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Abstract—We study Wyner’s asymmetric interference network
(soft-handoff model) when each transmitter has local, rate-limited

side-information about the messages of the J transmitters to
its left and the J transmitters to its right. We distinguish two
scenarios. In Scenario A the neighbors of Transmitter k can
have different, individual, side-information about Message Mk.
In Scenario B they all have the same side-information about Mk.
For both scenarios we derive the asymptotic multiplexing gain
per-user, that is, the limiting ratio of the multiplexing gain divided
by the number of users K when K → ∞.

I. SETUP AND RESULT

We consider a communication scenario with K trans-

mitter/receiver pairs labeled 1, . . . ,K . Each transmitter is

equipped with a single transmitting antenna, and each receiver

with a single receiving antenna. The symbols xk,1, . . . , xk,n

sent at Transmitter k and the symbols yk,1, . . . , yk,n observed

at Receiver k are assumed to be in R. (Extending our results to

a setup with complex symbols is straightforward.) We envision

a network with only local, short-range interference, as e.g. in

[1], [2], [3], [4], [5], [6], where far-away transmissions do not

interfere. More specifically, we assume that the transmitters

and the receivers are located on two parallel lines, each

Receiver k opposite its corresponding Transmitter k; and the

signal sent at Transmitter k is only observed at Receivers k
and (k+1). Thus, the time-t signal observed at Receiver k is

given by:

Yk,t = xk,t + αkxk−1,t + Zk,t, (1)

where {Zk,t} is a sequence of independent and identically

distributed (i.i.d.) standard Gaussians; αk 6= 0 is a given real

number; and x0,t is deterministically 0 for all times t.
The goal of the communication is that for each k ∈

{1, . . . ,K}, Transmitter k conveys a Message Mk to Re-

ceiver k. The messages {Mk}
K
j=1 are independent of each

other and of the noises {Zk,t}, and each Mk is uniformly

distributed over the set Mk , {1, . . . , ⌊enRk⌋}. Here, n
denotes the block-length and Rk the rate of Message Mk.

We impose a symmetric average block-power constraint P
on the input sequences. That means, they have to satisfy

1

n

n
∑

t=1

x2
k,t ≤ P, k ∈ {1, . . . ,K}. (2)
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The described network is sometimes called Wyner’s asym-

metric cellular model or Wyner’s generalized1 soft-handoff

model. It has been studied (see e.g., [1], [2], [4], [5]) under

various assumptions on the allowed cooperation between the

transmitters and between the receivers. The works in [1], [2],

[3] assume that only the receivers can cooperate but not the

transmitters. In [1], [2] the receivers can fully cooperate—i.e.,

they can jointly decode their intended messages—whereas in

[3] they can only cooperate through clustered decoding—i.e.,

each receiver can decode its desired messages based on the

signals received at a certain subset of the receiving antennas.

In contrast, in [4] the receivers cannot cooperate at all whereas

the transmitters are allowed to cooperate through message

cognition—i.e., each transmitter knows a certain subset of

the other transmitters’ messages. In [5] the transmitters can

cooperate through message cognition and the receivers through

clustered decoding.

Here, we consider a scenario with local cooperation be-

tween the transmitters only: as in [4], [5] each trans-

mitter has side-information about the messages of the J
transmitters to its left and the J transmitters to its right.

However, here the side-information can be imperfect in

that each transmitter k does not directly observe the mes-

sages Mk−J , . . . ,Mk−1,Mk+1, . . . ,Mk+J , but only side-

information2

Uk−J,k, . . . , Uk−1,k, Uk+1,k, . . . , Uk+J,k.

The transmitters learn their side-information during a first

error-free but rate-limited communication phase which pre-

cedes the communication over the interference network. In this

first communication phase each Transmitter j ∈ {1, . . . ,K}
sends side-information Uj,k about its Message Mj to Trans-

mitter k ∈ {1, . . . ,K} if 1 ≤ |j − k| ≤ J , where Uj,k takes

value in a discrete finite set Uj,k and is a function of Mj , i.e.,

Uj,k = φ
(n)
j,k (Mj)

1Generalized refers to the fact that the cross-gains {αk} can be different.
2Due to edge effects of our network, not all transmitters have J neighbors to

their left and right. For readability, and since our focus is on large networks
(K → ∞) where the influence of these edge effects vanishes, we mostly
ignore this issue. Wherever we abuse notation in this sense, we think of Mj

and Uj,k as being deterministically 0, for all j /∈ {1, . . . , K}.



for some φ
(n)
j,k : Mj → Uj,k. The side-information Uj,k is per-

fectly observed at Transmitter k whenever the rate-constraint

1

n
H(Uj,k) ≤

µ

2
log(P ) (3)

is satisfied for a given parameter µ ≥ 0.

Notice that our setup differs from the classical setup with

conferencing encoders [7] in that here the communication

in the first phase does not occur in rounds, and the side-

information sent by Transmitter j can only depend on Mj .

We dinstinguish two scenarios for the first communication

phase:

Scenario A: Each transmitter j ∈ {1, . . . ,K} can

send individual side-information to the J neighbors to its

left and its right. That means, all the side-informations

Uj,j−J , . . . , Uj,j−1, Uj,j+1, . . . , Uj,j+J can be different.

Scenario B: Each transmitter j ∈ {1, . . . ,K} has to send

the same side-information to the J neighbors to its left and

its right. That means,

Uj,j−J = . . . = Uj,j−1 = Uj,j+1 = . . . = Uj,j+J .

In the second communication phase over the interference

network each Transmitter k can compute its channel inputs

Xk as a function of its message and the side-information:

Xn
k = f

(n)
k (Uk−J,k, . . . , Uk−1,k,Mk, Uk+1,k, . . . , Uk+J,k),

(4)

where f
(n)
k : Uk−J,k×Uk−1,k×Mk×Uk+1,k×Uk+J,k → R

n

denotes Transmitter k’s encoding function.

We assume no cooperation at the receivers. Thus, each

receiver k decodes its desired message Mk based only on

the observed channel outputs Y n
k , (Yk,1, . . . , Yk,n), i.e., it

produces a guess of the form

M̂k , ϕ
(n)
k (Y n

k ) (5)

for some chosen decoding function ϕ
(n)
k : Rn → Mk.

An error occurs in the communication whenever

(M1, . . . ,MK) 6= (M̂1, . . . , M̂K).

The described setup models downlink communication from

multiple base-stations to corresponding mobiles where the

base-stations can partially cooperate by communicating over

a back-haul.

For the described scenarios we say that a rate-tuple

(R1, . . . , RK) is achievable if, as the block-length n tends

to infinity, the average probability of error decays to 0, i.e.,

lim
n→0

Pr
[

(M1, . . . ,MK) 6= (M̂1, . . . , M̂K)
]

= 0.

The closure of the set of all rate-tuples (R1, . . . , RK) that

are achievable is called the capacity region. For Scenario A

we denote it by CA(K, J, µ;P ) and for Scenario B by

CB(K, J, µ;P ). The sum-capacity is defined as the supre-

mum of the sum-rate
∑K

k=1 Rk over all achievable tuples

(R1, . . . , RK). It is denoted by CA,Σ(K, J, µ;P ) for Sce-

nario A and by CB,Σ(K, J, µ;P ) for Scenario B. Our main

focus in this work is on the high-SNR asymptote of the sum-

capacity. That is, on the multiplexing gains

ηA(K, J, µ) , lim
P→∞

CA,Σ(K, J, µ;P )
1
2 log(P )

and

ηB(K, J, µ) , lim
P→∞

CB,Σ(K, J, µ;P )
1
2 log(P )

and on the asymptotic multiplexing gains per-user:

S∞
A (J, µ) , lim

K→∞
lim

P→∞

CA,Σ(K, J, µ;P )
K
2 log(P )

and

S∞
B (J, µ) , lim

K→∞
lim

P→∞

CB,Σ(K, J, µ;P )
K
2 log(P )

.

For µ sufficiently large (e.g., µ = ∞), the two scenarios are

equivalent to a message-cognition setup where each transmitter

knows the messages of the J transmitters to its left and to its

right (i.e., to the asymmetric network in [5] specialized to

Jℓ = Jr = J and iℓ = ir = 0).

Theorem 1. For Scenario A:

S∞
A (J, µ) = min

{

1 + 2µ

2
,
2J + 1

2J + 2

}

. (6)

For Scenario B:

S∞
B (J, µ) = min

{

1 + µ

2
,
2J + 1

2J + 2

}

. (7)

Proof: See Section III.

Specializing Theorem 1 to µ = ∞ recovers Corollary 1

in [5] specialized to Jℓ = Jr = J and iℓ = ir = 0.

Notice that when µ is below a certain threshold—which

depends on J and differs for the two scenarios—then the

asymptotic multiplexing gain per-user grows linearly in µ (in-

dependent of J). It thus remains unchanged when J is further

increased. When µ is above the corresponding threshold, then

the asymptotic multiplexing gain per-user equals 2J+1
2J+2 and

thus remains unchanged when µ is increased.

In the linear regime S∞
A has slope µ, whereas S∞

B has slope

µ/2. Thus, in this linear regime, the benefit of rate-limited

side-information at high powers is approximately doubled if

the transmitters can send different side-information to the

different adjacent transmitters.

From our proofs in Sections III-A and IV-A, one can see

that the result in (6) holds also when each transmitter has to

send the same side-information to all the J transmitters to its

left and the same side-information to all the J transmitters to

its right.

II. A SCHEME FOR MESSAGE COGNITION (µ = ∞)

We describe a coding scheme for the special case of

message cognition, i.e., when µ = ∞. The scheme is a slight

generalization of the scheme in [5]. It has parameters

(K, J, κ0) (8)



where κ0 is an integer number in {1, . . . , 2J + 2}.

For each set of parameters we define:

γ(K, J, κ0) ,

⌈

K − κ0 − J − 1

2J + 2

⌉

+ 1. (9)

As we shall see in the following:

Lemma 1. Our scheme with message cognition achieves a

multiplexing gain of

K − γ(K, J, κ0), (10)

and thus an asymptotic multiplexing gain per-user of

2J + 1

2J + 2
. (11)

The scheme is based on the idea of silencing certain

transmitters and using Costa’s dirty-paper coding [8] to cancel

known interference. We silence γ(K, J, κ0) transmitters, and

let each of the remaining K−γ(K, J, κ0) transmitters k send

a different message at rate 1
2 log(1 + P ) or (sometimes when

|αk+1| < 1) at rate 1
2 log(1+α2

k+1P ). Such a scheme achieves

the desired multiplexing gain and asymptotic multiplexing gain

per-user in Lemma 1.

Before explaining which transmitters are silenced, we define

β , 2J + 2, (12)

κ1 , (K − κ0) mod β (13)

γg ,
K − κ0 − κ1

2J + 2
. (14)

where mod denotes the modulus-operator. We silence

Transmitters {κ0 + jβ}, for j ∈ {0, . . . , γg − 1}; moreover,

if κ1 > (J + 1) we also silence Transmitter K . This splits

the network into γg non-interfering subnets if κ1 = 0 and into

γg + 1 subnets if κ1 > 0.

The first subnet consists of κ0 − 1 active transmitting

antennas and of κ0 receiving antennas. The next γg−1 subnets

all have the same topology. They consist of 2J + 1 active

transmitting antennas and 2J+2 receiving antennas. We refer

to these subnets as generic subnets. If κ1 > 0 there is an

additional last subnet with κ1 or κ1 − 1 active transmitting

antennas, depending on whether κ1 ≤ (J+1) or κ1 > (J+1),
and with κ1 receiving antennas. We refer to subnets with less

than 2J + 1 active transmitting antennas as reduced subnets.

Notice that if κ0 = 2J + 2, then the first subnet is generic,

otherwise it is reduced.

As we shall see, in our scheme each transmitter ignores

the part of its side-information pertaining to the messages

transmitted in other subnets. Likewise, each receiver ignores

the outputs of antennas belonging to subnets other than its

own. Therefore, we can describe our scheme for each subnet

separately. For brevity we only describe our scheme for a

generic subnet; the schemes for the first subnet, if it is reduced,

and for the (γg + 1)-th subnet, if it exists, are similar.

To simplify description, we assume that K ≥ κ0 = 2J +2,

such that the first subnet is generic, and describe the scheme

for the first subnet.

When κ0 = 2J + 2, we transmit Messages

M1, . . . ,MJ+1 and MJ+3, . . . ,M2J+2 in the first subnet.

Messages 1, . . . , J + 1 are transmitted as follows.

• Transmitter 1 sends its Message using a point-to-point

Gaussian code.

• For each k = 2, . . . , J+1, Transmitter k can use its side-

information to compute the interference term αk−1X
n
k−1.

Indeed, as we shall see shortly, in our scheme the input se-

quence Xn
k−1 depends only on messages M1, . . . ,Mk−1,

and these messages are known to Transmitter k, because

k − 1 ≤ J for all k = 2, . . . , J + 1.

• For each k = 2, . . . , J + 1, Transmitter k uses a dirty-

paper code of power P and rate Rk = 1
2 log(1 + P )

to transmit its message Mk and mitigate the interference

αk−1X
n
k−1 experienced at the antenna of Receiver k.

• Receiver 1 can decode its message based on the

interference-free output Y n
1 .

• For each k = 2, . . . , J +1, Receiver k decodes Message

Mk applying dirty-paper decoding to the outputs Y n
k .

If J > 0, then Messages MJ+3, . . . ,M2J+2 are transmitted

as follows. Define T2 = {J + 2, . . . , 2J + 1}.

• For each k ∈ T2, Transmitter k can use its side-

information to compute the interference term Xn
k+1. As

seen shortly, in our scheme the input sequence Xn
k+1

depends only on messages Mk+2, . . . ,M2J+2, which are

all known to Transmitter k because (2J+2−k) ≤ J for

all k ∈ T2.

• For each k ∈ T2, Transmitter k uses a dirty-paper code of

power P and rate Rk+1 = min
{

1
2 log(1+P ), 1

2 log(1+
α2
k+1P )

}

to transmit Message Mk+1 and mitigate the

”interference” Xn
k+1 experienced at the antenna of Re-

ceiver (k + 1).
• For each k ∈ T2, Receiver (k + 1) decodes Message

Mk+1 applying dirty-paper decoding based on the output

sequence Y n
k+1.

This scheme achieves multiplexing gain 2J+1 over a generic

subnet.

Similar schemes achieve multiplexing gain κ0 − 1 over the

first subnet, and multiplexing gain κ1 or κ1 − 1 over the last

subnet, depending on whether κ1 ≤ J+1 or κ1 > J+1. This

establishes Lemma 1. We notice the following:

Remark 1. In our scheme, each message is transmitted at a

rate not exceeding 1
2 log(1 + P ).

For positive integers k, ℓ and a set of integers S, we write

k ∈ℓ S when

(k mod ℓ) = (s mod ℓ), for some s ∈ S.

Remark 2. For the scheme to work it suffices that each

Message Mk is known to Transmitter k and to:

• the J transmitters to the left of Transmitter k, if

k ∈(2J+2) {J + 3 + κ0, . . . , 2J + 2 + κ0}, (15)

• the J transmitters to the right of Transmitter k, if

k ∈(2J+2) {1 + κ0, . . . , J + κ0}. (16)



III. ACHIEVABILITY OF THEOREM 1

A. Scenario A

Our scheme is based on a rate-splitting/time-sharing

approach. We assume that each Message Mk can be

represented as a sequence of independent submessages

(M
(1)
k , . . . ,M

(2J+3)
k ), where each M

(i)
k is uniformly dis-

tributed over {1, . . . , ⌊enR
(i)
k ⌋}. Notice that the sum of the

rates R
(1)
k + . . .+R

(2J+3)
k tends to Rk as n → ∞.

We now describe the first communication phase. In our

scheme each transmitter sends the same side-information to

the J transmitters to its left and the same side-information to

the J transmitters to its right. Thus, for each k ∈ {1, . . . ,K}:

Uk,left , Uk,k−J = . . . = Uk,k−1 (17)

and

Uk,right , Uk,k+1 = . . . = Uk,k+J . (18)

Transmitter k chooses Uk,left to losslessly describe all its

submessages M
(i)
k that have superscript i ∈ {1, . . . , 2J + 2}

satisfying

k ∈(2J+2) {J + 3 + i, . . . , 2J + 2 + i}. (19)

Therefore, in our scheme

1

n
H(Uk,k−J ) = . . . =

1

n
H(Uk,k−1) ≤

∑

i∈{1,...,2J+2}:
satisfying (19)

R
(i)
k . (20)

Similarly, Transmitter k chooses Uk,right to losslessly de-

scribe all its submessages M
(i)
k that have superscript i ∈

{1, . . . , 2J + 2} satisfying:

k ∈(2J+2) {1 + i, . . . , J + i}. (21)

Therefore,

1

n
H(Uk,k+1) = . . . =

1

n
H(Uk,k+J ) ≤

∑

i∈{1,...,2J+2}:
satisfying (21)

R
(i)
k . (22)

As we shall see, in our scheme, for all i ∈ {1, . . . , 2J+2}:

R
(i)
k ≤

µ

J
·
1

2
log(1 + P ). (23)

Combining (19)–(23), we thus conclude that the communica-

tion during this first phase respects the rate-constraint (3), and

is hence error-free.

We now describe the scheme in the second phase when

communicating over the interference network. We use a time-

sharing scheme where we split the block-length n into (2J+3)
subblocks. The first J + 2 subblocks are of length

N1 , min

{

⌊µn

J

⌋

,

⌊

n

J + 2

⌋}

(24)

and the last subblock is of length N2 , n−(2J+2)N1. In sub-

block i ∈ {1, . . . , 2J + 2} we send messages M
(i)
1 , . . . ,M

(i)
K

using the scheme in Section II for parameters (K, J, i). Notice

that we can apply these schemes for message cognition,

because the transmitters have exchanged the required submes-

sages during the first phase. This can be seen by comparing

Remark 2 with Equations (17), (18), (19), and (21). Moreover,

by Remark 1 and because each of the considered subblocks

is of length N1, the rates R
(i)
k for k ∈ {1, . . . ,K} and

i ∈ {1, . . . , 2J + 2} satisfy (23) as required.

In the last subblock we send messages

M
(2J+3)
1 , . . . ,M

(2J+3)
K using the scheme in Section II

for parameters (K, 0, 2). This does not require any side-

information at the transmitters.

We analyze the asymptotic multiplexing gain per-user

achieved by our scheme. By Lemma 1 our scheme achieves

an asymptotic multiplexing gain per-user of 2J+1
2J+2 in each of

the first (2J + 2) subblocks and an asymptotic multiplexing

gain per-user of 1/2 in the last subblock. Thus, on average we

achieve an asymptotic multiplexing gain per-user of

min

{

µ
2J + 2

J
, 1

}

2J + 1

2J + 2
+

(

1−min

{

µ
2J + 2

J
, 1

})

1

2

= min

{

1

2
+ µ,

2J + 1

2J + 2

}

,

which proves the achievability part of (6).

B. Scenario B

We apply the same scheme as for Scenario A, except that

we replace the definition of N1 in (24) by

N1 , min

{

⌊µn

2J

⌋

,

⌊

n

J + 2

⌋}

and here we choose Uk,left = Uk,right to losslessly describe all

the submessages M
(i)
k that have superscript i ∈ {1, . . . , 2J +

2} satisfying either (19) or (21). Details omitted.

IV. CONVERSE TO THEOREM 1

A. Scenario A

We prove the converse to (6), i.e.,

S∞
A (J, µ) ≤ min

{

1 + 2µ

2
,
2J + 1

2J + 2

}

. (25)

Since with message cognition we cannot do worse than with

rate-limited side-information, from [5] (Corollary 1 specialized

to iℓ = it = 0 and Jℓ = Jr = J) we have:

S∞
A (J, µ) ≤

2J + 1

2J + 2
. (26)

In the following we prove

S∞
A (J, µ) ≤

1 + 2µ

2
. (27)

The proof of (27) is similar to a converse proof in [4]. We

first let a genie reveal some genie-information Gk (specified

shortly) to Receiver k, for k ∈ {1, . . . ,K}. Denoting the

capacity and the asymptotic multiplexing gain per-user of

the resulting genie-aided network by CA,Genie(K, J, µ;P ) and

ηA,Genie(J, µ), we obviously have

CA(K, J, µ;P ) ⊆ CA,Genie(K, J, µ;P ), (28)



because the receivers can always ignore the genie-information.

In the following we show that

S∞
A,Genie(J, µ) ≤

1 + 2µ

2
, (29)

which combined with (28) establishes Inequality (27).

For i ∈ {1, . . . , ⌊K
2 ⌋} we define the genie-information G2i

as the set containing

M2i−2, {Uj,2i−2}
2i−3
j=2i−2−J , U2i−1,2i−2, {Uj,2i−2}

2i+J−2
j=2i+1 ,

(30)

and

{Uj,2i}
2i−1
j=2i−J , {Uj,2i}

2i+J
j=2i+1, (Z

n
2i−1 −

1

α2i
Zn
2i); (31)

and G2i−1 as the set containing

M2i−2, {Uj,2i−2}
2i−3
j=2i−2−J , {Uj,2i−2}

2i+J−2
j=2i , U2i,2i−1, (32)

and

{Uj,2i}
2i−2
j=2i−J , {Uj,2i}

2i+J
j=2i+1, (Z

n
2i−1 −

1

α2i
Zn
2i); (33)

If K is odd, then we additionally define GK as the empty set.

Remark 3. From the tuple (G2i,M2i, Y
n
2i) it is possible

to compute the outputs Y n
2i−1. This holds because from

(G2i,M2i) one can compute the inputs Xn
2i−2 and Xn

2i,

because G2i contains (Zn
2i−1 −

1
α2i

Zn
2i), and because:

Y n
2i−1 =

1

α2i
(Y n

2i −Xn
2i) + α2i−1X

n
2i +

(

Zn
2i−1 −

1

α2i
Zn
2i

)

.

(34)

Remark 4. The genie-informations G2i−1 and G2i differ only

in that U2i,2i−1 and U2i,2i−2 are contained in G2i−1 but not

in G2i and that U2i−1,2i and U2i−1,2i−2 are contained in G2i

but not in G2i−1.

We show that whenever we have reliable communication

over the genie-aided network, then for i ∈ {1, . . . , ⌊K
2 ⌋}:

lim
P→∞

R2i−1 +R2i

1/2 log(P )
≤ 1 + 2µ. (35)

From (35), the desired lower bound (29) is easily obtained.

To establish (35), we notice that by Fano’s inequality,

whenever we have reliable communication:

(R2i−1 +R2i)− ǫ(n)

≤
1

n
I(Y n

2i−1;M2i−1|G2i−1) +
1

n
I(Y n

2i ;M2i|G2i) (36)

where ǫ(n) tends to 0 as n → ∞. Moreover,

1

n
I(Y n

2i−1;M2i−1|G2i−1) +
1

n
I(Y n

2i ;M2i|G2i)

≤
1

n
h(Y n

2i−1|G2i−1)−
1

n
h(Zn

2i−1|G2i−1)

+
1

n
h(Y n

2i)−
1

n
h(Y n

2i |M2i,G2i) (37)

=
1

n
h(Y n

2i)−
1

n
h
(

Zn
2i−1|Z

n
2i−1 −

1

α2i
Zn
2i

)

+
1

n
h(Y n

2i−1|G2i−1)−
1

n
h(Y n

2i−1|M2i,G2i) + log |α2i|

(38)

=
1

n
h(Y n

2i)−
1

n
h
(

Zn
2i−1|Z

n
2i−1 −

1

α2i
Zn
2i

)

+
1

n
h(Y n

2i−1|G2i−1)−
1

n
h(Y n

2i−1|U2i,2i−1, U2i,2i−2,G2i)

+ log |α2i| (39)

=
1

n
h(Y n

2i)−
1

n
h
(

Zn
2i−1|Z

n
2i−1 −

1

α2i
Zn
2i

)

+
1

n
I(Y n

2i−1;U2i−1,2i, U2i−1,2i−2|G2i−1) + log |α2i| (40)

≤
1

n
h(Y n

2i)−
1

n
h
(

Zn
2i−1|Z

n
2i−1 −

1

α2i
Zn
2i

)

+
1

n
H(U2i−1,2i) +

1

n
H(U2i−1,2i−2) + log |α2i| (41)

≤
1

2
log

(

1 + (1 + |α2i|)
2P

)

+
1

2
log(1 + α2

2i)

+
2µ

2
log (1 + P ) + log |α2i|, (42)

where Inequality (37) follows because conditioning cannot in-

crease differential entropy; Equality (38) follows by rearrang-

ing terms, by the fact that Zn
2i−1 depends on G2i only through

(Zn
2i−1−

1
α2i

Zn
2i), and by Remark 3 and Equation (34); Equal-

ity (39) follows because Y n
2i−1 depends on M2i only through

U2i,2i−1 and U2i,2i−2; Equality (40) follows by Remark 4;

Inequality (41) follows because U2i−1,2i and U2i−1,2i−2 are

discrete and thus H(U2i−1,2i, U2i−1,2i−2|G2i−1, Y
n
2i−1) ≥ 0,

and because conditioning cannot increase entropy; and finally

Inequality (42) follows from the Max-Entropy Theorem and

from (3). Combining Inequalities (42) and (36) establishes (35)

and concludes the proof.

B. Scenario B

The converse for Scenario B is similar to the converse for

Scenario A. In addition, it also requires noting that here:

H(U2i−1,2i−2, U2i−1,2i) ≤
µ

2
log(1 + P )

because U2i−1,2i−2 = U2i−1,2i. The details are omitted.
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