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Abstract

Coding and testing schemes for binary hypothesis testing over three kinds of multi-hop networks are presented and their
achievable type-II error exponents as functions of the available communication rates are characterized. The schemes are based
on cascade source coding techniques and unanimous-decision forwarding, where terminals decide only on the null hypothesis
if all previous terminals have decided on this hypothesis, and where they forward their decision to the next hop. The achieved
exponent-rate region is analyzed by extending Han’s approach to account for the unanimous-decision forwarding strategy and for
the more complicated code constructions. The proposed coding and testing schemes are shown to attain the optimal type-II error
exponent region for various instances of testing against independence on the single-relay multi-hop network, one instance of the
K-relay multi-hop network, and one instance of a network with two parallel multi-hop networks that share a common receiver.

For the basic single-relay multi-hop network, the proposed scheme is further improved by means of binning. This improved
scheme is again analyzed by extending Han’s approach, and is shown to be optimal when testing against conditional independence
under some Markov condition. For completeness, the paper also presents the previously missing analysis of the Shimokawa, Han
and Amari binning scheme for the point-to-point hypothesis testing setup.

I. INTRODUCTION

Decreasing costs of sensors and improved hardware technologies facilitate a rapid increase of sensor applications, in particular
as part of the future Internet of Things (IoT). One of the major theoretical challenges in this respect are sensor networks with
multiple sensors collecting correlated data that they communicate to one or multiple decision centers. Of special practical and
theoretical interest here is the study of the tradeoff between the quality of the decisions taken at the centers and the available
communication resources. This is the topic of this work, where we follow the approach in [1], [2]. That means decision
centers have to decide on a binary hypothesis H = 0 or H = 1 that determines the underlying joint probability mass function
(pmf) of all the terminals’ observations. The goal is to characterize the set of possible type-II error exponents (i.e., the error
exponent for deciding Ĥ = 0 when in fact H = 1) as functions of the available communication rate so that the type-I error
probabilities (i.e., error probabilites for deciding Ĥ = 1 when in fact H = 0) vanish as the lengths of the observations grow.
Previous works on this exponent-rate region considered communication scenarios over dedicated noise-free bit-pipes from one
or many transmitters to a single decision center [1], [3], [4] or from a single transmitter to two decision centers [5]–[7]. The
hypothesis testing problem from a signal processing perspective has been studied in several works [8]–[11]. Recently, simple
interactive communication scenarios were also considered [7], [12], [13], as are dedicated noisy communication channels [5],
[14]. Generally, the problem of identifying the exact type-II error exponents region is open; exact solutions were found for
instances of testing against independence [1] and of testing against conditional independence [4]. Testing against independence
refers to a scenario where under H = 1 the observations’ joint pmf is the product of the marginal pmfs under H = 0, and
testing against conditional independence refers to a scenario where the independence holds only conditional on some sequence
that is observed at the receiver and that has the same distribution under both hypotheses.

The focus of this paper is on multi-hop networks, where some of the terminals cannot communicate directly but their
communication needs to be relayed by other terminals. The simplest example of a multi-hop network is shown in Fig. 1,
where communication from the transmitter to the receiver has to pass through the relay. Multi-hop networks are challenging
mainly because relaying terminals have to find tradeoffs between the information they convey about their own observed data
and that about the information they received from other terminals. In some cases, they must send complicated functions of
their observations and the received information.

In this paper, we propose coding and testing schemes for the basic single-relay multi-hop network in Fig. 1, for its
generalization with K ≥ 2 relays in Fig. 2, and for the network with two parallel single-relay multi-hop channels that
share a common receiver in Fig. 3. Our coding and testing schemes are inspired by Han’s work on the point-to-point setup
[2] and based on the following ideas. The transmitter and the relays quantize their observation sequences and convey these
quantization indices to the subsequent relays and the final receiver. In contrast to Han’s scheme, here we use advanced code
constructions that have previously been proposed for source coding over cascade networks [15]. Moreover, in the second part
of the paper, we exploit correlation between the terminals’ observations to reduce communication rates by means of binning,
similarly to the work by Shimokawa, Han, and Amari [3] for the point-to-point setup. In all our schemes, all relays apply an
unanimous-decision forwarding strategy. This means they decide on the null-hypothesis H = 0 if, and only if, all preceding
relays have also decided on H = 0, and the reconstructed quantization sequences are jointly typical with their own observations,
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Fig. 1. Hypothesis testing over a single-relay multi-hop channel

and they forward this decision to the next-following terminal. The final receiver applies exactly the same unanimous-decision
strategy: it only decides on the null hypothesis if all relays decided on H = 0 and if the quantization sequences it reconstructs
are jointly typical with its own observation. Applying the unanimous-decision forwarding strategy allows accumulating error
exponents along the path from the initial transmitter to the receiver. We present a family of basic multi-hop networks (see
Proposition 2) where the unanimous-decision forwarding strategy allows to increase the error exponent at the receiver by the
error exponent at the relay.

For each of the three considered networks, i.e., for the basic single-relay network, the K-relay network, and the parallel
network with a common receiver, a converse is presented that, for some instances of testing against independence, matches
the exponent-rate region achieved by this scheme. These exact results allow for some interesting conclusions. For example, we
elaborate on two examples for the basic single-relay network. In these examples, the optimal coding and testing scheme is rather
simple when the communication link from the relay to the receiver is of high rate, but when this rate is more stringent, more
involved cascade source coding techniques are needed. The examples allow also to obtain interesting operational explanations
of the roles of the various terminals. Specifically, even when the observation at the transmitter is itself not useful at the receiver,
not even jointly with the relay’s observation, the transmitter can still improve the receiver’s error exponent by coordinating the
relay’s communication to the receiver.

The binning extension is presented and analyzed only for the basic single-relay multi-hop network, and for reasons of
completeness also for the point-to-point setup studied in [3]. In fact, [3] describes the scheme based on binning, but does not
provide an analysis, which is presented here for completeness. The binning extension is simple conceptually and applies also
to the K-relay multi-hop network and the parallel multi-hop network with a common receiver. However, we do not present
these extensions here, because their analysis and statement of the achieved exponent-rate region are rather cumbersome. In fact,
already for the basic single-relay network the resulting exponent-rate region has a rather complicated form. Nonetheless, we
provide a converse proof showing that the attained exponent-rate region is optimal for an instance of testing against conditional
independence.

The analyses presented in this paper differ from Han’s analysis for the point-to-point setup [2] because of the more
complicated code constructions and because of the unanimous decision strategy. In particular, to obtain our desired results,
in our code construction we have to ensure that a given joint type is not “over-represented” among tuples of codewords, and
in the analysis, we have to properly account for the correlation between the decisions taken at the various terminals. The
modified Han analysis technique that we propose applies both to multi-hop relay networks with an arbitrary number of K
relays, and to the set of two parallel multi-hop networks with a common receiver, and both in the presence and absence of
binning. Moreover, the so obtained exponent-rate regions have a simple and succint description, which leads us to conjecture
that the analysis and the structure of the result extend to more complicated networks.

We conclude this introduction with a summary of the main contributions, remarks on notation, and an outline of the paper.

A. Contributions

The main contributions of this article are:
• A first coding and testing scheme without binning is presented for the basic single-relay multi-hop network, and the

achieved exponent-rate region is analyzed (see Section III, in particular Theorem 1).
• Matching converse results are proved for instances of testing against independence (Corollaries 1 and 2 and Propositions 2–

4 in Section III).
• Examples are given where the optimal coding and testing schemes simplify considerably when there are abundant

communication resources; however, they are complicated when resources are scarce (Examples 1 and 2 in Section III).
• The initial coding and testing scheme and its analysis are extended to multi-hop networks with an arbitrary number of K

relays and to a network with two parallel single-relay multi-hop channels that share a common receiver (Section IV, in
particular Theorems 2 and 3). The resulting exponent-rate regions are optimal in special cases of testing against conditional
independence (Propositions 5 and 6).

• A detailed analysis of the Shimokawa-Han-Amari [3] coding and testing scheme with binning over a point-to-point channel
is presented (Theorem 4 in Section VI).
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• An improved coding scheme based on binning is proposed and analyzed for the single-relay multi-hop network (Section VI,
and in particular Theorem 5). The exponent-rate region is shown to be optimal for a special instance of testing against
conditional independence (Proposition 7).

B. Notation

We mostly follow the notation in [16]. Random variables are denoted by capital letters, e.g., X, Y, and their realizations
by lower-case letters, e.g., x, y. Script symbols such as X and Y stand for alphabets of random variables, and Xn and Yn
for the corresponding n-fold Cartesian products. Sequences of random variables (Xi, ..., Xj) and realizations (xi, . . . , xj) are
abbreviated by Xj

i and xji . When i = 1, then we also use Xj and xj instead of Xj
1 and xj1.

Generally, we write the probability mass function (pmf) of a discrete random variable X as PX ; to indicate the pmf under
hypothesis H = 1, we also use QX . The conditional pmf of X given Y is written as PX|Y , or as QX|Y when H = 1. The
term D(P‖Q) stands for the Kullback-Leibler (KL) divergence between two pmfs P and Q over the same alphabet. We use
tp(·) to denote the joint type of a tuple. For a joint type πABC over alphabet A × B × C, we denote by IπABC (A;B|C) the
mutual information assuming that the random triple (A,B,C) has pmf πABC ; similarly for the entropy HπABC (A) and the
conditional entropy HπABC (A|B). Sometimes we abbreviate πABC by π. Also, when πABC has been defined and is clear
from the context, we write πA or πAB for the corresponding subtypes. When the type πABC coincides with the actual pmf of
a triple (A,B,C), we omit the subscript and simply write H(A), H(A|B), and I(A;B|C).

For a given PX and a constant µ > 0, let T nµ (PX) be the set of µ-typical sequences in Xn:

T nµ (PX) =

{
xn :

∣∣∣∣ |{i : xi = x}|
n

− PX(x)

∣∣∣∣ ≤ µPX(x), ∀x ∈ X

}
, (1)

where |{i : xi = x}| is the number of positions where the sequence xn equals x. Similarly, T nµ (PXY ) stands for the set of
jointly µ-typical sequences whose definition is as in (1) where X needs to be replaced by the pair (X,Y ).

The expectation operator is written as E[·]. We abbreviate independent and identically distributed by i.i.d.. The notation
U{a, . . . , b} is used to indicate a uniform distribution over the set {a, . . . , b}; for the uniform distribution over {0, 1} we also
use B(1/2). Finally, the log function is taken with base 2.

C. Paper Outline

The remainder of the paper is organized as follows. Section II describes the hypothesis testing setup over the basic multi-hop
network. The following Section III presents a coding and testing scheme for this setup and the corresponding exponent-rate
region. It also presents special cases where this exponent-rate region is optimal. Section IV presents similar results for the
multi-hop network with an arbitrary number of relays and Section V presents results for the network consisting of two parallel
multi-hop networks with a common receiver. Section VI presents coding and testing schemes for hypothesis testing with binning
over the point-to-point channel and the basic multi-hop network. It also presents an optimality result. The paper is concluded
in Section VII and by technical appendices.

II. BASIC MULTI-HOP SETTING

Consider the multi-hop hypothesis testing problem with three terminals in Fig. 1. The first terminal in the system, the trans-
mitter, observes the sequence Xn ∆

= (X1, . . . , Xn), the second terminal, the relay, observes the sequence Y n ∆
= (Y1, . . . , Yn),

and the third terminal, the receiver, observes the sequence Zn = (Z1, . . . , Zn). Under the null hypothesis

H = 0: (Xn, Y n, Zn) ∼ i.i.d. PXY Z (2)

whereas under the alternative hypothesis

H = 1: (Xn, Y n, Zn) ∼ i.i.d. QXY Z (3)

for two given pmfs PXY Z and QXY Z .
The problem encompasses a noise-free bit-pipe of rate R from the transmitter to the relay and a noise-free bit pipe of rate

T from the relay to the receiver. That means, after observing Xn, the transmitter computes the message M = φ(n)(Xn) using
a possibly stochastic encoding function φ(n) : Xn → {0, ..., b2nRc} and sends it over the noise-free bit pipe to the relay. The
relay, after observing Y n and receiving M , computes the message B = φ

(n)
y (M,Y n) using a possibly stochastic encoding

function φ(n)
y : Yn × {0, ..., b2nRc} → {0, ..., b2nT c} and sends it over the noise-free bit pipe to the receiver.

The goal of the communication is that, based on their own observations and based on the received messages, the relay and
the receiver can decide on the hypothesis H. The relay thus produces the guess

Ĥy = g(n)
y (Y n,M), (4)



4

using a decoding function g(n)
y : Yn × {0, ...., b2nRc} → {0, 1}, and the receiver produces the guess

Ĥz = g(n)
z (Zn, B), (5)

using a decoding function g(n)
z : Zn × {0, ..., b2nT c} → {0, 1}.

Definition 1: For each ε ∈ (0, 1), we say that the exponent-rate tuple (η, θ, R, T ) is ε-achievable if there exists a sequence
of encoding and decoding functions (φ(n), φ

(n)
y , g

(n)
y , g

(n)
z ), n = 1, 2, . . ., such that the corresponding sequences of type-I and

type-II error probabilities at the relay

γn
∆
= Pr[Ĥy = 1|H = 0], (6)

ζn
∆
= Pr[Ĥy = 0|H = 1], (7)

and at the receiver

αn
∆
= Pr[Ĥz = 1|H = 0], (8)

βn
∆
= Pr[Ĥz = 0|H = 1], (9)

satisfy

αn ≤ ε, (10)
γn ≤ ε, (11)

and

− lim
n→∞

1

n
log βn ≥ θ, (12)

− lim
n→∞

1

n
log ζn ≥ η. (13)

Definition 2: For given rates (R, T ), we define the exponent-rate region E(R, T ) as the closure of all non-negative pairs
(η, θ) for which (η, θ, R, T ) is ε-achievable for every ε ∈ (0, 1).

III. A SIMPLE CODING AND TESTING SCHEME WITHOUT BINNING

A. Preliminaries
Fix µ > 0, an arbitrary blocklength n, and joint conditional pmfs PSU |X and PV |SUY over finite auxiliary alphabets S,

U , and V . Define the joint pmf PSUVXY Z = PXY ZPSU |XPV |SUY and the following nonnegative rates, which are calculated
according to the chosen distribution and µ:

Rs
∆
= I(X;S) + µ, (14)

Ru
∆
= I(U ;X|S) + µ, (15)

Rv
∆
= I(V ;Y,U |S) + µ. (16)

Later, we shall choose the joint distributions in such a way that R = Ru +Rs and T = Rs +Rv .
Lemma 1: For every sufficiently large blocklength n, it is possible to create codebooks

CS =
{
sn(i) : i ∈ {1, ..., b2nRsc}

}
(17)

and for each i ∈ {1, . . . , b2nRsc}:

CU (i) =
{
un(j|i) : j ∈ {1, ..., b2nRuc}

}
(18)

CV (i) =
{
vn(k|i) : k ∈ {1, ..., b2nRvc}

}
(19)

such that the following three properties hold:
1) Codebooks CS and {CU (i), i ∈ {1, ..., b2nRsc}} cover the source sequence Xn with high probability:

Pr
[
∃(i, j) : (sn(i), un(j|i), Xn) ∈ T nµ/4(PSUX)

]
> 1− ε/4. (20)

2) If codebooks CS and CU (i) cover Y n for some i, then also codebooks CS , CU (i), and CV (i) cover Y n with high
probability:

Pr
[
∃k : (sn(i), un(j|i), vn(k|i), Y n) ∈ T nµ/2(PSUV Y )

∣∣∣(sn(i), un(j|i), Y n) ∈ T n3µ/8(PSUY )
]
> 1− ε/4. (21)

3) No joint type πSUV is “over-represented” in the triple of codebooks CS , {CU}, and {CV } in the sense that, for all πSUV ,∣∣{(i, j, k) : tp(sn(i), un(j|i), vn(k|i)) = πSUV
}∣∣ ≤ 2n(Rs+Ru+Rv−IπSUV (U ;V |S)+µ). (22)

Proof: A standard random code construction satisfies these properties on average. It can then be argued that a deterministic
code construction satisfying this property must exist. A detailed proof of the lemma is given in Appendix A.
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B. Description of Coding and Testing Scheme

Choose a codebook satisfying the three conditions in Lemma 1.
Transmitter: Given that it observes the sequence xn, the transmitter looks for a pair of indices (i, j) such that

(sn(i), un(j|i), xn) ∈ T nµ/4(PSUX). (23)

If successful, it picks one such pair uniformly at random and sends

m = (i, j) (24)

over the noise-free bit pipe. Otherwise, it sends m = 0.
Relay: Assume that the relay observes the sequence yn and receives the message m. If m = 0, it declares Ĥy = 1 and

sends b = 0 over the noise-free bit pipe to the receiver. Otherwise, it looks for an index k such that

(sn(i), un(j|i), vn(k|i), yn) ∈ T nµ/2(PSUV Y ). (25)

If such an index k exists, the relay sends the pair
b = (i, k) (26)

over the noise-free bit pipe to the receiver. Otherwise, it sends the message b = 0.
Receiver: Assume that the receiver observes zn and receives message b from the relay. If b = 0, the receiver declares

Ĥz = 1. Otherwise, it checks whether
(sn(i), vn(k|i), zn) ∈ T nµ (PSV Z). (27)

If the typicality check is successful, the receiver declares Ĥz = 0. Otherwise, it declares Ĥz = 1.

Remark 1: Compared to Han’s original scheme for the point-to-point setup [2], our scheme for the multi-hop setup contains
three main novelties:
• Cascade source coding: Point-to-point source coding is replaced by source coding for cascade channels [15], [17]–[19].
• Unanimous-decision forwarding: Terminals decide on the null hypothesis only if all previous terminals decided on this

hypothesis, and they forward their decision to the following terminal.
• Codebooks with regular joint types: In the chosen codebooks, a limited number of codeword triples (sn(i), un(j|i), vn(k|i))

have the same joint type. Without this assumption, in the following Theorem 1, the right-hand side of (29) would be
decreased by I(U ;V |S).

C. Achievable Exponent Region

Theorem 1: The scheme described in the previous subsection shows that the exponent-rate region E(R, T ) contains all
nonnegative pairs (η, θ) that satisfy

η ≤ min
P̃SUXY :

P̃SUX=PSUX
P̃SUY =PSUY

D(P̃SUXY ‖PSU |XQXY ), (28)

θ ≤ min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV UY =PSV UY
P̃SV Z=PSV Z

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z), (29)

for some auxiliary random variables (U, S, V ) satisfying the Markov chains (U, S)→ X → (Y,Z) and V → (S,U, Y )→ Z
and the rate constraints

R ≥ I(U, S;X), (30)
T ≥ I(X;S) + I(V ;Y,U |S). (31)

Proof: See Appendix B.
The following two subsections discuss Theorem 1 for some interesting special cases.
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D. Optimality Results and Examples when X → Y → Z under both Hypotheses

We start with a setup where both pmfs PXY Z and QXY Z satisfy the Markov chain X → Y → Z. Assume thus that the
pmfs PXY Z and QXY Z decompose as

PXY Z = PX · PY |X · PZ|Y , (32)
QXY Z = QX ·QY |X ·QZ|Y . (33)

In this case, also our achievable exponent-rate region decomposes.
Proposition 1: When (32) and (33) hold, the exponent-rate region E(R, T ) contains all nonnegative pairs (η, θ) that satisfy

η ≤ min
P̃UXY :

P̃UX=PUX
P̃UY =PUY

D(P̃UXY ‖PU |XQXY ), (34)

θ ≤ min
P̃UXY :

P̃UX=PUX
P̃UY =PUY

D(P̃UXY ‖PU |XQXY ) + min
P̃V Y Z :

P̃V Y =PV Y
P̃V Z=PV Z

D(P̃V Y Z‖PV |Y PYQZ|Y ), (35)

for some auxiliary random variables (U, V ) satisfying the Markov chains U → X → Y and V → Y → Z and the rate
constraints

R ≥ I(U ;X), (36)
T ≥ I(V ;Y ). (37)

In other words, under assumptions (32) and (33), in Theorem 1 one can restrict without loss in optimality to auxiliaries
(S,U, V ) so that S = 0 and the Markov chain V → Y → U holds.

Proof: See Appendix C.

Notice that the error exponent θ at the receiver (35) equals the sum of the error exponent at the relay (34) and the error exponent
achieved by Han’s point-to-point scheme applied to the isolated relay-receiver network (without the transmitter terminal) when
the relay’s observation is modified to being i.i.d. according to PY under both hypotheses. This accumulation of error exponents
is due to the applied unanimous-decision forwarding strategy.

The exponent-rate region in Proposition 1 is exact in some special cases, as we discuss in the following.

1) Special Case 1: Same PXY under both Hypotheses:
Corollary 1: Assume (32) and

QXY Z = PXY · PZ . (38)

Under these conditions, the exponent-rate region E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η = 0, (39)
θ ≤ I(V ;Z), (40)

for an auxiliary random variable V satisfying the Markov chain V → Y → Z and the rate constraint

T ≥ I(V ;Y ). (41)

(No constraint is imposed on the rate R.)
Proof: Achievability follows by specializing Proposition 1 to U = 0 (deterministically). The converse is standard: Fix

sequences of encoding and decoding functions {φ(n), φ
(n)
y , g

(n)
y , g

(n)
z }, and notice that for any ε > 0 and sufficiently large n:

− 1

n
log ηn ≤

1

n
D(PMY n|H=0‖PMY n|H=1) + ε = ε

− 1

n
log βn ≤

1

n
D(PBZn|H=0‖PBZn|H=1) + ε = I(B;Zn) + ε =

1

n

n∑
t=1

I(B,Zt−1;Zt) + ε ≤ 1

n

n∑
t=1

I(B, Y t−1;Zt) + ε,

and

T =
1

n
H(B) ≥ 1

n
I(B;Y n) =

1

n

n∑
t=1

I(B, Y t−1;Yt). (42)

The proof is finalized by introducing appropriate auxiliary random variables and taking ε→ 0.
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2) Special Case 2: Same PY Z under both Hypotheses:
Corollary 2: Assume (32) and

QXY Z = PX · PY Z . (43)

Under these conditions, the exponent-rate region E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η ≤ I(U ;Y ) (44)
θ ≤ I(U ;Y ), (45)

for an auxiliary random variable V satisfying the Markov chain V → Y → Z and the rate constraint

R ≥ I(U ;X). (46)

(No constraint is imposed on the rate T .)
Proof: Achievability follows by specializing Proposition 1 to V = 0. The converse is similar to the proof of the converse

of Corollary 1.

3) Special Case 3: Testing against Independence: Consider now the “testing against-independence” version of (32) and
(33).

Proposition 2: Assume (32) and

QXY Z = PX · PY · PZ . (47)

Under these conditions, the exponent-rate region E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η ≤ I(U ;Y ), (48)
θ ≤ I(U ;Y ) + I(V ;Z), (49)

for a pair of auxiliary random variables U and V satisfying the Markov chains U → X → Y and V → Y → Z and the rate
constraints

R ≥ I(U ;X) (50)
T ≥ I(V ;Y ). (51)

Proof: Achievability follows from Proposition 1. The converse is proved in Appendix D.
The error exponent at the receiver (49) equals the sum of the error exponent at the relay and the error exponent attained at

the receiver if the relay did not forward its decision.

E. Optimality Results and Examples when X → Z → Y under both Hypotheses

We treat two special cases: 1) Same PY Z under both hypotheses, and 2) Same PXZ under both hypotheses. Combined with
the Markov chain X → Z → Y , these assumptions imply that the receiver cannot improve its error exponent by learning
information about the observations at the relay (for case 1)) or about the observations at the transmitter (for case 2). As the
following results and discussions show, these observations can nevertheless be useful in both cases.

1) Special Case 1: Same PY Z under both Hypotheses: Consider first the setup where the pmfs PXY Z and QXY Z decompose
as

PXY Z = PX|Z · PY Z , (52)
QXY Z = PX · PY Z . (53)

Since the pair of sequences (Y n, Zn) has the same joint distribution under both hypotheses, no positive error-exponent θ is
possible when the message B sent from the relay to the receiver is only a function of Y n but not of the incoming message M .
The structure of (52) and (53) might even suggest that Y n is not useful at the receiver and the optimal strategy for the relay is
to simply forward a function of its incoming message M . Proposition 3 shows that this strategy is optimal when T ≥ R, i.e.,
when the relay can forward the entire message to the receiver. On the other hand, Example 1 shows that it can be suboptimal
when T < R.

Proposition 3: Assume conditions (52) and (53) and

T ≥ R. (54)

Then the exponent-rate region E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η ≤ I(S;Y ), (55)
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θ ≤ I(S;Z), (56)

for some auxiliary random variable S satisfying the Markov chain S → X → (Y,Z) and the rate constraint

R ≥ I(S;X). (57)

Proof: For achievability, specialize Theorem 1 to S = U = V and simplify. The converse is proved in Appendix E.

We next consider an example that satisfies assumptions (52) and (53), but not (54). We focus on R = H(X), which implies
that the transmitter can reliably describe the sequence Xn to the relay.

Example 1: Let under both hypotheses H = 0 and H = 1:

X ∼ B(1/2) and Y ∼ U{0, 1, 2}

independent of each other. Also, let N0 ∼ B(1/3) and N1 ∼ B(1/2) be independent of each other and of the pair (X,Y ), and

Z = (Z ′, Y ) and Z ′ =

{
X ⊕N0 if Y = 0 and H = 0

N1 otherwise
.

Notice that the triple (X,Y, Z) satisfies conditions (52) and (53). Moreover, since the joint pmf of the pair of sequences
(Xn, Y n) is the same under both hypotheses, the error exponent η cannot be larger than zero, and we focus on the error
exponent θ achievable at the receiver. Notice also that the joint pmf (Xt, Yt, Zt) is the same under both hypotheses except for
positions t ∈ {1, . . . , n} for which Yt = 0. The idea of our scheme is thus that the relay describes only the symbols

{Xt : Yt = 0, for t = 1, . . . , n}

to the receiver. In other words, we specialize the scheme in Subsection III-B to the choice of random variables

S = 0

U = X

V =

{
X if Y = 0

0 otherwise
.

Evaluating Theorem 1 for this choice proves achievability of the error exponent at the receiver

min
P̃VXY Z :

P̃VXY =PVXY
P̃V Z=PV Z

D(P̃V XY Z‖PV |XY PXPY Z)
(a)
= min

P̃VXY Z :
P̃VXY =PVXY
P̃V Z=PV Z

EPVXY [D(P̃Z|V XY ‖PZ|Y )]

(b)
= PY (0) · min

P̃XZ|Y=0:

P̃XZ=PXZ

EP̃X|Y=0
[D(P̃Z|XY=0‖PZ|Y=0)]

(c)
= PY (0) · min

P̃XZ′|Y=0:

P̃XZ′Y =PXZ′Y

EP̃X|Y=0
[D(P̃Z′|XY=0‖PZ′|Y=0)]

= PY (0) · I(X;Z ′|Y = 0) = 1/3(1−Hb(1/3)), (58)

where (a) holds because P̃V XY = PV XY ; (b) holds because unless Y = 0, the choice P̃Z|V XY = PZ|Y is valid and thus the
minimum value of the KL-divergence is 0, and because if Y = 0, then V = X; and (c) holds because Z = (Z ′, Y ).

The scheme requires rates
R = H(X) = 1

and
T = I(V ;XY ) = H(V ) = Hb(1/6).

By Proposition 3, the error exponent in (58) coincides with the largest error exponent that is achievable when R ≥ H(X) = 1
and T ≥ R. We argue in the following that this error exponent cannot be achieved when the relay simply forwards a function
of the message M to the receiver. By the optimal error exponent for point-to-point setups, such a strategy can only achieve
exponents of the form:

max
PS|X : T≥I(S;X)

I(S;Z)
(a)
= max

PS|X : T≥I(S;X)
I(S;Z ′|Y )

= 1− min
PS|X : T≥I(S;X)

H(Z ′|Y, S)
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= 1− min
PS|X : Hb(X|S)≥1−T

1

3
·Hb(X ⊕N0|S)− 2

3

=
1

3

(
1− min

PS|X : Hb(X|S)≥1−T
Hb(X ⊕N0|S)

)
(b)

≤ 1

3

(
1− min

PS|X : Hb(X|S)≥1−T
Hb

(
H−1

b (Hb(X|S)) ?
1

3

))
(c)

≤ 1

3

(
1−Hb

(
H−1

b (1− T ) ?
1

3

))
(59)

where ? denotes the operation
a ? b = ab+ (1− a)(1− b), a, b ∈ [0, 1]. (60)

In the above, (a) follows because Z = (Z ′, Y ) and because (X,S) are independent of Y ; (b) follows by Ms. Gerber’s lemma
[16]; and (c) follows because the function x 7→ Hb(H−1

b (x) ? 1/3) is increasing in x ∈ [0, 1]. Since the right-hand side is
strictly increasing in T ∈ [0, 1], the error exponent in (59) is strictly smaller than 1/3(1−Hb(1/3)) whenever T < 1, which
proves the desired result.

2) Special Case 2: Same PXZ under both Hypotheses: Consider next a setup where

PXY Z = PXZ · PY |Z , (61)
QXY Z = PXZ · PY . (62)

Notice that the pair of sequences (Xn, Zn) has the same joint pmf under both hypotheses. Thus, when the relay simply
fowards the incoming message M without conveying additional information about its observation Y n to the receiver, no positive
error exponent θ is possible. In contrary, as the following proposition shows, when

T ≥ H(Y ), (63)

then forwarding message M to the receiver is useless and it suffices that the message B sent from the relay to the receiver
describes Y n. In other words, under constraint (63), the optimal error exponent θ in the present multi-hop setup coincides
with the optimal error exponent of a point-to-point system that consists only of the relay and the receiver. The three-terminal
multi-hop setup with a transmitter observing Xn can however achieve larger error exponents θ than the point-to-point system
when T < H(Y ), see Example 2 ahead.

Proposition 4: Assume (61)–(63). Under these assumptions, the exponent-rate region E(R, T ) is the set of all nonnegative
pairs (η, θ) that satisfy

η ≤ I(U ;Y ), (64)
θ ≤ I(Y ;Z), (65)

for some auxiliary random variable U satisfying the Markov chain U → X → (Y, Z) and the rate constraint

R ≥ I(U ;X). (66)

Proof: Achievability follows by specializing Theorem 1 to S = U and V = Y . For the converse, see Appendix F.

We next consider an example where assumptions (61) and (62) hold, but not necessarily (63).

Example 2: Let under both hypotheses H = 0 and H = 1:

X ∼ U{0, 1, 2} and Y ∼ B(1/2)

independent of each other. Also, let N0 ∼ B(1/3) and N1 ∼ B(1/2) be independent of each other and of the pair (X,Y ), and

Z = (Z ′, X) and Z ′ =

{
Y ⊕N0 if X = 0 and H = 0

N1 otherwise
.

The described triple (X,Y, Z) satisfies conditions (61) and (62). Moreover, since the pmf of the sequences (Xn, Y n) is the
same under both hypotheses, the error exponent η is zero, and we focus on the receiver’s error exponent θ. By Proposition 4,
the largest error exponent θ that is achievable is

θ? = I(Y ;Z) = I(Y ;Z ′|X) = 1/3(1−Hb(1/3)). (67)
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As we argue in the following, the same maximum error exponent θ? is achievable with a relay-to-receiver rate of only T =
Hb(1/3). To see this, notice that the joint pmf of the triple (Xi, Yi, Zi) is the same under both hypotheses, except for positions
i ∈ {1, . . . , n} where Xi = 0. It thus suffices that the relay conveys the values of its observations {Yi : Xi = 0 for i = 1, . . . , n}
to the receiver. This is achieved by specializing the coding and testing scheme of Subsection III-B to the choice of auxiliaries

S = 0

U =

{
0 if X = 0

1 otherwise

V =

{
Y if U = 0

0 otherwise.

By Theorem 1, the scheme requires rates

R = I(U ;X) = H(U) = Hb(1/3)

and
T = I(V ;Y,U) = H(V ) = Hb(1/6)

and achieves the optimal error exponent θ? in (67):

min
P̃UVXYZ :
P̃UX=PUX
P̃UV Y =PUV Y
P̃V Z=PV Z

D(P̃UVXY Z‖PUXPY PV |UY PZ|X)

(a)
= EPUX

[
min

P̃UVXYZ :
P̃V Y |U=PV Y |U
P̃V Z=PV Z

D(P̃V Y Z|UX‖PY PV |UY PZ|X)

]

(b)
= PUX(0, 0) · min

P̃UVXYZ :
P̃V Y |U=0=PV Y |U=0

P̃V Z=PV Z

D(P̃V Y Z|U=X=0‖PY PV |Y,U=0PZ|X=0)

(c)
= 1/3 · min

P̃Y Z :
P̃Y Z=PY Z

D(P̃Y Z|U=X=0‖PY PZ|X=0)

(d)
= 1/3 ·D(PY Z′|X=0‖PY PZ′|X=0)

(e)
= 1/3 · I(Y ;Z|X = 0) = 1/3(1−Hb(1/3)), (68)

where (a) holds because P̃UX = PUX ; (b) holds because unless U = X = 0, the choice P̃V Y Z|U=X=0 = PY PV |Y,U=0PZ|X=0

is valid and thus the minimum value of the KL-divergence is 0; and (c) holds because P̃V Y |U=0 = PV Y |U=0 implies that
V = Y also under P̃ when U = 0; (d) holds because Z = (Z ′, X) and by eliminating U ; and (e) holds because PY = PY |X=0.

Using similar arguments as in Example 1, it can be shown that the optimal error exponent θ? in (67) cannot be achieved
without the transmitter’s help when T < 1.

IV. EXTENSION TO A K-RELAY MULTI-HOP NETWORK

The coding and testing scheme described in the previous section and our analysis extend to related scenarios. In this section,
we discuss such an extension to the multi-hop channel with an arbitrary number of K ≥ 2 relays. The extension to a network
with two parallel multi-hop channels that share a common receiver is discussed in the subsequent Section V. Interestingly,
the resulting error exponents in Theorems 2 and 3 ahead have the same structure as the error exponents in the previous
Theorem 1. Specifically, the exponents are obtained by minimizing KL-divergences between an auxiliary distribution on all
involved codewords and observations and the true distribution under H = 1, where the minimization relates the auxiliary
distribution to the distribution under H = 0 through the testing conditions. The imposed rate constraints come purely from
the applied source codes. To achieve this performance, similarly to the basic single-relay multi-hop network, it is important
to limit the number of codewords across codebooks that have the same joint type; otherwise the exponents will be decreased.
In fact, the loss in exponent grows with the number of hops in the network, and thus would be more important for the two
networks that we treat in this and the following section.
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We extend the single-relay setup of the previous section to a setup with an arbitrary number of K ≥ 2 relays. As before
the transmitter observes Xn, the receiver observes Zn, and Relay j observes Y nj , j = 1, . . . ,K. Depending on the value of
the hypothesis H, the tuple (Xn, Y n1 , . . . , Y

n
K , Z

n) is i.i.d. according to one of the following two distributions:

under H = 0: (Xn, Y n1 , . . . , Y
n
K , Z

n) i.i.d. ∼ PXY1···YKZ , (69)
under H = 1: (Xn, Y n1 , . . . , Y

n
K , Z

n) i.i.d. ∼ QXY1···YKZ . (70)

Communication takes place over K + 1 noise-free rate-limited bit-pipes: a rate-R pipe from the transmitter to the first relay;
a rate-Lj pipe from Relay j to Relay j + 1, for j = 1, . . . ,K − 1; and a rate-T pipe from Relay K to the receiver. See Fig. 2
for an illustration.

1) A Simple Coding and Testing Scheme: Fully extending the scheme in the previous subsection to this K-relay scenario
requires cumbersome notation. For every pair (j1, j2) ∈ {1, . . . ,K} with j1 < j2 one has to generate a codeword that sends
information from Relay j1 to Relay j2. Moreover, in order not to degrade the performance, some of these codewords have to
be superpositioned on others. For simplicity, here we only consider codewords that are sent from one terminal to the following
terminal, that means either from the transmitter to the first Relay 1, from Relay j ∈ {1, . . . ,K−1} to Relay j+1, or from the
last Relay K to the receiver. As we will show later in this subsection, this scheme is optimal when testing against conditional
independence under some Markov condition.

We now describe the proposed coding and testing scheme for this K-relay scenario. Fix µ > 0, an arbitrary blocklength n,
and joint distributions PU0|X and PUj |YjUj−1

for j ∈ {1, ...,K}. Define the following nonnegative rates

R
∆
= I(U0;X) + µ, (71)

Lj
∆
= I(Uj ;Yj , Uj−1) + µ, j ∈ {1, ...,K − 1}, (72)

T
∆
= I(UK ;YK , UK−1) + µ. (73)

Codebook Generation: For j ∈ {1, ...,K − 1}, randomly generate a codebook CUj = {Unj (`j) : `j ∈ {1, ..., b2nLjc}} by
selecting each entry of the n-length codeword Unj (`j) i.i.d. according to PUj . Also, randomly generate codebooks CU0 =
{Un0 (`0) : `0 ∈ {1, ..., b2nRc}} and CUK = {UnK(`K) : `K ∈ {1, ..., b2nT c}} by selecting each entry of the n-length codewords
Un0 (`0) and UnK(`K) i.i.d. according to PU0

and PUK , respectively.

Transmitter: Given that it observes the sequence xn, the transmitter looks for an index `0 such that

(un0 (`0), xn) ∈ T nµ/4(PU0X). (74)

If successful, it picks one of these indices uniformly at random and sends

m0 = `0 (75)

over the noise-free bit pipe. Otherwise, it sends m0 = 0.

Relay j ∈ {1, ...,K}: It observes the sequence ynj and receives the message mj−1. If mj−1 = 0, it declares Ĥyj = 1 and
sends mj = 0 over the noise-free bit pipe to the receiver. Otherwise, it looks for an index `j such that

(unj (`j), u
n
j−1(`j−1), ynj ) ∈ T nµ/2(PUjUj−1Yj ). (76)

If such an index exists, Relay j chooses one of these indices at random and sends

mj = `j (77)

over the noise-free bit pipe to the receiver. Otherwise, it sends the message mj = 0.

Receiver: Assume that the receiver observes zn and receives message mK from relay K. If mK = 0, the receiver declares
Ĥz = 1. Otherwise, it checks whether

(unK(`K), zn) ∈ T nµ (PUKZ). (78)

If the typicality check is successful, the receiver declares Ĥz = 0. Otherwise, it declares Ĥz = 1.

.    .    .

Fig. 2. Hypothesis testing over a multi-hop network with K relays.
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Analysis: Similar to the analysis of the scheme in Section III-B, see Appendix B. However, here the code construction is
random, whereas in Section III-B a deterministic code construction is used that satisfies the conditions in Lemma 1. One of the
main steps in the analysis of this coding and testing scheme is thus to bound the number of codeword tuples with a given joint
type. Specifically, one has to show that for each j ∈ {1, . . . ,K}, the number of indices (`j , `j−1) such that (unj (`j), u

n
j−1(`j−1))

have the same joint type πUjUj−1
is upper bounded by 2

n(Rj+Rj−1−IπUjUj−1
(Uj ;Uj−1)+µ)

. Without this bounding step, the
resulting error exponent at the receiver would be reduced by the sum I(U1;U0) + I(U1;U2) + . . .+ I(UK ;UK−1).

2) Achievable Exponent-Rate Region and an Optimality Result: The following achievability result follows from the scheme
described in the preceeding subsection.

Theorem 2: The exponent-rate region E(R,L1, ..., LK−1, T ) includes all nonnegative pairs (η1, ..., ηK , θ) that for all j ∈
{1, ...,K} satisfy

ηj ≤ min
P̃U0...Uj−1XY1...Yj

:

P̃U0X
=PU0X

P̃U
j′Uj′−1

Y
j′

=PU
j′Uj′−1

Y
j′

for j′=1,...,j−1

D(P̃U0...Uj−1XY1...Yj‖PU0|XPU1|Y1U0
...PUj−1|Yj−1Uj−2

QXY1...Yj ),

(79)

and

θ ≤ min
P̃U0...Uj−1XY1...YKZ

:

P̃U0X
=PU0X

P̃U
j′Uj′−1

Y
j′

=PU
j′Uj′−1

Y
j′

for j′=1,...,K,

P̃UKZ=PUKZ

D(P̃U0...Uj−1XY1...YKZ‖PU0|XPU1|Y1U0
...PUK |YKUK−1

QXY1...YKZ),

(80)

for some auxiliary random variables (U0, U1, ..., UK) satisfying the Markov chains

U0 → X → Y1 (81)
Uj → (Yj , Uj−1)→ Yj+1, j ∈ {1, ...,K − 1}, (82)
UK → (UK−1, YK)→ Z, (83)

and the rate constraints

R ≥ I(U0;X), (84)
Lj ≥ I(Uj ;Yj , Uj−1), j ∈ {1, ...,K − 1}, (85)
T ≥ I(UK ;YK , UK−1). (86)

Proof: Based on the scheme described in the previous subsection and similar to the proof of Theorem 1. Details are
omitted.

The next proposition shows that the exponent-rate region of Theorem 2 is optimal when the pmfs PXY1...YKZ and QXY1...YKZ

decompose as

PXY1...YKZ = PX · PY1|X · PY2|Y1
· . . . · PYK |YK−1

· PZ|YK , (87)
QXY1...YKZ = PX · PY1 · PY2 . . . · PYK · PZ . (88)

Proposition 5: If (87) and (88) hold, then the exponent-rate region EK(R,L1, ..., LK , T ) is the set of all nonnegative tuples
(η1, ..., ηK , θ) that satisfy

ηj ≤
j∑

m=1

I(Um−1;Ym), j ∈ {1, ...,K}, (89)

θ ≤
K∑
m=1

I(Um−1;Ym) + I(UK ;Z), (90)

for some auxiliary random variables (U0, U1, ..., UK) satisfying the Markov chains

U0 → X → Y1 (91)
Uj → Yj → Yj+1, j ∈ {1, ...,K − 1}, (92)
UK → YK → Z (93)
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and the rate constraints

R ≥ I(U0;X), (94)
Lj ≥ I(Uj ;Yj), j = 1, ...,K − 1, (95)
T ≥ I(UK ;YK). (96)

Proof: Achievability follows by specializing Theorem 2 to auxiliaries that satisfy the Markov chains (91)–(93). The
converse is similar to the converse proof of Proposition 2 in Appendix D and omitted for brevity.

V. EXTENSION TO A K-RELAY MULTI-HOP NETWORK

Consider the two-transmitter, two-relay setup in Fig. 3. Transmitters 1 and 2 observe sequences Xn
1

∆
= (X1,1, . . . , X1,n)

and Xn
2

∆
= (X2,1, . . . , X2,n), Relays 1 and 2 observe sequences Y n1

∆
= (Y1,1, . . . , Y1,n) and Y n2

∆
= (Y2,1, . . . , Y2,n), and the

common receiver observes Zn ∆
= (Z1, . . . , Zn). Depending on the value of the hypothesis H, the tuple (Xn

1 , X
n
2 , Y

n
1 , Y

n
2 , Z

n)
is i.i.d. according to one of the following two distributions:

under H = 0: (Xn
1 , X

n
2 , Y

n
1 , Y

n
2 , Z

n) ∼ i.i.d. PX1X2Y1Y2Z , (97)
under H = 1: (Xn

1 , X
n
2 , Y

n
1 , Y

n
2 , Z

n) ∼ i.i.d. QX1X2Y1Y2Z . (98)

Each Transmitter i ∈ {1, 2} can communicate with its corresponding Relay i over a noise-free bit pipe of rate Ri, and each
Relay i ∈ {1, 2} in its turn can communicate with the final receiver over an individual noise-free bit pipe of rate Ti. Encoding
and detection functions, and probabilities of type-I and type-II errors are defined in a similar way as for the single multi-hop
channel in Section II. Let then η1 and η2 denote the type-II error exponents at Relays 1 and 2, and θ the type-II error exponent
at the receiver. As in Section II, the interest is in identifying the set of all exponent triples (η1, η2, θ) so that the type-I error
probabilities vanish as the observation length tends to infinity. Define thus the exponent-rate region Epar-2(R1, R2, T1, T2) for
the setup here analogously to Definition 2.

1) Coding and Testing Scheme: For this setup with only 5 terminals, we extend the scheme in Subsection III-B in its full
generality.

Fix µ > 0, an arbitrary blocklength n, and a joint conditional distribution PSl,Ul|Xl and PVl|Sl,Ul,Yl for l = 1, 2. Define the
following nonnegative rates:

Rul
∆
= I(Ul;Xl|Sl) + µ, (99)

Rsl
∆
= I(Xl;Sl) + µ, (100)

Rvl
∆
= I(Vl;Yl, Ul|Sl) + µ. (101)

Also, define Rl
∆
= Rul +Rsl and Tl

∆
= Rsl +Rvl .

Codebook Generation: For l ∈ {1, 2}, randomly generate a codebook CS , {Snl (il), il ∈ {1, ..., b2nRsl c}} by selecting
each entry of the n-length codeword Snl (il) i.i.d. according to PSl . For each index il, randomly generate a Ul-codebook
{Unl (jl|il) : jl ∈ {1, ..., b2nRul c}} by selecting the t-th entry of the n-length codeword Unl (jl|il) according to PUl|Sl(.|Sl,t(il)),
Sl,t(il) denotes the t-entry of Snl (il). For each index il, randomly generate a Vl-codebook {V nl (kl|il), kl ∈ {1, ..., b2nRvl c}}.
The codebooks are revealed to all terminals.

M1

M2

Fig. 3. Hypothesis testing over a parallel multi-hop network.
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Transmitter l ∈ {1, 2}: Given that it observes the sequence Xn = xn, Transmitter l looks for a pair of indices (il, jl) such
that

(xnl , s
n
l (il), u

n(jl|il)) ∈ T nµ (PXlSlUl). (102)

If successful, the transmitter picks one of these pairs uniformly at random and sends the corresponding index pair Ml
∆
= (Il, Jl)

to Relay l. If no such pair exists, it sends Ml = 0 to Relay l.

Relay l ∈ {1, 2}: Assume that it observes the sequence Y nl = ynl and receives message Ml from Transmitter l. If ml = 0,
it declares Ĥyl = 1 and sends Bl = 0 to the receiver. Otherwise, it parses ml = (il, jl) and looks for an kl such that

(snl (il), u
n
l (jl|il), vnl (kl|il), ynl ) ∈ T nµ (PSlUlVlYl). (103)

If successful the relay picks one of these indices uniformly at random and sends Bl
∆
= (Il,Kl) to the receiver. Otherwise, it

declares Ĥyl = 1 and sends Bl = 0 to the receiver.

Receiver: Assume that the receiver observes Zn = zn and Message B1 = b1 from Relay 1 and Message B2 = b2 from
Relay 2. If b1 = 0 or b2 = 0, the receiver declares Ĥz = 1. Otherwise, it parses b1 = (i1, k1) and b2 = (i2, k2) and checks
whether

(sn1 (i1), sn2 (i2), vn1 (k1|i1), vn2 (k2|i2), zn) ∈ T nµ (PS1S2V1V2Z).

If the check is successful, it declares Ĥz = 0; otherwise, it declares Ĥz = 1.

Analysis: As for the K-relay scenario, here the code construction is random, and thus it is crucial to bound the number of code-
word tuples that are of a given joint type. In particular, it is important to show that, the number of indices (i1, j1, k1, i2, j2, k2)
for which (sn1 (i1), un1 (j1|i1), vn1 (k1|i1), sn2 (i2), un2 (j2|i2), vn2 (k2|i2)) have the same joint type πS1U1V1S2U2V2

is upper bounded
by

2
n(Rs1+Ru1+Rv1+Rs2+Ru2+Rv2−IπS1U1V1

(U1;V1|S1)−IπS2U2V2
(U2;V2|S2)−IπS1U1V1S2U2V2

(S1,U1,V1;S2,U2,V2)+µ)
.

Without this bounding step, the error exponent at the receiver will be decreased by the sum I(U1;V1|S1) + I(U2;V2|S2) +
I(S1, U1, V1;S2, U2, V2). The rest of the analysi is similar to the analysis of the scheme in Subsection III-B.

2) Achievable Exponent-Rate Region and an Optimality Result: The following achievability result follows from the scheme
described in the preceeding section.

Theorem 3: The exponent-rate region Epar-2(R1, R2, T1, T2) includes all nonnegative triples (η1, η2, θ) that satisfy for l ∈
{1, 2}:

ηl ≤ min

P̃SlUlXlYl
P̃SlUlXl=PSlUlXl
P̃SlUlYl=PSlUlYl

D(P̃SlUlXlYl‖PSlUl|XlQXlYl), (104)

θ ≤ min
P̃S1U1V1S2U2V2X1Y1X2Y2Z

:

P̃SlUlXl=PSlUlXl
P̃SlVlUlYl=PSlVlUlYl

P̃S1S2V1V2Z
=PS1S2V1V2Z

D(P̃S1U1V1S2U2V2X1Y1X2Y2Z‖PS1U1|X1
PS2U2|X2

PV1|S1U1Y1
PV2|S2U2Y2

QX1X2Y1Y2Z), (105)

for some auxiliary random variables (S1, S2, U1, U2, V1, V2) satisfying the rate constraints

Rl ≥ I(Ul, Sl;Xl), (106)
Tl ≥ I(Xl;Sl) + I(Vl;Yl, Ul|Sl), (107)

and so that their joint pmf with (X1, X2, Y1, Y2, Z) factorizes as

PS1S2U1U2V1V2X1X2Y1Y2Z = PX1X2Y1Y2ZPS1U1|X1
PS2U2|X2

PV1|S1U1Y1
PV2|S2U2Y2

.

Proof: Follows similar lines as the proof of Theorem 1 in Appendix B. Details omitted.
The achievable exponent-rate region of Theorem 3 is optimal when the pmfs PX1X2Y1Y2Z and QX1X2Y1Y2Z decompose as

PX1X2Y1Y2Z = PX1|Y1
· PX2|Y2

· PY1Y2 · PZ|Y1Y2
, (108)

QX1X2Y1Y2Z = PX1 · PX2 · PY1Y2 · PZ . (109)

Proposition 6: If (108)–(109) hold, then the exponent-rate region Epar-2(R1, R2, T1, T2) is the set of all nonnegative triples
(η1, η2, θ) that satisfy

ηl ≤ I(Ul;Yl), l ∈ {1, 2}, (110)
θ ≤ I(U1;Y1) + I(U2;Y2) + I(V1, V2;Z), (111)
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for some auxiliary random variables (U1, U2, V1, V2) satisfying the rate constraints

Rl ≥ I(Ul;Xl), (112)
Tl ≥ I(Vl;Yl), (113)

and so that their joint pmf with (X1, X2, Y1, Y2, Z) factorizes as

PU1U2V1V2X1X2Y1Y2Z = PX1X2Y1Y2ZPU1|X1
PU2|X2

PV1|Y1
PV2|Y2

.

Proof: Achievability follows by specializing Theorem 3 to S1 = S2 = 0 and to V1 and V2 satisfying the Markov chains
Vl → Yl → Ul, for l ∈ {1, 2} and is given in Appendix G. The converse is also proved in Appendix G.

VI. CODING AND TESTING SCHEMES WITH BINNING

In source coding, it is well known that binning can decrease the required rate of communication when observations at
different terminals are correlated. This is also the case here, provided that the observations at different terminals are correlated
under both hypotheses. In this section, we extend our coding scheme for the basic single-relay multi-hop network to include
binning. Before doing so, for completeness, we provide a detailed proof of the Shimokawa, Han, and Amari error exponent
[3] for hypothesis testing in a point-to-point system. In their conference paper [3], they describe a coding and testing scheme
based on binning, however they do not include a detailed proof of the resulting error exponent. Recently Katz, Piantanida, and
Debbah [21] analyzed a similar binning scheme; however, their obtained exponent-rate function is smaller than the one in [3].

A. Point-to-Point System

1) Problem Setup: Consider the point-to-point HT with two terminals in Fig. 4. The transmitter observes the sequence
Xn ∆

= (X1, ..., Xn) and the receiver observes the sequence Y n ∆
= (Y1, ..., Yn). Under the null hypothesis

H = 0: (Xn, Y n) ∼ i.i.d PXY , (114)

whereas under the alternative hypothesis

H = 1: (Xn, Y n) ∼ i.i.d. QXY . (115)

for two given pmfs PXY and QXY . The transmitter computes a message M = φ(n)(Xn) and sends it to the receiver over a
noise-free pipe of rate R. Based on M and its observation Y n, the receiver produces its guess Ĥ = g(n)(Y n,M).

Definition 3: For each ε ∈ (0, 1), we say that the exponent-rate pair (θ,R) is ε-achievable if for each sufficiently large
blocklength n, there exists a sequence of encoding and decoding functions (φ(n), g(n)) such that the corresponding type-I and
type-II error probabilities at the receiver

αn
∆
= Pr[Ĥ = 1|H = 0], (116)

βn
∆
= Pr[Ĥ = 0|H = 1], (117)

satisfy

αn ≤ ε, (118)

and

− lim
n→∞

1

n
log βn ≥ θ. (119)

Definition 4: The exponent-rate function θ∗(R) is the supremum of all ε-achievable error exponents for given rate R, i.e.,

θ∗(R)
∆
= sup{θ ≥ 0: (θ,R) is ε-achievable ∀ε > 0}. (120)

Fig. 4. Hypothesis testing over a point-to-point channel
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2) Coding and Testing Scheme: Fix µ > 0, an sufficiently large blocklength n, and the conditional pmf PS|X over a finite
auxiliary alphabet S. Define joint pmfs PSXY = PXY PS|X , QSXY = QXY PS|X and the nonnegative rate R′ such that

R+R′ = I(X;S) + µ, (121)
R′ < I(Y ;S). (122)

Code Construction: Construct a random codebook

CS = {sn(m, `) : m ∈ {1, ..., b2nRc}, ` ∈ {1, ..., b2nR
′
c}}, (123)

by drawing all entries of all codewords i.i.d. according to the chosen distribution PS .

Transmitter: Given that it observes the sequence xn, the transmitter looks for indices (m, `) such that

(sn(m, `), xn) ∈ T nµ/2(PSX). (124)

If successful, it picks one of these indices uniformly at random and sends the index m over the noise-free bit pipe. Otherwise,
it sends m = 0.

Receiver: Assume that the receiver observes yn and receives the message m from the transmitter. If m = 0, the receiver
declares Ĥ = 1. Otherwise, it first looks for an index `′ ∈ {1, ..., b2nR′c} such that

Htp(sn(m,`′),yn)(S|Y ) ≤ Htp(sn(m,˜̀),yn)(S|Y ), ∀˜̀∈ {1, . . . , b2nRc}. (125)

If no such index exists, the receiver declares Ĥ = 1. Otherwise, it checks whether

(sn(m, `′), yn) ∈ T nµ (PSY ),

and declares Ĥ = 0 if this typicality check is successful and Ĥ = 1 otherwise.

3) Result on the Error Exponent: The scheme described in the previous subsection yields the following set of achievable
exponent-rate pairs.

Theorem 4 (Theorem 1 in [3]): Given a rate R > 0, for any choice of the auxiliary random variable S that satisfies the
Markov chain S → X → Y and the rate constraint

R ≥ I(S;X|Y ),

the exponent-rate function θ∗(R) is lower bounded as

θ∗(R) ≥ min

{
min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ‖PS|XQXY ),

min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃SY (S|Y )

D(P̃SXY ‖PS|XQXY ) +R− I(S;X|Y )

}
, (126)

Proof: See Appendix H.
The inequality in Theorem 4 holds with equality in the special cases of testing against independence [1], where QXY =

PX ·PY 1, and of testing against conditional independence [4] where Y decomposes as Y = (Y ′, Z) and QXY ′Z = PXZPY ′|Z .

B. Single-Relay Multi-Hop Network

We turn back to the basic single-realy multi-hop scenario and propose an improved coding and testing scheme based on
binnning.

1There is no need to apply the coding scheme with binning to attain the optimal error exponent in this case, see [1].
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1) Coding and Testing Scheme: Fix µ > 0, an arbitrary blocklength n, and joint conditional pmfs PSU |X and PV |SUY over
finite auxiliary alphabets S, U , and V . Define the joint pmf PSUVXY Z = PXY ZPSU |XPV |SUY and the following nonnegative
rates, which are calculated according to the chosen distribution,

Rs +R′s = I(X;S) + µ, (127a)
Ru +R′u = I(U ;X|S) + µ, (127b)
Rv +R′v = I(V ;Y,U |S) + µ, (127c)

R′s ≤ min{I(S;Y ), I(S;Z)}, (127d)
R′u ≤ I(U ;Y |S), (127e)
R′v ≤ I(V ;Z|S). (127f)

The joint distributions are chosen in a way that

R = Ru +Rs (128)
T = Rs +Rv. (129)

Code Construction: Construct a random codebook

CS = {Sn(i, d) : i ∈ {1, ..., b2nRsc}, d ∈ {1, ..., b2nR
′
sc}}

by selecting each entry of the n-length codeword Sn(i, d) in an i.i.d. manner according to the pmf PS . Then, for each pair
(i, d), generate random codebooks

CU (i, d) = {Un(j, e|i, d) : j ∈ {1, ..., b2nRuc}, e ∈ {1, ..., b2nR
′
uc}}

and
CV (i, d) = {V n(k, f |i, d) : k ∈ {1, ..., b2nRvc}, f ∈ {1, ..., b2nR

′
vc}}

by selecting each entry of the n-length codewords Un(j, e|i, d) and V n(k, f |i, d) in a memoryless manner using the conditional
pmfs PU |S(·|St(i, d)) and PV |S(·|St(i, d)), where St(i, d) denotes the t-th component of the random codeword Sn(i, d). All
codebooks are revealed to all parties.

Transmitter: Given that the transmitter observes the sequence xn, it looks for indices (i, d, j, e) such that

(sn(i, d), un(j, e|i, d), xn) ∈ T nµ/4(PSUX). (130)

If successful, it picks one such pair uniformly at random, and sends

m = (i, j), (131)

over the noise-free bit pipe. Otherwise, it sends m = 0.

Relay: Assume that the relay observes the sequence yn and receives the message m. If m = 0, it declares Ĥy = 1 and
sends b = 0 over the noise-free bit pipe to the receiver. Otherwise, it first looks for indices (d′, e′) such that

Htp(sn(i,d′),un(j,e′|i,d′),yn)(S,U |Y ) ≤ Htp(sn(i,d̃),un(j,ẽ|i,d̃),yn)(S,U |Y ), ∀d̃ ∈ {1, ..., b2nR
′
sc}, ẽ ∈ {1, ..., b2nR

′
uc}, (132)

and then looks for indices (k, f) such that

(sn(i, d′), un(j, e′|i, d′), vn(k, f |i, d′), yn) ∈ T nµ/2(PSUV Y ). (133)

If successful, it declares Ĥy = 0 and picks one of these index pairs uniformly at random. It then sends the corresponding
indices

b = (i, k) (134)

to the receiver. Otherwise, it declares Ĥy = 1 and sends the message b = 0 to the receiver.

Receiver: Assume that the receiver observes zn and receives message b from the relay. If b = 0, the receiver declares
Ĥz = 1. Otherwise, it first looks for indices (d′′, f ′) such that

Htp(sn(i,d′′),vn(k,f ′|i,d′′),zn)(S, V |Z) ≤ Htp(sn(i,d̃),vn(k,f |i,d̃),zn)(S, V |Z), ∀d̃ ∈ {1, ..., b2nR
′
sc}, f̃ ∈ {1, ..., b2nR

′
vc}. (135)

Then, it checks whether

(sn(i, d′′), vn(k, f ′|i, d′′), zn) ∈ T nµ (PSV Z). (136)

If successful, the receiver declares Ĥz = 0. Otherwise, it declares Ĥz = 1.
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2) Result on the Exponent-Rate Region: The coding scheme in the previous subsection establishes the following achievability
result.

Theorem 5: The exponent-rate region E(R, T ) contains all nonnegative pairs (η, θ) that satisfy

η ≤ min{η1, η2, η3}, (137)
θ ≤ min{θi : i = 1, ..., 10}, (138)

where

η1 = min
P̃SUXY :

P̃SUX=PSUX
P̃SUY =PSUY

D(P̃SUXY ‖PSU |XQXY ), (139a)

η2 = min
P̃SUXY :

P̃SUX=PSUX
P̃Y =PY

H(S,U |Y )≤HP̃ (S,U |Y )
H(U |S,Y )≤HP̃ (U |S,Y )

D(P̃SUXY ‖PSU |XQXY ) +R− I(S,U ;X) + I(S,U ;Y ), (139b)

η3 = min
P̃SUXY :

P̃SUX=PSUX
P̃SY =PSY

H(U |S,Y )≤HP̃ (U |S,Y )

D(P̃SUXY ‖PSU |XQXY ) +Ru − I(U ;X|S) + I(U ;Y |S) (139c)

θ1 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SUV Y =PSUV Y
P̃SV Z=PSV Z

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) (139d)

θ2 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SUV Y =PSUV Y

P̃SZ=PSZ
H(V |S,Z)≤HP̃ (V |S,Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(V ;Z|S) +Rv − I(V ;Y,U |S) (139e)

θ3 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV Y =PSV Y
P̃SZ=PSZ

H(U |S,Y )≤HP̃ (U |S,Y )
H(V |S,Z)≤HP̃ (V |S,Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(V, Y ;U |S) + I(V ;Z|S) +Ru +Rv

− I(U ;X|S)− I(V ;Y,U |S) (139f)

θ4 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV Y =PSV Y
P̃SV Z=PSV Z

H(U |S,Y )≤HP̃ (U |S,Y )

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(U ;Y, V |S) +Ru − I(U ;X|S) (139g)

θ5 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃V Y =PV Y
P̃Z=PZ

H(U |S,Y )≤HP̃ (U |S,Y )
H(U,S|Y )≤HP̃ (U,S|Y )
H(V |S,Z)≤HP̃ (V |S,Z)
H(V,S|Z)≤HP̃ (V,S|Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(S, V ;Z) + I(S,U ;V, Y )

+ 2Rs +Ru +Rv − I(S;X)− I(U, S;X)− I(V ;Y,U |S) (139h)

θ6 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃V Y =PV Y
P̃Z=PZ

H(U |S,Y )≤HP̃ (U |S,Y )
H(U,S|Y )≤HP̃ (U,S|Y )
H(V |S,Z)≤HP̃ (V |S,Z)
H(V,S|Z)≤HP̃ (V,S|Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(S,U ;Y, V ) + I(V ;Z|S)

+Rs +Ru +Rv − I(U, S;X)− I(V ;Y,U |S) (139i)
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θ7 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃V Y =PV Y
P̃SV Z=PSV Z

H(U |S,Y )≤HP̃ (U |S,Y )
H(U,S|Y )≤HP̃ (U,S|Y )

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(U, S;V, Y ) +Rs +Ru − I(S,U ;X) (139j)

θ8 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃V Y =PV Y
P̃SZ=PSZ

H(U |S,Y )≤HP̃ (U |S,Y )
H(U,S|Y )≤HP̃ (U,S|Y )
H(V |S,Z)≤HP̃ (V |S,Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(V ;Z|S) + I(S,U ;Y |V )

+Rs +Ru +Rv − I(S,U ;X)− I(V ;Y, U |S) (139k)

θ9 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SUV Y =PSUV Y

P̃Z=PZ
H(V |S,Z)≤HP̃ (V |S,Z)
H(V,S|Z)≤HP̃ (V,S|Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(V, S;Z) +Rs +Rv − I(S;X)− I(V ;Y,U |S) (139l)

θ10 = min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV Y =PSV Y
P̃Z=PZ

H(U,S|Y )≤HP̃ (U,S|Y )
H(V |S,Z)≤HP̃ (V |S,Z)
H(V,S|Z)≤HP̃ (V,S|Z)

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z) + I(V, S;Z) + I(U ;Y, V |S)

+Rs +Ru +Rv − I(S,U ;X)− I(V ;Y, U |S). (139m)

for some choice of the auxiliary random variables (U, S, V ) and auxiliary rates Rs, Ru, Rv satisfying the Markov chains

(U, S)→ X → (Y,Z) (140)
V → (S, Y, U)→ Z (141)

and the rate constraints R = Rs +Ru and T = Rs +Rv and

R ≥ I(U, S;X), (142)
T ≥ I(S;X) + I(V ;Y, U |S), (143)
Rs ≥ I(S;X)−min{I(S;Y ), I(S;Z)}, (144)
Ru ≥ I(U ;X|S)− I(U ;Y |S), (145)
Rv ≥ I(V ;Y, U |S)− I(V ;Z|S). (146)

Proof: See Appendix I.

The exponent-rate region achieved with the binning scheme is optimal when testing against conditional independence. In
fact, consider a setup where the relay’s and the receiver’s observations decompose as

Y = (Ȳ ,W ) (147)
Z = (Z̄,W,Q) (148)

and

under H = 0: (Xn, Ȳ n, Z̄n,Wn, Qn) i.i.d. ∼ PX|Ȳ W · PȲ Z̄QW , (149)

under H = 1: (Xn, Ȳ n, Z̄n,Wn, Qn) i.i.d. ∼ PX|W · PȲ |WQ · PZ̄WQ. (150)

Proposition 7: If (147)–(150) hold, the exponent-rate region E(R, T ) is the set of all nonnegative pairs (η, θ) that satisfy

η ≤ I(U ;Y |W ), (151)
θ ≤ I(U ;Y |W ) + I(V ;Z|Q,W ), (152)

for some auxiliary random variables (U, V ) satisfying the Markov chains U → X → Y and V → Y → Z and the rate
constraints

R ≥ I(U ;X|W ), (153)
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T ≥ I(V ;Y |W,Q), (154)

Proof: Achievability follows by specializing Theorem 5 to S = 0. For the converse, see Appendix J.

VII. CONCLUDING REMARKS

The paper presents coding and testing schemes for a basic multi-hop network with a single relay, for its K-relay extension,
and for a network with two parallel multi-hop channels that share a common receiver, and analyzes their exponent-rate region.
The schemes are similar to Han’s scheme in [2] for the point-to-point channel but also introduce coding techniques for cascade
source coding and an unanimous-decision forwarding strategy where any terminal only decides on the null-hypothesis H = 0
if all preceding terminals have decided on this null-hypothesis. The more complicated code construction and the unanimous-
decision forwarding strategy complicate the analysis compared to the point-to-point setup [2] and to the previously considered
many-to-one [1], [3], [4], two-way [7], [12], [13], or broadcast scenarios [5]–[7]. In particular, they require imposing an
additional structure on the codebooks: each joint type should not be over-represented on the set of codeword tuples in these
codebooks. For each of the three considered networks, the proposed scheme is optimal for some instances of testing against
independence.

When combined with binning, the scheme for the single-relay multi-hop network is also optimal for an instance of testing
against conditional independence. The binning extensions for the other networks are not detailed out due to their involved
forms. Instead, for completeness, an analysis of the Shimokawa-Han-Amari exponent-rate function [3] for the point-to-point
setup is presented.

The derived exponent-rate regions for the schemes without binning all have the same structure, see Theorems 1, 2, and 3:
the exponents are obtained by minimizing the KL-divergence D(P̃‖Q) with Q being the joint pmf on the codewords and
observations under H = 1 and P̃ being a joint pmf over the same quantities and the optimization variables that is subject
to decoding/testing constraints and rate-constraints stemming from the source codes. Future work encompasses showing that
similar exponent-rate regions are achievable also in other setups.

Another line of potential future research is to find coding and testing schemes beyond the random code constructions
discussed in this paper. This is motivated by the following example, for which the current coding and testing schemes are
not sufficient. Let X and Y be independent Bernoulli-1/2 random variables under both hypotheses, and let Z = X ⊕ Y
when H = 0 and Z = X ⊕ Y ⊕ 1 when H = 1. In this example, the receiver can have an infinite error exponent even when
R = T = 0. In fact, it suffices that the transmitter sends its first observed symbol X1 to the relay, which then forwards Y1⊕X1

to the receiver. If Z1 = Y1 ⊕X1, then the relay decides on Ĥz = 0 and otherwise on Ĥz = 1. With the described coding and
testing scheme the probability of error at any given blocklength n is 0. This corresponds to an unbounded error exponent.
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APPENDIX A
PROOF LEMMA 1

We prove the existence of the desired codebooks using probabilistic arguments. Construct a random codebook CS =
{Sn(i) : i = 1, . . . , b2nRsc} by selecting each entry of the n-length codeword Sn(i) in an i.i.d. manner according to the
pmf PS . For each index i, generate a random codebook CU (i) = {Un(j|i) : j ∈ {1, ..., b2nRuc}} by selecting each entry of the
n-length codeword Un(j|i) in an i.i.d. and memoryless manner using the conditional pmf PU |S(·|St(i)), where St(i) denotes
the t-th component of the random codeword Sn(i). For each index i, generate a random codebook CV (i) = {V n(k|i) : k ∈
{1, ..., b2nRvc}} by selecting the t-th entry of the n-length codeword V n(k|i) in a memoryless manner using the conditional
pmf PV |S(·|St(i)).

By the covering lemma and rate expressions (14)–(16), when averaged over the choice of the random codebooks, properties
1) and 2) are satisfied for all sufficiently large n. Also, property 3) holds averaged over the choice of the random codebooks
from the following sequence of inequalities. For any joint type πSUV and µ′ > 0:

EC
[∣∣{(i, j, k) : tp(Sn(i), Un(j|i), V n(k|i)) = πSUV

}∣∣]
=
∑
i,j,k

Pr[tp(Sn(i), Un(j|i), V n(k|i)) = πSUV ]

=
∑
i,j,k

∑
(sn,un,vn) :

tp(sn,un,vn)=πSUV

Pr[(Sn(i), Un(j|i), V n(k|i)) = (sn, un, vn)]

(a)

≤
∑
i,j,k

∑
(sn,un,vn) :

tp(sn,un,vn)=πSUV

2−n(Hπ(S)+D(πS‖PS)) × 2−n(Hπ(U |S)+D(πU|S‖PU|S)) × 2−n(Hπ(V |S)+D(πV |S‖PV |S))

≤
∑
i,j,k

∑
(sn,un,vn) :

tp(sn,un,vn)=πSUV

2−n(Hπ(S)+Hπ(U |S)+Hπ(V |S)−µ′)

(b)

≤
∑
i,j,k

2nHπ(USV )2−n(Hπ(S)+Hπ(U |S)+Hπ(V |S)−µ′)

≤ 2n(Rs+Ru+Rv) · 2−n(Iπ(U ;V |S)−µ′), (155)

where (a) follows from [2, Lemma 3d], (b) follows from [2, Lemma 3c]. Therefore, we have shown that for sufficiently large
n and all µ, ε > 0, we get

Pr
[
∃(i, j) : (Sn(i), Un(j|i), Xn) ∈ T nµ/4(PSUX)

]
> 1− ε/32, (156)

Pr
[
∃k : (Sn(i), Un(j|i), V n(k|i), Y n) ∈ T nµ/2(PSUV Y )

∣∣∣(Sn(i), Un(j|i), Y n) ∈ T n3µ/8(PSUY )
]
> 1− ε/32, (157)

EC
[∣∣{(i, j, k) : tp(Sn(i), Un(j|i), V n(k|i)) = πSUV

}∣∣] ≤ 1/8 · 2n(Rs+Ru+Rv) · 2−n(Iπ(U ;V |S)−µ). (158)

Now, we must show that there exists at least one codebook that satisfies properties (20), (21), and (22) in Lemma 1. We
first order the sets of codebooks according to property (20), and then restrict to the subset of best codebooks that have total
probability at least 1/2. We then repeat this step by ordering the codebooks according to properties (21), and then (22). In
this way, we construct a nonempty subset of codebooks CS , {CU}, and {CV } so that we have

Pr
[
∃(i, j) : (sn(i), un(j|i), Xn) ∈ T nµ/4(PSUX)

]
> 1− ε/4, (159)

Pr
[
∃k : (sn(i), un(j|i), vn(k|i), Y n) ∈ T nµ/2(PSUV Y )

∣∣∣(Sn(i), Un(j|i), Y n) ∈ T n3µ/8(PSUY )
]
> 1− ε/4, (160)∣∣{(i, j, k) : tp(Sn(i), Un(j|i), V n(k|i)) = πSUV

}∣∣ ≤ 2n(Rs+Ru+Rv) · 2−n(Iπ(U ;V |S)−µ), (161)

which completes the proof of lemma.
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APPENDIX B
PROOF OF THEOREM 1

The analysis of the error probabilities at the relay are standard. We therefore focus on the error probabilities at the receiver.
If M 6= 0 and B 6= 0, let I, J,K be the random indices sent over the noise-free bit pipes and define the following events:

ERelay :
{

(sn(I), un(J |I), Y n) /∈ T n3µ/8(PSUY
}
,

ERx :
{

(sn(I), un(J |I), vn(K|I), Zn) /∈ T nµ (PSUV Z)
}
.

The type-I error probability can be bounded as:

αn ≤ Pr[M = 0 or B = 0 or ERelay or ERx]

≤ Pr[M = 0] + Pr[B = 0 or ERelay|M 6= 0] + Pr[ERx|M 6= 0, B 6= 0] (162)
(a)

≤ ε/4 + Pr[ERelay|M 6= 0] + Pr[B = 0|M 6= 0, EcRelay] + ε/4 (163)
(b)

≤ ε/4 + ε/4 + ε/4 + ε/4 (164)
= ε, (165)

where (a) holds because the chosen code construction satisfies (20) and by the Markov lemma, and (b) holds because the code
construction satisfies (21) and by the Markov lemma.

We now bound the probability of type-II error at the receiver. Let Pn be the set of all types over the product alphabets
Sn×Un×Vn×Xn×Yn×Zn. Also, let Pnµ be the subset of types πSUVXY Z ∈ Pn that simultaneously satisfy the following
three conditions:

|πSUX − PSUX | ≤ µ/4, (166)
|πSUV Y − PSUV Y | ≤ µ/2, (167)

|πSV Z − PSV Z | ≤ µ. (168)

The type-II error probability can then be written as:

βn ≤ Pr
[
(Xn, Y n, Zn) ∈ ARx,n|H = 1

]
, (169)

where ARx,n includes the acceptance region at the receiver:

ARx,n
∆
=
⋃
i,j,k

{
(xn, yn, zn) : tp(sn(i), un(j|i), vn(k|i), xn, yn, zn) ∈ Pnµ

}
. (170)

We thus have

βn ≤
∑

πSUVXY Z∈Pnµ

∑
(i,j,k):

tp(sn(i),un(j|i),vn(k|i))=πSUV∑
(xn,yn,zn):

tp(sn(i),un(j|i),vn(k|i),xn,yn,zn)=πSUVXY Z

Pr[Xn = xn, Y n = yn, Zn = zn|H = 1]. (171)

Notice that for a triple (xn, yn, zn) of type πXY Z :

Pr[Xn = xn, Y n = yn, Zn = zn|H = 1] = 2−n(Hπ(X,Y,Z)+D(πXYZ‖QXYZ)). (172)

Moreover, by standard arguments, for any joint type πSUVXY Z and any triple of sequences (sn, un, vn) of matching subtype
πSUV : ∣∣{(xn, yn, zn)) : tp(sn, un, vn, xn, yn, zn) = πSUVXY Z

}∣∣ ≤ 2nHπ(X,Y,Z|S,U,V ). (173)

Also,

|Pnµ | ≤ |Pn| ≤ (n+ 1)|S|·|U|·|V|·|X |·|Y|·|Z|. (174)

Combining (171)–(174) with Property (22) in Lemma 1 yields the following upper bound:

βn ≤(n+ 1)|S|.|U|.|V|.|X |.|Y|.|Z|

× max
πUSVXY Z∈Pnµ

[
2n(Rs+Ru+Rv−Iπ(U ;V |S)+µ) · 2nHπ(X,Y,Z|S,U,V ) · 2−n(Hπ(XY Z)+D(πXYZ‖QXYZ))

]
. (175)
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Plugging the rate expressions (14)–(16) into (175) and simplifying, results in the following upper bound, we obtainL:

βn ≤ (n+ 1)|S|.|U|.|V|.|X |.|Y|.|Z| · 2−nθµ . (176)

where

θµ
∆
= min
πUSVXY Z∈Pnµ

[
Hπ(XY Z) +D(πXY Z‖QXY Z)−Hπ(XY Z|SUV ) + Iπ(U ;V |S)

]
− I(X;SU)− I(Y U ;V |S). (177)

Now, we let µ→ 0 and n→∞. By continuity properties, after performing some simple manipulations, we obtain that θµ → θ
as µ→ 0, where

θ , min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SV UY =PSV UY
P̃SV Z=PSV Z

D(P̃SUVXY Z‖PSU |XPV |SUYQXY Z). (178)

APPENDIX C
PROOF OF PROPOSITION 1

Fix a pair of probability distributions PSU |X and PV |SUY . We will show that there exists a new pair of probability distributions
PŪ |X and PV̄ |Y so that

min
P̃SUVXY Z :

P̃SUX=PSU|XPX

P̃SUV Y =PSUV Y
P̃SV Z=PSV Z

D(P̃SUVXY Z‖PSU |XPV |SUYQXYQZ|Y ) ≥ min
P̃ŪV̄ XY Z :

P̃ŪX=PŪX
P̃ŪV̄ Y =PŪV̄ Y
P̃V̄ Z=PV̄ Z

D(P̃SUVXY Z‖PŪ |XPV̄ |YQXYQZ|Y ). (179)

This will conclude the proof of the proposition.
Consider the following sequence of inequalities:

min
P̃SUVXY Z :
P̃SUX=PSUX
P̃SUV Y =PSUV Y
P̃SV Z=PSV Z

D(P̃SUVXY Z‖PSU |XPV |SUYQXYQZ|Y )

(a)
= min

P̃SUVXY Z :
P̃SUX=PSUX
P̃SUV Y =PSUV Y
P̃SV Z=PSV Z

D(P̃SUXY ‖PSU |XQXY ) + EP̃SUXY
[
D(P̃V Z|SUXY ‖PV |SUYQZ|Y )

]

(b)

≥ min
P̃ŪXY :

P̃ŪX=PŪX
P̃ŪY =PŪY

D(P̃ŪXY ‖PŪ |XQXY ) + min
P̃SUV Y Z :

P̃SUV Y =PSUV Y
P̃SV Z=PSV Z

EP̃SUY [D(P̃V Z|SUY ‖PV |SUYQZ|Y )] (180)

(c)
= min

P̃ŪXY :

P̃ŪX=PŪX
P̃ŪY =PŪY

D(P̃ŪXY ‖PŪ |XQXY )

+ min
u,s

min
P̃V Y Z|S=s,U=u:

P̃V Y |S=s,U=s=PV Y |S=s,U=s

P̃V Z|S=s=PV Z|S=s

EP̃Y |S=s,U=u
[D(P̃V Z|Y,S=s,U=u‖PV |Y,S=s,U=uQZ|Y )] (181)

(d)

≥ min
P̃ŪXY :

P̃ŪX=PŪX
P̃ŪY =PŪY

D(P̃UXY ‖PU |XQXY ) + min
P̃V̄ Y Z :

P̃V̄ Y =PV̄ Y
P̃V̄ Z=PV̄ Z

EP̃Y [D(P̃V̄ Z|Y ‖PV̄ |YQZ|Y )] (182)

where (a) follows by the chain rule for KL-divergences; (b) follows by introducing Ū := (U, S), because for any functions
g1 and g2 it holds that minx(g1(x) + g2(x)) ≥ minx(g1(x) + minx(g2(x)), and by the data-processing inequality for KL-
divergences; and (c) holds because the minimum cannot be larger than the average and thus the minimum will be achieved
for a degenerate distribution P̃US ; and (d) by defining V̄ so that for all pairs (v, y):

PV̄ |Y (v|y) = PV |SUY (v|s∗, u∗, y)

where s∗, u∗ denotes the minimizing (s, u)-pair in (181).
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APPENDIX D
PROOF OF PROPOSITION 2

Fix a sequence of encoding and decoding functions {φ(n), φ
(n)
y , g

(n)
y , g

(n)
z } so that the inequalities of Definition 1 hold for

sufficiently large blocklengths n. Fix also such a sufficiently large n and define for each t ∈ {1, . . . , n}:

Ut
∆
= (M,Xt−1)

Vt
∆
= (B, Y t−1). (183)

Define also U , (UQ, Q); V , (VQ, Q); X , XQ; Y , YQ; and Z , ZQ; for Q ∼ U{1, . . . , n} independent of the tuples
(Sn, Un, V n, Xn, Y n, Zn). Notice the Markov chains U → X → Y and V → Y → Z, where the latter holds in particular
because PXY Z decomposes as PXPY |XPZ|Y .

We start by lower bounding rate R:

R =
1

n
H(M)

≥ 1

n
I(M ;Xn)

=
1

n

n∑
i=1

I(M ;Xt|Xt−1)

(a)
=

1

n

n∑
t=1

I(M,Xt−1;Xt)

=
1

n

n∑
t=1

I(Ut;Xt)

(b)
= I(U ;X), (184)

where (a) holds because the sources are i.i.d, and (b) holds by the definition of the random variables Q,U,X and because X
is independent of Q. Following similar steps, rate T can be lower bounded as:

T =
1

n
H(B)

≥ 1

n
I(B;Y n)

=
1

n

n∑
i=1

I(B, Y t−1;Yt)

= I(V ;Y ).

The type-II error probability at the relay can be bounded as:

− 1

n
log ζn ≤

1

n
D(PMY n|H=0‖PMY n|H=1) + ε

(a)
=

1

n
I(M ;Y n) + ε

=
1

n

n∑
t=1

I(M ;Yt|Y t−1) + ε

=
1

n

n∑
t=1

I(M,Y t−1;Yt) + ε

(b)

≤ 1

n

n∑
t=1

I(M,Xt−1;Yt) + ε

=
1

n

n∑
t=1

I(Ut;Yt) + ε

= I(U ;Y ) + ε (185)

where (a) follows because under hypothesis H = 1, M and Y n are independent, and (b) follows from the Markov chain
Y t−1 → (M,Xt−1)→ Yt.
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We finally turn to the type-II error probability at the receiver:

− 1

n
log βn ≤

1

n
D(PBZn|H=0‖PBZn|H=1) + ε

(a)
=

1

n
D(PB|H=0‖PB|H=1) +

1

n
EB
[
D(PZn|B,H=0‖PZn|B,H=1)

]
+ ε

(b)

≤ 1

n
D(PMY n|H=0‖PMY n|H=1) + EB

[
D(PZn|B,H=0‖PZn|H=1)

]
+ ε

(c)
=

1

n
I(M ;Y n) +

1

n
I(B;Zn) + ε

≤ 1

n

n∑
t=1

I(Ut;Yt) +
1

n

n∑
t=1

I(Vt;Zt) + ε

= I(U ;Y ) + I(V ;Z) + ε, (186)

where (a) follows by the chain rule for KL-divergences; (b) follows on one hand because B is a function of (M,Y n) and by
the data processing inequality for KL-divergences, and on the other hand because under H = 1 observation Zn is independent
of B with same marginal distribution as under H = 0; (c) follows because under H = 1 observation Y n is independent of
M with same marginal distributions as under H = 0; and the last two inequalities can be proved by proceeding along similar
lines as the proof of (185) and exploiting the Markov chains Y t−1 → (M,Xt−1)→ Yt and Zt−1 → (B, Y t−1)→ Zt.

APPENDIX E
PROOF OF PROPOSITION 3

We fix a sufficiently large n and a sequence of encoding and decoding functions such that the properties of Definition 1
hold. Also, define St

∆
= (M,Xt−1, Zt−1). First, consider the rate R:

nR = H(M)

≥ I(M ;Xn, Zn)

=

n∑
t=1

I(M ;Xt, Zt|Xt−1, Zt−1)

=

n∑
t=1

I(M,Xt−1, Zt−1;Xt, Zt)

≥
n∑
t=1

I(M,Xt−1, Zt−1;Xt)

=

n∑
t=1

I(St;Xt)

Now, consider the error exponent at the relay:

− 1

n
log ζn ≤

1

n
D(PMY n|H=0‖PMY n|H=1) + ε

(a)
=

1

n
I(M ;Y n) + ε

=
1

n

n∑
t=1

I(M ;Yt|Y t−1) + ε

(b)
=

1

n

n∑
t=1

I(M,Y t−1;Yt) + ε

≤ 1

n

n∑
t=1

I(M,Xt−1, Y t−1, Zt−1;Yt) + ε

(c)
=

1

n

n∑
t=1

I(M,Xt−1, Zt−1;Yt) + ε

=
1

n

n∑
t=1

I(St;Yt) + ε
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where (a) follows because under hypothesis H = 1, M and Y n are independent, (b) follows from the memoryless property
of the channel, and (c) follows from the Markov chain Y t−1 → (M,Xt−1) → Yt. Next, consider the error exponent at the
receiver:

− 1

n
log βn ≤

1

n
D(PBZn|H=0‖PBZn|H=1) + ε

(a)

≤ 1

n
D(PMY nZn|H=0‖PMY nZn|H=1) + ε

(b)
=

1

n
I(M ;Y n, Zn) + ε

(c)
=

1

n
I(M ;Zn) + ε

=
1

n

n∑
t=1

I(M ;Zt|Zt−1) + ε

=
1

n

n∑
t=1

I(M,Zt−1;Zt) + ε

≤ 1

n

n∑
t=1

I(M,Xt−1, Zt−1;Zt) + ε

≤ 1

n

n∑
t=1

I(St;Zt) + ε

where (a) follows from the data processing inequality, (b) follows because M and (Y n, Zn) are independent under hypothesis
H = 1, and (c) follows from the Markov chain M → Xn → Zn → Y n. The proof of the converse is finally concluded by
defining a time-sharing random variable Q ∼ U{1, ..., n} and S ∆

= (SQ, Q), X ∆
= XQ, Y ∆

= YQ and Z ∆
= ZQ.

APPENDIX F
PROOF OF PROPOSITION 4

Fix a sequence of encoding and decoding functions that satisfy properties of Definition 1, and then a sufficiently large n.
Define Ut

∆
= (M,Xt−1), and consider first the rate R:

nR = H(M)

≥ I(M ;Xn)

=

n∑
t=1

I(M ;Xt|Xt−1)

=

n∑
t=1

I(M,Xt−1;Xt)

=

n∑
t=1

I(Ut;Xt)

Now, consider the type-II error probability at the relay:

− 1

n
log ζn ≤

1

n
D(PMY n|H=0‖PMY n|H=1) + ε

=
1

n
I(M ;Y n) + ε

=
1

n

n∑
t=1

I(M ;Yt|Y t−1) + ε

=
1

n

n∑
t=1

I(M,Y t−1;Yt) + ε

≤ 1

n

n∑
t=1

I(M,Xt−1;Yt) + ε

=
1

n

n∑
t=1

I(Ut;Yt) + ε,
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and the type-II error probability at the receiver:

− 1

n
log βn ≤

1

n
D(PBZn|H=0‖PBZn|H=1) + ε

≤ 1

n
D(PMY nZn|H=0‖PMY nZn|H=1) + ε

(a)
=

1

n
I(M,Zn;Y n)

=
1

n
I(M ;Y n|Zn) + I(Y n;Zn)

(b)
=

1

n
I(Zn;Y n)

≤ 1

n

n∑
t=1

I(Zt;Yt) + ε, (187)

where here (a) follows because under hypothesis H = 1, (M,Zn) are independent of Y n, and (b) follows from the Markov
chain M → Xn → Zn → Y n.

The proof of the converse is finally concluded by defining a time-sharing random variable as Q ∼ U{1, ..., n} and U
∆
=

(UQ, Q), X ∆
= XQ, Y ∆

= YQ and Z ∆
= ZQ.

APPENDIX G
PROOF OF PROPOSITION 6

Achievability: Consider the error exponent at the receiver:

min
P̃U1V1U2V2X1Y1X2Y2Z

:

P̃UlXl=PUlXl
P̃VlUlYl=PVlUlYl
P̃V1V2Z

=PV1V2Z

D(P̃U1V1U2V2X1Y1X2Y2Z ||PU1|X1
PU2|X2

PV1|U1Y1
PV2|U2Y2

PX1
PX2

PY1Y2
PZ)

= min
P̃U1V1U2V2Y1Y2Z

:

P̃VlUlYl=PVlUlYl
P̃V1V2Z

=PV1V2Z

D(P̃U1V1U2V2Y1Y2Z ||PU1
PU2

PV1|U1Y1
PV2|U2Y2

PY1Y2
PZ)

= min
P̃U1V1U2V2Y1Y2Z

:

P̃VlUlYl=PVlUlYl
P̃V1V2Z

=PV1V2Z

[
D(P̃Y1Y2

||PY1Y2
) + EP̃Y1Y2

[D(P̃U1|Y1Y2
||PU1

)]

+ EP̃U1Y1Y2
[D(P̃U2|U1Y1Y2

||PU2
)] + EP̃U1U2Y1Y2

[D(P̃V1|U1U2Y1Y2
||PV1|U1Y1

)]

+ EP̃U1U2V1Y1Y2
[D(P̃V2|U1U2V1Y1Y2

||PV2|U2Y2
)] + EP̃U1U2V1V2Y1Y2

[D(P̃Z|U1U2V1V2Y1Y2
||PZ)]

]
≥ I(Z;V1V2) + I(U1;Y1) + I(U2;Y2), (188)

where the last step holds because under conditions

P̃VlUlYl = PVlUlYl , l ∈ {1, 2}, (189)
P̃V1V2Z = PV1V2Z , (190)

the following inequalities hold:

D(P̃Y1Y2
||PY1Y2

) ≥ 0

EP̃Y1Y2
[D(P̃U1|Y1Y2

||PU1
)] = IP̃ (U1;Y1Y2) ≥ IP̃ (U1;Y1) = I(U1;Y1)

EP̃U1Y1Y2
[D(P̃U2|U1Y1Y2

||PU2
)] = IP̃ (U2;Y1Y2U1) ≥ IP̃ (U2;Y2) = I(U2;Y2)

EP̃U1U2Y1Y2
[D(P̃V1|U1U2Y1Y2

||PV1|U1Y1
)] ≥ 0

EP̃U1U2V1Y1Y2
[D(P̃V2|U1U2V1Y1Y2

||PV2|U2Y2
)] ≥ 0

EP̃U1U2V1V2Y1Y2
[D(P̃Z|U1U2V1V2Y1Y2

||PZ)] = IP̃ (Z;U1U2V1V2Y1Y2) ≥ IP̃ (Z;V1V2) = I(Z;V1V2). (191)

Moreover, each of these inequalities holds with equality for the choice

P̃U1X1U2X2Y1Y2V1V2Z = PY1Y2 · PU1|Y1
· PU2|Y2

· PV1|U1Y1
· PV2|U2Y2

· PX1|U1
· PX2|U2

, (192)
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which represents a feasible choice, i.e., it satisfies both conditions (189) and (190). In particular, for all triples (v1, v2, z), the
choice in (192) satisfies

P̃V1V2Z(v1, v2, z) =
∑

u1u2y1y2

PY1Y2
(y1, y2)PU1|Y1

(u1|y1)PU2|Y2
(u2|y2)PV1|U1Y1

(v1|u1, y1)PV2|U2Y2
(v2|u2, y2)PZ|V1V2

(z|v1, v2)

= PV1V2Z(v1, v2, z). (193)

Combining all these arguments shows that (188) holds with equality, which proves the achievability of the desired error
exponent at the receiver.

The error exponents at the relays can be obtained similarly. Details omitted.
Converse: Define for each t ∈ {1, . . . , n} and for l ∈ {1, 2}:

Ul,t
∆
= (Ml, X

t−1
l )

Vl,t
∆
= (Bl, Y

t−1
l ). (194)

Then, consider rate

Rl =
1

n
H(Ml)

≥ 1

n
I(Ml;X

n
l )

=
1

n

n∑
t=1

I(Ml;Xl,t|Xt−1
l )

=
1

n

n∑
t=1

I(Ml, X
t−1
l ;Xl,t)

=
1

n

n∑
t=1

I(Ul,t;Xl,t),

and rate

Tl =
1

n
H(Bl)

≥ 1

n
I(Bl;Y

n
l )

=
1

n

n∑
t=1

I(Bl;Yl,t|Y t−1
l )

=
1

n

n∑
t=1

I(Bl, Y
t−1
l ;Yl,t)

=
1

n

n∑
t=1

I(Vl,t;Yl,t).

Now, consider the error exponent at Relay l ∈ {1, 2}:

− 1

n
log ζl,n ≤

1

n
D(PMlY nl |H=0‖PMlY nl |H=1) + ε

=
1

n
I(Ml;Y

n
l ) + ε

=
1

n

n∑
t=1

I(Ml;Yl,t|Y t−1
l ) + ε

=
1

n

n∑
t=1

I(Ml, Y
t−1
l ;Yl,t) + ε

≤ 1

n

n∑
t=1

I(Ml, Y
t−1
l , Xt−1

l ;Yl,t) + ε

(a)
=

1

n

n∑
t=1

I(Ml, X
t−1
l ;Yl,t) + ε
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=
1

n

n∑
t=1

I(Ul,t;Yl,t) + ε

where (a) follows from the Markov chain Y t−1
l → (Ml, X

t−1
l )→ Yl,t. Similarly, for the error exponent at the receiver:

− 1

n
log βn ≤

1

n
D(PB1B2Zn|H=0‖PB1B2Zn|H=1) + ε

(a)
=

1

n
D(PB1B2|H=0‖PB1B2|H=1) +

1

n
EB1B2

[
D(PZn|B1B2,H=0‖PZn|B1B2,H=1)

]
+ ε

(b)

≤ 1

n
D(PM1M2Y n1 Y

n
2 |H=0‖PM1M2Y n1 Y

n
2 |H=1) +

1

n
EB1B2

[
D(PZn|B1B2,H=0‖PZn|B1B2,H=1)

]
+ ε

(c)
=

1

n
EY n1 Y n2

[
D(PM1M2|Y n1 Y n2 ,H=0‖PM1M2|Y n1 ,Y n2 ,H=1)

]
+ EB1B2

[
D(PZn|B1,B2,H=0‖PZn|H=1)

]
+ ε

(d)
=

1

n
EY n1

[
D(PM1|Y n1 ,H=0‖PM1|H=1)

]
+

1

n
EY n2

[
D(PM2|Y n2 ,H=0‖PM2|H=1)

]
+ EB1B2

[
D(PZn|B1,B2,H=0‖PZn|H=1)

]
+ ε

=
1

n
I(M1;Y n1 ) +

1

n
I(M2;Y n2 ) +

1

n
I(B1, B2;Zn) + ε

(e)

≤ 1

n

n∑
t=1

I(U1,t;Y1,t) +
1

n

n∑
t=1

I(U2,t;Y2,t) +
1

n

n∑
t=1

I(V1,t, V2,t;Zt) + ε

(195)

where (a) holds by the chain rule for KL-divergences; (b) holds because B1 and B2 are functions of (M1, Y
n
1 ) and (M2, Y

n
2 ) and

by the data processing inequality for KL-divergences; (c) holds on one hand because (Y n1 , Y
n
2 ) have same joint distribution

under both hypothesis, and on the other hand because under H = 1 observation Zn is independent of the two messages
(B1, B2); (d) holds because under H = 1, M1 and M2 are independent of each other and of Y n1 , Y

n
2 and under H = 0 the

Markov chains M1 → Y n1 → (M2, Y
n
2 ) and M2 → Y n2 → (M1, Y

n
1 ) hold; and (e) follows because of the Markov chains

Y t−1
1 → (M1, X

t−1)→ Y1,t; Y t−1
2 → (M2, X

t−1)→ Y2,t; and Zt−1 → (B1, B2, Y
t−1
1 , Y t−1

2 )→ Zt.
The proof is finalized by introducing appropriate auxiliary random variables and taking ε→ 0.

APPENDIX H
PROOF OF THEOREM 4

We analyze the probabilities of error of the coding and testing scheme described in Subsection VI-A2 averaged over the
random code constructions. By standard arguments (successively eliminating the worst half of the codewords from the codebooks
as detailed out in Appendix A) the desired result can be proved for a set of deterministic codebooks.

Fix an arbitrary ε > 0 and the scheme’s parameter µ > 0. For a fixed blocklength n, let Pn be the set of all types over
the product alphabets Sn ×Sn ×Xn ×Yn. Also, let Pnµ be the subset of types πSS′XY ∈ Pn that simultaneously satisfy the
following conditions:

∀(s, s′, x, y) ∈ S × S × X × Y :
|πSX(s, x)− PSX(s, x)| ≤ µ/2,
|πS′Y (s′, y)− PSY (s, y)| ≤ µ, (196)

and

HπS′Y (S|Y ) ≤ HπSY (S|Y ). (197)

Notice that when µ→ 0 and n→∞, then

Pnµ → P∗ as µ→ 0 and n→∞, (198)

where
P∗ ,

{
P̃SXY : P̃SX = PSX and P̃S′Y = PSY and HP̃SY

(S|Y ) ≥ H(S|Y )
}
. (199)

We first analyze the type-I error probability at the receiver. For the case of M 6= 0, let L be the index chosen at the transmitter.
Define events

E(1)
Rx :

{
(Sn(M, 1), Y n) /∈ T nµ (PSY )

}
, (200)

E(2)
Rx :

{
∃`′ 6= L : Htp(Sn(M,`′),Y n)(S|Y ) ≤ min

˜̀
Htp(Sn(M,˜̀),Y n)(S|Y )

}
. (201)

For all sufficiently large n, the type-I error probability can be bounded as:

αn ≤ Pr[M = 0 or E(1)
Rx or E(2)

Rx ]
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≤ Pr[M = 0] + Pr[E(1)
Rx |M 6= 0] + Pr[E(2)

Rx |M 6= 0, E(1)c
Rx ]

(a)

≤ ε/3 + Pr[E(1)
Rx |M 6= 0] + Pr[E(2)

Rx |M 6= 0, E(1)c
Rx ]

(b)

≤ ε/3 + ε/3 + Pr[E(2)
Rx |M 6= 0, E(1)c

Rx ]

(c)

≤ ε/3 + ε/3 + ε/3

= ε, (202)

where for sufficiently large n inequality (a) follows by the standard covering lemma [16] and by the rate constraint in (121);
(b) follows from the Markov lemma [16]; and (c) from the following sequence of inequalities:2

Pr
[
E(2)

Rx |M 6= 0, E(1)c
Rx

]
= Pr

[
Htp(Sn(M,L),Y n)(S|Y ) ≥ min

˜̀6=L
Htp(Sn(M,˜̀),Y n)(S|Y )

∣∣ (Sn(M,L), Y n) ∈ T nµ (PSY ), (Sn(M,L), Xn) ∈ T nµ/2(PSX)
]

(d)

≤ Pr
[
Htp(Sn(1,1),Y n)(S|Y ) ≥ min

˜̀≥1
Htp(Sn(2,˜̀),Y n)(S|Y )

∣∣ (Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈ T nµ/2(PSX)
]

=
∑

πSS′Y ∈Pnµ

b2nR
′
c∑

˜̀=1

∑
sn,yn,s′n:

tp(sn,yn,s′n)=πSY S′

Pr
[
Sn(1, 1) = sn, Y n = yn, Sn(2, ˜̀) = s′n

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY , (S

n(1, 1), Xn) ∈ T nµ/2(PSX))
]

(e)

≤
∑

πSS′Y ∈Pnµ

b2nR
′
c∑

˜̀=1

∑
sn,yn,s′n:

tp(sn,yn,s′n)=πSS′Y

Pr
[
Sn(1, 1) = sn, Y n = yn

∣∣ (Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈ T nµ/2(PSX)
]

· Pr[Sn(2, ˜̀) = s′n]

(f1)

≤
∑

πSS′Y ∈Pnµ

b2nR
′
c∑

˜̀=1

∑
sn,yn,s′n:

tp(sn,yn,s′n)=πSS′Y

2−nHπ(S,Y ) · 2−nHπ(S′)

(f2)

≤
∑

πSS′Y ∈Pnµ

b2nR
′
c∑

˜̀=1

2nHπ(S,S′,Y ) · 2−nHπ(S,Y ) · 2−nHπ(S′)

=
∑

πSS′Y ∈Pnµ

2n(R′−Iπ(S′;Y,S))

≤
∑

πSS′Y ∈Pnµ

2n(R′−Iπ(S′;Y ))

(g)

≤ (n+ 1)|S|
2.|Y| · max

πSS′Y ∈P
(n)
µ

2n(R′−I(S;Y )+δn(µ))

(h)

≤ ε/3, (203)

where δn(µ) is a function that tends to 0 as µ→ 0 and n→∞. The inequalities are justified as follows:
• (d): (Our proof is inspired by a proof on the Wyner-Ziv source coding result in [16, Appendix to Chapter 11].) Inequality (d)

follows from the following sequence of equalities and from the law of total probability applied over the pair (M,L). For
any (m, `) ∈ {1, . . . , b2nRc} × {1, . . . , b2nR′c}:

Pr
[
Htp(Sn(M,L),Y n)(S|Y ) ≥ min

˜̀6=L
Htp(Sn(M,˜̀),Y n)(S|Y )

∣∣
(Sn(M,L), Y n) ∈ T nµ (PSY ), (Sn(M,L), Xn) ∈ T nµ/2(PSX),M = m,L = `

]
2For ease of exposition we slightly abuse notation: by πSS′Y ∈ P

(n)
µ we mean that πSS′Y takes value in the projection of P(n)

µ onto Sn × Sn × Yn.
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(i)
= Pr

[
Htp(Sn(M,L),Y n)(S|Y ) ≥ min

˜̀6=L
Htp(Sn(2,˜̀),Y n)(S|Y )

∣∣
(Sn(M,L), Y n) ∈ T nµ (PSY ), (Sn(M,L), Xn) ∈ T nµ/2(PSX),M = m,L = `

]
(ii)
= Pr

[
Htp(Sn(1,1),Y n)(S|Y ) ≥ min

˜̀6=L
Htp(Sn(2,˜̀),Y n)(S|Y )

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈ T nµ/2(PSX),M = m,L = `

]
(iii)

≤ Pr
[
Htp(Sn(1,1),Y n)(S|Y ) ≥ min

˜̀
Htp(Sn(2,˜̀),Y n)(S|Y )

∣∣
(Sn(1, 1), Y n) ∈ T nµ (PSY ), (Sn(1, 1), Xn) ∈ T nµ/2(PSX),M = m,L = `

]
, (204)

where (i) holds because the picked codeword Sn(M,L) has the same joint pmf with any set of J other codewords in the
codebook; (ii) holds because the transmitter uniformly picks one of the pairs of indices (m, l) that satisfy the typicality
check (124); (iii) holds because I adding an element to a minimization can only decrease this minimization.

• (e): This inequality holds because the codebook’s codewords are drawn independently of each other.
• (f1) and (f2): These two inequalities hold by standard arguments on types.
• (g): This inequality holds by the polynomial number of types, because Hπ(S′|Y ) ≤ Hπ(S|Y ), and by (198) and continuity

of the entropy function.
• (h): holds for sufficiently small µ > 0 so that R′ − I(S;Y ) + δn(µ) < 0 and sufficiently large n.
We now bound the probability of type-II error at the receiver.

βn ≤ Pr[(Xn, Y n) ∈ ARx,n|H = 1], (205)

where ARx,n includes the receiver’s acceptance region:

ARx,n
∆
=
⋃
m

⋃
`,`′

{
(xn, yn) : tp(sn(m, `), sn(m, `′), xn, yn) ∈ Pnµ

}
. (206)

We thus have

βn ≤
∑

πSS′XY ∈Pnµ

∑
m

∑
(`,`′):

tp(sn(m,`),sn(m,`′))=πSS′

∑
(xn,yn):

tp(sn(m,`),sn(m,`′),xn,yn)=πSS′XY

Pr[Xn = xn, Y n = yn|H = 1]

=
∑

πSXY ∈Pnµ

∑
m

∑
`

tp(sn(m,`))=πS

∑
(xn,yn):

tp(sn(m,`),xn,yn)=πSXY

Pr[Xn = xn, Y n = yn|H = 1]

+
∑

πSS′XY ∈Pnµ

∑
m

∑
(`,`′), 6̀=`′:

tp(sn(m,`),sn(m,`′))=πSS′

∑
(xn,yn):

tp(sn(m,`),sn(m,`′),xn,yn)=πSS′XY

Pr[Xn = xn, Y n = yn|H = 1]. (207)

By standard arguments on types and by constraint (121), we get the following upper bounds:∑
πSXY ∈Pnµ

∑
m

∑
`

tp(sn(m,`))=πS

∑
(xn,yn):

tp(sn(m,`),xn,yn)=πSXY

Pr[Xn = xn, Y n = yn|H = 1]

≤ (n+ 1)|S|.|X |.|Y| · 2n(I(S;X)+µ) · 2nHπ(X,Y |S) · 2−n(Hπ(X,Y )+D(πXY ‖QXY )), (208)

and similarly ∑
πSS′XY ∈Pnµ

∑
m

∑
(`,`′), 6̀=`′:

tp(sn(m,`),sn(m,`′))=πSS′

∑
(xn,yn):

tp(sn(m,`),sn(m,`′),xn,yn)=πSS′XY

Pr[Xn = xn, Y n = yn|H = 1]

≤
∑

πSS′XY ∈Pnµ

∑
m

∑
(`,`′), 6̀=`′:

tp(sn(m,`),sn(m,`′))=πSS′

2nHπ(X,Y |S,S′) · 2−n(Hπ(X,Y )+D(πXY ‖QXY ))

≤ (n+ 1)|S|
2.|X |.|Y| · 2nR · 2n(2R′−Iπ(S;S′)) · 2nHπ(X,Y |S,S′) · 2−n(Hπ(X,Y )+D(πXY ‖QXY )), (209)

where we used that for any joint type πSS′ :

EC [|(`, `′) : ` 6= `′, tp(Sn(m, `), Sn(m, `′)) = πSS′ |] =
∑
`,`′

` 6=`′

∑
(sn,s′n):

tp(sn,s′n)=πSS′

Pr[(Sn(m, `), Sn(m, `′)) = (sn, s′n)]
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≤
∑
`,`′

` 6=`′

∑
(sn,s′n):

tp(sn,s′n)=πSS′

2−n(Hπ(S)+D(πS‖PS)) · 2−n(Hπ(S′)+D(πS′‖PS))

≤
∑
`,`′

` 6=`′

2nHπ(S,S′) · 2−n(Hπ(S)+Hπ(S′))

≤ 22nR′ · 2−nIπ(S;S′). (210)

Define now

θ1,µ
∆
= min
πSXY ∈Pnµ

[Hπ(X,Y ) +D(πXY ‖QXY )−Hπ(X,Y |S)− I(S;X)], (211)

θ2,µ
∆
= min
πSS′XY ∈Pnµ

Hπ(X,Y ) +D(πXY ‖QXY )−Hπ(X,Y |S, S′)−R− 2R′ + Iπ(S;S′), (212)

and note that when µ → 0 and thus n → ∞, then Pnµ → P∗, where P∗ is defined in (199). Thus, letting µ → 0 and thus
n→∞, by (207), (211), and (212) the error exponent achieved by the described scheme exceeds the minimum

min{θ̃1, θ̃2}, (213)

where

θ̃1
∆
= min

P̃SXY :
P̃SX=PSX
P̃SY =PSY

HP̃ (X,Y ) +D(P̃XY ‖QXY )−HP̃ (X,Y |S)− I(S;X)

= min
P̃SXY :

P̃SX=PSX
P̃SY =PSY

D(P̃SXY ‖PS|XQXY ) (214)

and

θ̃2
∆
= min

P̃SS′XY :

P̃SX=PSX
P̃S′Y =PSY

HSY (S|Y )≤HP̃SY (S|Y )

D(P̃SXY ‖PS|XQXY ) +R− I(S;X) + IP̃ (S′;X,Y, S)

= min
P̃SXY :

P̃SX=PSX
P̃Y =PY

H(S|Y )≤HP̃SY (S|Y )

D(P̃SXY ‖PS|XQXY ) +R− I(S;X) + I(S;Y ), (215)

where the last equality holds because IP̃ (S′;X,Y, S) ≥ IP̃ (S′;Y ) = I(S;Y ) and because this inequality holds with equality
when P̃S′|XYX = P̃S′|Y = PS|Y , which represents a valid choice.

This concludes the proof.

APPENDIX I
PROOF OF THEOREM 5

We analyze the probabilities of error of the coding and testing scheme described in Subsection VI-B1 averaged over the
random code constructions. By standard arguments (successively eliminating the worst half of the codewords from the codebooks
as detailed out in Appendix A) the desired result can be proved for a set of deterministic codebooks.

Fix an arbitrary ε > 0 and the parameter of the scheme µ sufficiently close to 0 as will become clear in the sequel. Fix also
a blocklength n.

If M 6= 0, let I, J be the indices sent over the noise-free bit pipe from the transmitter to the relay. If both B 6= 0 and
M 6= 0, let K denote the second index sent over the noise-free bit-pipe from the relay to the receiver.

We first analyze the type-I error probability at the receiver. Define events:

E(1)
Rx :

{
(Xn(I,D), V n(K,F |I,D), Zn) /∈ T nµ (PSV Z)

}
, (216)

E(2)
Rx :

{
∃(d′′, f ′) 6= (D,F ) : Htp(Sn(I,d′′),V n(K,f ′|I,d),Zn)(S, V |Z) ≤ min

(d̃,f̃)
Htp(Sn(I,d̃),V n(K,f̃ |I,d̃),Zn)(S, V |Z)

}
(217)

The type-I error probability can then be bounded as follows:

αn ≤ Pr[M = 0 or B = 0 or E(1)
Rx or E(2)

Rx or E(3)
Rx ]
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≤ Pr[M = 0] + Pr[B = 0|M 6= 0] + Pr
[
E(1)

Rx

∣∣M 6= 0, B 6= 0
]

+ Pr
[
E(2)

Rx

∣∣M 6= 0, B 6= 0, E(1)c
Rx

]
(a)

≤ ε/4 + Pr[B = 0|M 6= 0] + Pr
[
E(1)

Rx

∣∣M 6= 0, B 6= 0
]

+ Pr
[
E(2)

Rx

∣∣M 6= 0, B 6= 0, E(1)c
Rx

]
(b)

≤ ε/2 + Pr
[
E(1)

Rx

∣∣M 6= 0, B 6= 0
]

+ Pr
[
E(2)

Rx

∣∣M 6= 0, B 6= 0, E(1)c
Rx

]
(c)

≤ 3ε/4 + Pr
[
E(2)

Rx

∣∣M 6= 0, B 6= 0, E(1)c
Rx

]
(d)

≤ ε. (218)

where (a) holds by the covering lemma and the rate-constraints in (127); (b) and (d) can be proved following similar lines as
the type-I error analysis in Appendix H; and (c) follows from the Markov lemma.

We now bound the probability of type-II error at the receiver. Let Pn be the set of all types over the product alphabets
Sn × Sn × Sn × Un × Un × Vn × Vn ×Xn × Yn ×Zn. Also, let Pnµ be the subset of types πSS′S′′UU ′V V ′XY Z ∈ Pn that
simultaneously satisfy the following three conditions:

∀(s, s′, s′′, u, u′, v, v′, x, y, z) ∈ S × S × S × U × U × V × V × X × Y × Z :

|πSUX(s, u, x)− PSUX(s, u, x)| ≤ µ/4,
|πS′U ′V Y (s′, u′, v, y)− PSUV Y (s′, u′, v, y)| ≤ µ/2,
|πS′′V ′Z(s′′, v′, z)− PSV Z(s′′, v′, z)| ≤ µ,

(219)

and the following minimal entropy constraints

HπS′U′Y (S,U |Y ) ≤ HπSUY (S,U |Y ), (220)
HπS′′V ′Z (V, S|Z) ≤ HπSV Z (V, S|Z). (221)

The type-II error probability at the receiver can be bounded as:

βn ≤ Pr[(Xn, Y n, Zn) ∈ ARx,n|H = 1], (222)

where ARx,n includes the acceptance region at the receiver:

ARx,n
∆
=
⋃
i,j,k

⋃
d,d′,d′′,e,e′,f,f ′

S(n)(i, j, k, d, d′, d′′, e, e′, f, f ′) (223)

where S(n)(i, j, k, d, d′, d′′, e, e′, f, f ′) ⊆ Xn × Yn ×Zn is defined as:

S(n)(i, j, k, d, d′, d′′, e, e′, f, f ′) :={
(xn, yn, zn) : tp(sn(i, d), sn(i, d′), sn(i, d′′), un(j, e|i, d), un(j, e′|i, d′), vn(k, f |i, d′), vn(k, f ′|i, d′′), xn, yn, zn) ∈ Pnµ

}
(224)

We thus have

βn ≤
∑

(d,d′,d′′,e,e′,f,f ′)

∑
(i,j,k)

Pr
[
(Xn, Y n, Zn) ∈ S(n)(i, j, k, d, d′, d′′, e, e′, f, f ′)

]
. (225)

We split up the outermost summation into 20 partial summations as indicated in Table I, and we analyze the exponents for
each of these partial sums. The exponent of the total sum is then given by the smallest exponent corresponding to any of the
partial sums.

Each of the partial sums is analyzed by now standard arguments as used in Appendices B and H. Remark that for any partial
sum corresponding to an index tuple with

d = d′ = d′′,

one is only interested in the subset of Pnµ where the subtype πSS′S′′ corresponds to S = S′ = S′′. Similarly, for any partial
sum corresponding to d = d′ and e = e′ one is only interested in the subset of Pnµ where the subtype πSS′UU ′ corresponds
to S = S′ and U = U ′. See again Table I for an illustration which types have to be considered for which partial sums.

We detail out the derivation of the upper bound on the exponent of partial sum 4; the other partial sums can be treated
similarly. Let P4,n be the subset of types obtained from Pn by imposing the additional constraints S = S′ = S′′ and V = V ′:

P4,n :=

{
πSUU ′V XY Z : ∀(s, u, u′, v, x, y, z) ∈ S × U × U × V × X × Y × Z :

|πSUX(s, u, x)− PSUX(s, u, x)| ≤ µ/4,
|πSU ′V Y (s, u′, v, y)− PSUV Y (s, u′, v, y)| ≤ µ/2,
|πSV Z(s, v, z)− PSV Z(s, v, z)| ≤ µ,

(226)
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HπSU′Y (U |S, Y ) ≤ HπSUY (U |S, Y ).

}
(227)

Then∑
(d,e,e′,f) :

e 6=e′

∑
(i,j,k)

Pr
[
(Xn, Y n, Zn) ∈ S(n)(i, j, k, d, d, d, e, e′, f, f)

]
=

∑
πSUU′VXY Z∈P

4,n
µ

∑
(i,j,k)

∑
(d,e,e′,f) :
e 6=e′,

tp(sn(i,d),un(j,e|i,d),un(j,e′|i,d),vn(k,f |i,d))
=πSUU′V∑

(xn,yn,zn):
tp(sn(i,d),un(j,e|i,d),un(j,e′|i,d),vn(k,f |i,d),xn,yn,zn)

=πSUU′VXY Z

Pr
[
(Xn, Y n, Zn) = (xn, yn, zn)

]

=
∑

πSUU′VXY Z∈P
4,n
µ

∑
(i,j,k)

∑
(d,e,e′,f):
e 6=e′

tp(sn(i,d),un(j,e|i,d),un(j,e′|i,d),vn(k,f |i,d))=πSUU′V

2nHπ(X,Y,Z|S,U,U ′,V ) · 2−n(Hπ(X,Y,Z)+D(πXYZ‖QXYZ))

≤ (n+ 1)|S|.|U|.|V|.|X |.|Y|.|Z| · 2n(Rs+Ru+Rv) · 2n(R′s+2R′u+R′v−Iπ(U ′;V |S)−Iπ(U ;U ′,V |S)) · 2nHπ(X,Y,Z|S,U,U ′,V )

·2−n(Hπ(X,Y,Z)+D(πXYZ‖QXYZ)), (228)

where the last step follows by bounding the number of types and because for any joint type πSUU ′V :∣∣{(d, e, e′, f) : e 6= e′ and tp(sn(i, d), un(j, e|i, d), un(j, e′|i, d), vn(k, f |i, d)) = πSUU ′V
}∣∣

≤ 2n(R′s+2R′u+R′v−Iπ(U ′;V |S)−Iπ(U ;U ′,V |S)+µ), (229)

Following similar lines, one can find upper bounds on the exponents of the other partial sums. Notice that due to the
superposition code construction, different partial sums yield the same exponent. Table I presents the error exponent that we
found on each partial sum. The exponents θ1,µ, . . . , θ10,µ are defined as follows, where the minimizations are over appropriate
subsets of Pnµ :

θ1,µ
∆
= min
πSUV

−Rs −Ru −Rv −R′s −R′u −R′v + Iπ(U ;V |S)

−Hπ(X,Y, Z|S,U, V ) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (230)

θ2,µ
∆
= min
πSUV V ′

−Rs −Ru −Rv −R′s −R′u − 2R′v + Iπ(U ;V, V ′|S) + Iπ(V ;V ′|S)

−Hπ(X,Y, Z|S,U, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (231)

θ3,µ
∆
= min
πSUU′V V ′

−Rs −Ru −Rv −R′s − 2R′u − 2R′v + Iπ(U ;V, V ′|S) + Iπ(V ;V ′|S)

+ Iπ(U ′;U, V, V ′|S)−Hπ(X,Y, Z|S,U, U ′, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (232)

θ4,µ
∆
= min
πSUU′V

−Rs −Ru −Rv −R′s − 2R′u −R′v + Iπ(U ;V,U ′|S) + Iπ(V ;U ′|S)

−Hπ(X,Y, Z|S,U, U ′, V ) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (233)

θ5,µ
∆
= min
πSS′S′′UU′V V ′

−Rs −Ru −Rv − 3R′s − 2R′u − 2R′v + Iπ(S,U ;S′, U ′)

+ Iπ(S′′, V ′;S, S′, U, U ′) + Iπ(V ;S, S′′, U, U ′|S′)−Hπ(X,Y, Z|S, S′, S′′, U, U ′, V, V ′)
+Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (234)

θ6,µ
∆
= min
πSS′UU′V V ′

−Rs −Ru −Rv − 2R′s − 2R′u − 2R′v + Iπ(S,U ;S′, U ′) + Iπ(V ;V ′|S′) + Iπ(V, V ′;S,U, U ′|S′)

−Hπ(X,Y, Z|S, S′, U, U ′, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (235)

θ7,µ
∆
= min
πSS′UU′V

−Rs −Ru −Rv − 2R′s − 2R′u −R′v + Iπ(S,U ;S′, U ′) + Iπ(V ;S,U, U ′|S′)

−Hπ(X,Y, Z|S, S′, U, U ′, V ) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (236)

θ8,µ
∆
= min
πSS′UU′V V ′

−Rs −Ru −Rv − 2R′s − 2R′u − 2R′v + Iπ(S,U ;S′, U ′) + Iπ(V ;S,U, U ′|S′)
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Partial sum Assumption on index tuples Relevant type Corresponding error exponent

1 d = d′ = d′′ and e = e′ and f = f ′ πSUV (S = S′ = S′′ and U = U ′ and V = V ′) θ1,µ

2 d = d′ = d′′ and e = e′ and f 6= f ′ πSUV V ′ (S = S′ = S′′ and U = U ′) θ2,µ

3 d = d′ = d′′ and e 6= e′ and f 6= f ′ πSUU′V V ′ (S = S′ = S′′) θ3,µ

4 d = d′ = d′′ and e 6= e′ and f = f ′ πSUU′V (S = S′ = S′′ and V = V ′) θ4,µ

5 d 6= d′ 6= d′′ and e 6= e′ and f 6= f ′ πSS′S′′UU′V V ′ θ5,µ

6 d 6= d′ 6= d′′ and e = e′ and f 6= f ′ πSS′S′′UV V ′ (U = U ′) θ5,µ

7 d 6= d′ 6= d′′ and e = e′ and f = f ′ πSS′S′′UV (U = U ′ and V = V ′) θ5,µ

8 d 6= d′ 6= d′′ and e 6= e′ and f = f ′ πSS′S′′UU′V (V = V ′) θ5,µ

9 d′ = d′′ 6= d and e 6= e′ and f 6= f ′ πSS′UU′V V ′ (S′ = S′′) θ6,µ

10 d′ = d′′ 6= d and e = e′ and f 6= f ′ πSS′UV V ′ (S′ = S′′ and U = U ′) θ6,µ

11 d′ = d′′ 6= d and e 6= e′ and f = f ′ πSS′UU′V (S′ = S′′ and V = V ′) θ7,µ

12 d′ = d′′ 6= d and e = e′ and f = f ′ πSS′UV (S′ = S′′ and U = U ′ and V = V ′) θ7,µ

13 d = d′′ 6= d′ and e 6= e′ and f 6= f ′ πSS′UU′V V ′ (S = S′′) θ8,µ

14 d = d′′ 6= d′ and e = e′ and f 6= f ′ πSS′UV V ′ (S = S′′ and U = U ′) θ8,µ

15 d = d′′ 6= d′ and e = e′ and f = f ′ πSS′UV (S = S′′ and U = U ′ and V = V ′) θ8,µ

16 d = d′′ 6= d′ and e 6= e′ and f = f ′ πSS′UU′V (S = S′′ and V = V ′) θ8,µ

17 d = d′ 6= d′′ and e = e′ and f 6= f ′ πSS′′UV V ′ (S = S′ and U = U ′) θ9,µ

18 d = d′ 6= d′′ and e = e′ and f = f ′ πSS′′UV (S = S′ and U = U ′ and V = V ′) θ9,µ

19 d = d′ 6= d′′ and e 6= e′ and f 6= f ′ πSS′′UU′V V ′ (S = S′) θ10,µ

20 d = d′ 6= d′′ and e 6= e′ and f = f ′ πSS′′UU′V (S = S′ and V = V ′) θ10,µ

TABLE I
CORRESPONDENCE OF INDEX TUPLES AND POSSIBLE TYPES.

+ Iπ(V ′;S′, V, U, U ′|S)−Hπ(X,Y, Z|S, S′, U, U ′, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (237)

θ9,µ
∆
= min
πSS′′UV V ′

−Rs −Ru −Rv − 2R′s −R′u − 2R′v + Iπ(S, V ;S′′, V ′) + Iπ(U ;S′′, V, V ′|S)

−Hπ(X,Y, Z|S, S′′, U, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (238)

θ10,µ
∆
= min
πSS′′UU′V V ′

−Rs −Ru −Rv − 2R′s − 2R′u − 2R′v + Iπ(S,U ;S′′, V ′) + Iπ(U ′;S′′, U, V, V ′|S)

+ Iπ(V ;S′′, U, V ′|S)−Hπ(X,Y, Z|S, S′′, U, U ′, V, V ′) +Hπ(X,Y, Z) +D(πXY Z‖QXY Z), (239)

Reassembling the upper bounds on the 20 partial sums, yields

βn ≤ (n+ 1)|S|.|U|.|V|.|X |.|Y| · 2−nθ1,µ + (n+ 1)|S|.|U|.|V|
2.|X |.|Y| · 2−nθ2,µ + (n+ 1)|S|.|U|

2.|V|2.|X |.|Y| · 2−nθ3,µ

+ (n+ 1)|S|.|U|
2.|V|.|X |.|Y| · 2−nθ4,µ + (n+ 1)|S|

3.|U|2.|V|2.|X |.|Y| · 2−nθ5,µ + (n+ 1)|S|
2.|U|2.|V|2.|X |.|Y| · 2−nθ6,µ

+ (n+ 1)|S|
2.|U|2.|V|.|X |.|Y| · 2−nθ7,µ + (n+ 1)|S|

2.|U|2.|V|2.|X |.|Y| · 2−nθ8,µ + (n+ 1)|S|
2.|U|.|V|2.|X |.|Y| · 2−nθ9,µ

+ (n+ 1)|S|
2.|U|2.|V|2.|X |.|Y| · 2−nθ10,µ .

Taking µ→ 0 and n→∞, and eliminating some auxiliary random variables in the minimizations at the exponents, it can be
shown that for any i ∈ {1, . . . , 10} the error exponent θi,µ → θi, where θ1, . . . , θ10 are defined in (139). More specifically,
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notice for example that θ4,µ → θ̃4 as µ→ 0 and n→∞, where

θ̃4 := min
P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−Rs −Ru −Rv −R′s − 2R′u −R′v + IP̃ (U ;V,U ′|S) + IP̃ (V ;U ′|S)

−HP̃ (X,Y, Z|S,U, U ′, V ) +HP̃ (X,Y, Z) +D(P̃XY Z‖QXY Z)

(240)

Moreover,

θ̃4 = min
P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−Rs −Ru −Rv −R′s − 2R′u −R′v + IP̃ (U ;V,U ′|S) + IP̃ (V ;U ′|S)

−HP̃ (X,Y, Z|S,U, U ′, V ) +HP̃ (X,Y, Z) +D(P̃XY Z‖QXY Z)

(a)
= min

P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−R′u − I(U, S;X)− I(V ;Y, U |S) + IP̃ (U ;V,U ′|S) + IP̃ (V ;U ′|S)

−HP̃ (X,Y, Z|S,U, U ′, V ) +HP̃ (X,Y, Z) +D(P̃XY Z‖QXY Z)

= min
P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−R′u − I(U, S;X)− I(V ;Y, U |S) + IP̃ (U ;V,U ′|S) + IP̃ (V ;U ′|S)

−HP̃ (X,Y, Z|S,U, V ) + IP̃ (X,Y, Z;U ′|S,U, V ) +HP̃ (X,Y, Z) +D(P̃XY Z‖QXY Z)

= min
P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−R′u +D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z)

+IP̃ (U ;U ′|V, S) + IP̃ (V ;U ′|S) + IP̃ (X,Y, Z;U ′|S,U, V )

= min
P̃SUVXY Z :
P̃SUX=PSUX

P̃SU′V Y =PSUV Y
P̃SV Z=PSV Z

HP̃ (U ′|S,Y )≤HP̃ (U |S,Y )

−R′u +D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z) + IP̃ (X,Y, Z, U, V ;U ′|S)

(b)
= min

P̃SUVXY Z :
P̃SUX=PSUX
P̃SV Y =PSV Y
P̃SV Z=PSV Z

H(U |S,Y )≤HP̃ (U |S,Y )

−R′u +D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z) + I(Y, V ;U |S)

(c)
= min

P̃SUVXY Z :
P̃SUX=PSUX
P̃SV Y =PSV Y
P̃SV Z=PSV Z

H(U |S,Y )≤HP̃ (U |S,Y )

Ru − I(U ;X|S) +D(P̃SUVXY Z ||PSU |XPV |SUYQXY Z) + I(Y, V ;U |S)

= θ4, (241)

where (a) follows from the rate constraints (127a)–(127c), (b) follows from the fact that IP̃ (X,Y, Z, U, V ;U ′|S) ≥ IP̃ (Y, V ;U ′|S)
with equality when P̃SUU ′V XY Z = P̃SUVXY Z · P̃U ′|SV Y , (c) follows from the rate constraint (127b). The other limits can
be proved in analogous manners. This concludes the achievability proof for the error exponent achieved at the receiver.

The error exponent at the relay can be derived in a similar way. Details are omitted.

APPENDIX J
PROOF OF CONVERSE TO PROPOSITION 7

Fix a sequence of encoding and decoding functions {φ(n), φ
(n)
y , g

(n)
y , g

(n)
z } so that the inequalities of Definition 1 hold for

sufficiently large blocklengths n. Fix also such a sufficiently large n and define for each t ∈ {1, . . . , n}:

Ut
∆
= (M,Xt−1,W t−1,Wn

t+1)

Vt
∆
= (B, Ȳ t−1, Qt−1, Qnt+1,W

t−1,Wn
t+1). (242)
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Define also U , (UT , T ); V , (VT , T ); X , XT ; Y , YT ; W , WT ; and Z , ZT ; for T ∼ U{1, . . . , n} independent of
the tuples (Un, V n, Xn, Y n, Zn,Wn). Notice the Markov chains U → X → Y and V → Y → Z. First, consider the rate R:

R =
1

n
H(M)

≥ 1

n
I(M ;Xn|Wn)

=
1

n

n∑
t=1

I(M ;Xt|Xt−1,Wn)

=
1

n

n∑
t=1

I(M,Xt−1,W t−1,Wn
t+1;Xt|Wt)

=
1

n

n∑
t=1

I(Ut;Xt|Wt)

= I(U ;X|W ). (243)

Similarly, for the rate T :

T =
1

n
H(B)

≥ 1

n
I(B;Y n|Wn, Qn)

=
1

n

n∑
t=1

I(B;Yt|Y t−1,Wn, Qn)

=
1

n

n∑
t=1

I(B, Y t−1, Qt−1, Qnt+1,W
t−1,Wn

t+1;Yt|Wt, Qt)

=
1

n

n∑
t=1

I(Vt;Yt|Wt, Qt)

= I(V ;Y |W,Q). (244)

The type-II error probability at the relay can be bounded as

− 1

n
log ζn ≤

1

n
D(PMȲ nWn|H=0‖PMȲ nWn|H=1) + ε

=
1

n
D(PMȲ nWn‖PM |WnPȲ n|WnPWn) + ε

=
1

n
I(M ; Ȳ n|Wn) + ε

=
1

n

n∑
t=1

I(M ; Ȳt|Ȳ t−1,Wn) + ε

=
1

n

n∑
t=1

I(M, Ȳ t−1,W t−1,Wn
t+1; Ȳt|Wt) + ε

(a)

≤ 1

n

n∑
t=1

I(M,Xt−1,W t−1,Wn
t+1; Ȳt|Wt) + ε

=
1

n

n∑
t=1

I(Ut; Ȳt|Wt) + ε

= I(U ;Y |W ) + ε, (245)

where (a) follows from the Markov chain Ȳ i−1 → (M,Xi−1,Wn)→ Ȳi. Finally, consider the type-II error probability at the
receiver:

− 1

n
log βn ≤

1

n
D(PBZ̄nQnWn|H=0‖PBZ̄nQnWn|H=1) + ε

=
1

n
EQnWn

[
D(PBZ̄n|QnWn,H=0‖PBZ̄n|QnWn,H=1)

]
+ ε

=
1

n
EQnWn

[
D(PB|QnWn,H=0‖PB|QnWn,H=1)

]
+

1

n
EBQWn

[
D(PZ̄n|BQnWn,H=0‖PZ̄n|BQnWn,H=1)

]
+ ε
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≤ 1

n
EQnWn

[
D(PMȲ n|QnWn,H=0‖PMȲ n|QnWn,H=1)

]
+

1

n
EBQWn

[
D(PZ̄n|BQnWn‖PZ̄n|QnWn)

]
+ ε

=
1

n
EȲ nQnWn

[
D(PM |WnȲ n‖PM |Wn)

]
+ I(B; Z̄n|Qn,Wn) + ε

=
1

n
I(M ; Ȳ n|Wn) + I(B;Zn|Qn,Wn) + ε

=
1

n

n∑
t=1

I(M, Ȳ t−1,W t−1,Wn
t+1; Ȳt|Wt) +

1

n

n∑
t=1

I(B, Z̄t−1, Qt−1, Qnt+1,W
t−1,Wn

t+1; Z̄t|Qt,Wt) + ε

(a)

≤ 1

n

n∑
t=1

I(Ut; Ȳt|Wt) +
1

n

n∑
t=1

I(Vt;Zt|Qt,Wt) + ε

= I(U ;Y |W ) + I(V ;Z|Q,W ) + ε, (246)

where (a) follows from the Markov chain Zt−1 → (B, Y t−1, Qn,Wn)→ Zt.


