the bin containing/;* over the common link, and the indices
de:ote bﬂ (P)ff"'x’“ )nthe set of.a_llk tuples of sequences J1, Jo of the bins coontaining/” and V3* over the respective
(€ &7, ...z} € X)) that arejointly J-strongly typical 1 . . Il 2 .

WLt Py,.x, . private _Imks. tf no such triplet of codewords (_eX|sts, thader
transmits arbitrary messages, and an error is declared.
A. Marton’s Achievable Region for the BC without Feedback 3) Lossy Gray-Wyner DecoderReceiver i observes the
Theorem 1 (From [6], [12]). A nonnegative rate triplet side-informationy;”, the common messagk and the private
(Ro, Ry, Ry) is achievable over the DMBC without feedbacknessage/;. It seeks a codeworizi’o in the Jo-th bin of code-
if it satisfies bookCy and a codeword/" in the J;-th bin of codeboolC;,
) such that(V0 ,V” Yy e T"(Pyomlfi) If exactly one sugh
pair of codewords exists, Receiver i outp#i8. Otherwise, it
Ro+ Ry < I(Uy,Up; Y1) outputs an arbitrary sequence and an error is declared.
Ro+ Ry < I(Uy, Us; Ya) 4) Analysis Outline:We writevyith high ptc_)bability (w.h.p)
Ro+ Ry + Ro < I{Uy: Yi|Us) + I(Us: Ya|Us) to indicate a statement holds with probability 1 asn — oco.
02 14110 2 22170 By the covering Lemma [11], iR} + Ry > I(X;V;) then
+H1i1HI(U0, Yi) = I(Uy; Ua|Uy) w.h.p. the sender can findij* € Cy jointly typical with

Ry < min I(Uo,



X™. Given that, and invoking the covering Lemma agair(lp, V1, Va)——(X, }7)+(Y1,}/2,U0,U1,U2) are Markov
if R, + R, > I(V;; X, V,) then w.h.p. the sender can findchains. LetRiner be the closed convex hull ®Rinner.
V" € C; jointly typical with (X™, Vg"). By the conditional

typicality Lemma [11] we have that w.h.{Vi, Vo, ;") Theorem 4. The capacity region of the DMBC with general-

are jointly typical. Therefore, by the packing Lerlnma [11]',26‘d feedback satisfies
if Ry < I(Vp;Y;) then w.h.p.V{* is the only codeword in Rinner € Caenre

the Jp-th bin of codebookC, that is jointly typical with ) )
Y. Given that, and invoking the packing Lemma again, ffroof. The proof is based on the feedback scheme discussed

R! < I(Vi;: Vp,Y;) then w.h.pV" is the only codeword in the in the next subsection, which concatenates Marton's nefeed

J;-th bin of codeboolk’; that is jointly typical with(V;", Y;»). back scheme with the lossy Gray-Wyner scheme of Subsec-
Hence, w.h.p. Receiver i will output™ as desired. The resulttion Ill-B. When analyzing this concatenated random coding

follows by combining the bounds and using Markovity. m Scheme, special attention should be paid to the fact thaesom
of the sequences involved are not i.i.d., but only satisfy a

IV. MOTIVATION: DUECK’S EXAMPLE weaker joint typicality condition with high probability. df
Our feedback scheme in Section V-B is motivated bgetails, see [10].
Dueck’s scheme in [7]. Dueck considered the following ]

DMBC. The channel inputs consist of triplets of bil§ = .
(X1, Xo, X») and the outputs of pairs of bit§ = (Y11, Y1) B. Feedback-Scheme for the DMBC (Outline)
andY; = (Y20, Y22). The channePy, y,| x is described as: Inspired by Dueck’s scheme, we propose the following
scheme for DMBCs with generalized feedback. Our scheme is
Y10 ="Y20 = Xo, based on a Block-Markov strategy (as depicted in Figure 1).
Yiin=X1862Z, and Yi2=X20 7, This means, the blocklength is divided into (B + 1)
blocks of lengthn’ each, and in each block the trans-
mitter sends to both receivers a combination of fresh data
(Mo p, M1, M2 ) and update information from the previous
plock (Jop—1,J1.b-1,J2.5—1). Exceptions are the first block
where only fresh data is sent, and the last block where only
update information is sent (see Figure 1).
Ro+Ri+ R < 1. The receivers wait until the reception of the last block
and then apply the following backward decoding strategy. In
a first step, Receivet, for i € {1,2}, decodes the update
Theorem 3 (Dueck [7]) The noiseless feedback capacity dhformation sent to it in the last blocB+1, i.e., (Jo.5, Ji.B)-
Dueck’s DMBC is given by the set of all nonnegative rat the sequel it performs the following iterative decoditeps,
triplets (R, R1, R2) satisfying starting from the second to last block and ending with the
first block. In each block € {1, ..., B}, Receiver i first uses
Ro+R <1 and  Ro+Ry<l the previously decoded upéate infor};nati()h)_,b, Jip) —ina
The noiseless-feedback capacity is achieved by the followay to be explained shortly — to improve its observed channel
ing simple scheme of blocklengtfn + 1). In the firstn outputsYi?b/ = (Yi,(=1)n'+1,- - -» Yipnr ), @nd based on these
channel uses the transmitter uses Inguts ,} and{X.,} to improved outputs it then decodes the fresh datk ;, M, ;)
send lossless descriptions of the Message faifs 1) and and the update informatiof/y 51, J; »—1) sent in this block
(Mo, Ms), respectively. In channel uses= 2,...,(n+ 1), b.
the transmitter additionally sends the previous noise $amp In what follows we elaborate on the various components of
Xo,+ = Z;—1. Since each receiver directly observes the inputair scheme: 1) Generation of the update information at the
{Xo.}77}, it can recover the noise sequenfg;}? , and transmitter; 2) Computation of the improved channel owput
reconstruct its desired channel inpgfs, . }7, or {X2.}}_,. at the receivers; and 3) Encoding and decoding of the fresh
Based on these reconstructed channel inputs the recdiaars tata and the update information in each block.

where Z is Bern(1/2) and independent of the inputs, and
denotes addition modulo 2.

Obviously, without feedback, the outplis; andY: , are
useless. Thus, the no-feedback-capacity is given by thefse
all nonnegative rate tripletSRy, R1, R2) satisfying

With noiseless feedback, the capacity is increased.

decode their desired pair of messa@f,, M;) or (Mo, Ms). We first describe the generation of update informa-
Whenever the rates;, R, do not exceed 1, the describedion. Notice that in our scheme the transmitter can wait

scheme has zero probability of error. until it observed the block- feedback-outputsYb”' =
(Yo—1)nt1,---, Yonr) to generate the update information

) _V' MAIN RESULT Jo.bs J1.b, J2» transmitted in block(b + 1). Thus, it can

A. Achievable Region compute the update information by applying tlbesy Gray-

Let Rimer be the set of all nonnegative tripletsWyner encodein Subsection I11-B2 to the block-inputs and
(Ro, Ry, Ry) that satisfy the inequalites (4) onthe blockd feedback outputs, i.e., to the sequence of pairs
the top of the next page, for some choice 0{(X(b—1)n/+k,if(b—1)n/+k)}2;1-
auxiliary ~ random  variables (Uy,Us, Uz, Vo, V1, V) We next describe the computation of the improved channel
such that  (Up, U, Us)——X——(Y7,Y5,Y) and outputs at Receiver i, fof € {1,2}. Recall that Receiver i



Ro < minI(Uo;Yi, Vi) — max I(Vo; X, Y|Y;)
Ro+R1 < I(UO,Ul;Yl,Vl)—I(X,f/;vl\vo,yl)—m?xf(vo;x,f/m)
Ro+ Ry < I(UO,UQ;YQ,\@)—I(X,?;VQ\VO,YQ)—m?xf(vo;x,f/m)
Ro+Ri+ Ry < I(Ul;Yl,Vlon)+I(U2;Y27V2\U0)+miin1(U0;Yi,Vi)

—I(U1; Us|Uo) — I(X,Y; Vi [Vo, Y1) — I(X, Y; Vo[ Vo, Y2) — max I(Vo; X, Y[Y;) “
T
=1 =t t=(B+1)n’
fresh data fresh data fresh data fresh data
Mg (1), My (1), M2 (1) | Mg(2), My (2), Ma(2) | Mq(3), My (3), My (3) Mo (B), M; (B), M3 (B)
update info. update info. o update info. update info.
Jo (1), J1 (1), J2(1) Jo(2), J1(2), J2(2) Jo(B—1), J1 (B-1), Jo(B—1) Jo(B), J1(B), Ja(B)
Block 1 Block 2 Block 3 Block B Block B + 1

Fig. 1. Block-Markov strategy of our feedback-scheme.

has already decoded the update informafids,, J; ) before Theorem 5. Under condition (5) and for Ry = 0, the

it has to produce its block-improved outputs. It can thus noiseless-feedback capacity of the Generalized Dueck DMBC

compute the improved outputs as follows. It first feeds iis the set of all nonnegative rate paif®;, R2) satisfying

guess 0f(Jo s, Ji ) and the observed sequenkfgl; (as side- Ry <2— H(Zo, 7))

information) to thelossy Gray-Wyner decodein Subsec- - T

tion 111-B3, and then combines the resulting outpu’;g with Ry <2 = H(Zo, Z2),

the observed sequentg; . That means the improved outputs Ri+ Ry <3 — H(Zo, Z1, Z2). (6)

are given by(Y;% , V/}). Proof. The converse follows from the cutset bound. The direct
We finally outline the encoding and decoding of the frespart follows from Theorem 4 by taking the convex hull of the

data and the update information in each blécKhe transmit- two achievable regions that result when (4) is evaluatethier

ter first forms the combined messag¥g , = (Mo 5, Jo,—1), following two choices:(Uy, Uy, Us) i.i.d. ~ Bern(1/2); X, =

My = (Miy, Jip—1), and Msy, = (Mayp, Jop—1), and then Up; X1 = Uy; Xo = U, Vi = (Xo, X1); Vo = (X0, X2); and

encodes these messages using Marton’s no-feedback scheitieer Vo = (Zy, Z1) or Vo = (Zo, Z2). ]

Receiver i first decodes the combined messddés;, M, 1) Observation 1. For zero common rateR, — 0, the no-

Ezteagpilxggoﬁzrtg:?pl?t?}?’glngntl)”eatr? dt?ﬁezreaﬁ;ﬁgscﬁyeedback capacity of the generalized Dueck DMBC is the set
ibo Vi) i i icfvi
extract message&Mo ., Miy,) and (Jo, 1,Jip 1) from its of all nonnegative rate pairg¢R;, R.) satisfying
guess of( Mo p, M; p). Ry <2—H(Zy,Zy),
R2 S 2— H(207 Z2)a
Rl + R2 S 3 — H(Zo, Zl, Zg) — I(Zl; Zngo)

rQbservation 2. Unless the tripletZ, — Zy — Z, forms a

; : : - kov chain, noiseless feedback strictly increases tipaca
all three binary channels are (possibly) noisy, and the f|H¥{arf he G ’ lized Dueck DMBC satisfving Conditi
and third channels are corrupted by (possibly) differengem Ity of the Generalized Duec satisfying Conditi¢s)s

As in Dueck’s example the channel input consists of thré& The Noisy Blackwell DMBC

VI. EXAMPLES
A. The Generalized Dueck DMBC
Consider a generalized version of Dueck’s DMBC whe

bits, X = (X1, Xo, X2), and each output of two bits;; = We consider a noisy version of Blackwell's DMBC with
(Y1,1,Y10) andYs = (Y20, Y2.2). The channel lawPy,y,|x  noisy feedback, and evaluate the region in Theorem 4 for a
is described by the relations: specific choice of the auxiliary random variables. We show

that the resulting inner bound on the noisy feedback capacit

Yio=Ys0=X0® Z ) .
1o 20 0 ® 2o, region exceeds an outer bound on the no-feedback capacity

Vip=X102, and Yoo =X>® 2, region, for small levels of noise.
where Zo, Z1, Z» are binary random variables of a given law The Noisy Bla_lckwell DMBC is described as follows. The
Py, 7, z,- We restrict attention to law#y, z, z, such that input alphabet is ternaryt’ = {0,1,2} and both output
alphabets are binary, = ), = {0,1}. Let Z ~ Bern(p) for
H(Zy,Z1) <1 and  H(Zy, Z2) < 1. (5) somep < 1 and independent ak. The channel lawPy, y, |y

Under these conditions and when the transmitter only wish! Sdescnbed as follows.

to send private messages but no common message, our schege— { 4 X =0 Yy = { Z X =01
achieves the noiseless-feedback capacity. 1-2 X=1,2 1-72 X=2



For simplicity, we assume a noisy feedback of the farm:=
(Y1+ Z',Y> + Z'), whereZ’ ~ Bern(q) and (X, Y,Y>) are

mutually independent. Let o <, ZZLTWZ'?T;Z“Zﬁi?jjiim |
def 0 X =0 def 0 X = O7 1 [ \\ FA A WU Cut-set upper bound 0@’NgjselessFBS: [
Vl_{l X=1,2 VZ_{l X =2 A ]

def i ’ A
Ww=VieY, =26 Z S il
Furthermore, leU/y ~ Bern(1) and osf 1
P _ (a,l—a—ﬁ,ﬂ) U():O [ )
X|Uo (ﬂ,l—a—ﬁ,a) Up =1 0.2 1

for some nonnegative, 3 satisfyinga + 8 < 1. Finally, set

def def 0.5

Uy = Vi,U; = V,. Note that the auxiliary outputs here
are simply the deterministic part of the channel actions on
its input. Using Theorem 4 with (4) we get the following Fig. 2. Bounds on the sum-rate capacity of the noisy BlackDMBC
achievable region (for simplicity we give looser inequak):

a+p 1 where p defy p. Figure 2 depicts the bounds (7) and (8)
Ry < hy, < > - §(hb(0‘) + hy(B)) = Ap, g, o, B) together with a cut-set upper bound GRyiselessres:, Where (7)
o+t is plotted in the noiseless casg=€ 0). From the continuity of
Ro+ Ri < hy ( 5 > —Ap,q,0,8) — he(q) the bound (7) with respect to the noise leyelwe conclude
P the following.
o+
Ro+ Ry < hy (T) = AP, g, B) — he(q) Observation 3. For anyp € (0,1) and small enougly, noisy
feedback strictly increases the capacity region of the Wois
Ry + Ry + R2 < Iy ( at 6) + < a ) Blackwell-DMBC. The statement holds also for the feedback
2 1-p Y=MWY1+2" Yo+ Z") whereZ’, Z" are independent.
“h .4, —2h,
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