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Benefits of Cache Assignment on Degraded

Broadcast Channels
Shirin Saeedi Bidokhti, Michèle Wigger, and Aylin Yener

Abstract

Degraded K-user broadcast channels (BC) are studied when receivers are facilitated with cache memories. Lower

and upper bounds are derived on the capacity-memory tradeoff, i.e., on the largest rate of reliable communication

over the BC as a function of the receivers’ cache sizes, and the bounds are shown to match for some special cases.

The lower bounds are achieved by two new coding schemes that benefit from non-uniform cache assignment. Lower

and upper bounds are also established on the global capacity-memory tradeoff, i.e., on the largest capacity-memory

tradeoff that can be attained by optimizing the receivers’ cache sizes subject to a total cache memory budget. The

bounds coincide when the total cache memory budget is sufficiently small or sufficiently large, characterized in

terms of the BC statistics. For small cache memories, it is optimal to assign all the cache memory to the weakest

receiver. In this regime, the global capacity-memory tradeoff grows as the total cache memory budget divided by

the number of files in the system. In other words, a perfect global caching gain is achievable in this regime and the

performance corresponds to a system where all cache contents in the network are available to all receivers. For large

cache memories, it is optimal to assign a positive cache memory to every receiver such that the weaker receivers

are assigned larger cache memories compared to the stronger receivers. In this regime, the growth rate of the global

capacity-memory tradeoff is further divided by the number of users, which corresponds to a local caching gain.

Numerical indicate suggest that a uniform cache-assignment of the total cache memory is suboptimal in all regimes

unless the BC is completely symmetric. For erasure BCs, this claim is proved analytically in the regime of small

cache-sizes.

I. INTRODUCTION

Storing popular contents at or close to the end users improves the network performance during peak-traffic time.

The main challenge is that the contents have to be cached before knowing which files the users will request in the

peak-traffic period. A conventional approach is to store the same popular contents in the cache memories of the

users. This allows the receivers to locally retrieve the contents without burdening the network. However, further

caching gains, i.e., the so called global caching gains, are possible if different contents are stored at different
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Fig. 1. Noisy broadcast channel with cache memories at the receivers.

users [1]. Specifically, a careful design of the cache contents creates coding opportunities to simultaneously serve

multiple users during the peak-traffic periods, henceforth called the delivery phase.

In this paper, we focus on the scenario depicted in Figure 1. A transmitter communicates with receivers 1, . . . ,K

which are equipped with cache memories. The delivery-phase communication takes place over a noisy broadcast

channel (BC) where the receivers have access to cache memories. The BC-model has previously been studied in

[25]–[42]. The simplified version where the BC is a common noise-free bit-pipe to all users was analyzed in [1]–

[16, 21]–[24] under the assumption that all receivers have equal cache sizes, and in [15, 16] under the assumption

that various receivers have different cache sizes. Caching was studied for many other scenarios, e.g., for interference

networks [44]–[46], hierarchical networks [54]–[56], and cellular networks [46]–[53].

In [25]–[27] the gains of caching in noisy broadcast networks are investigated. Specifically, we have proposed

a joint cache-channel coding scheme and focused on erasure BCs with two sets of receivers: a set of cache-aided

weak receivers (where each channel has the same erasure probability) and a set of strong receivers without cache

memories (where each channel has the same erasure probability). Previous works have adapted a separate cache-

channel coding architecture where the encoders (resp. decoders) consist of a cache encoder (resp. decoder) that

only exploits the cache contents and a channel encoder (resp. decoder) that only exploits the channel statistics; see

Figure 2. By contrast, in a joint cache-channel coding scheme, the encoders and decoders simultaneously exploit

the knowledge of the channel statistics and the cache contents, leading to improved performance.

The joint cache-channel coding scheme in [25]–[27] loads (piggybacks) the information that is intended for

the strong receivers, but is already cached at the weaker receivers, onto the information that is communicated to
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Fig. 2. Separate cache-channel coding architecture.

the weak receivers1. When the rate of the piggybacked information is modest, this can be done without harming

the decoding performance at the strong receivers. In some sense, piggyback coding provides the stronger receivers

virtual access to the weaker receivers’ cache-memories as if these cache contents were locally present at the stronger

receivers.

The previous works [25]–[27] have shown that when different receivers have different channel statistics, then

assigning larger cache memories to the weaker receivers significantly improves the performance compared to the

traditional uniform cache assignment. In addition to mitigating the rate-bottleneck at the weaker receivers, non-

uniform cache assignment allows to achieve new global caching gains by the means of joint cache-channel coding

[25]–[27, 32].

Motivated by the new gains of caching in noisy broadcast networks, in this work, we address the problem of

efficient cache assignment in broadcast networks and devise two joint cache-channel coding schemes by using

piggyback coding, superposition coding, and coded caching.

A. Main Contributions and Implications

The main contributions of the paper are as follows:

• Superposition-Piggyback Coding: We generalize the piggyback-coding scheme of [26], that is specific for

erasure BCs, to arbitrary BCs with a cache memory only at the weakest receiver and account for different

channel qualities in the network by employing superposition coding. We show that this scheme is optimal for

small cache memory sizes.

• Generalized Coded-Caching: The coded-caching scheme in [1] is generalized to noisy BCs with unequal cache

sizes. The scheme is optimal for a particular cache assignment.

• A New Converse Result: A general converse result is provided for degraded BCs with arbitrary cache sizes at

the receivers. It strictly improves over the existing converse results for degraded BCs in [26, 28] and for the

1 The proposed piggyback coding can be seen as a simplified version without binning etc. of “Slepian-Wolf coding over broadcast channels”

in [58], which applies to more general scenarios.
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noise-free bit-pipe model in [1, 6, 9, 10, 19].

• Global Capacity-Memory Tradeoff: Lower and upper bounds are derived on the global capacity-memory

tradeoff. They are shown to match when the total available cache memory is small or large. Suboptimality of

the popular approach of assigning equal cache memory to all receivers is proved analytically for erasure BCs

in the small cache size regime and shown numerically for erasure and Gaussian BCs in all regimes of cache

sizes.

More specifically, we first propose a coding scheme that we call superposition piggyback-coding by assuming that

only the weakest receiver has a cache memory. Using this scheme all receivers gain virtual access to the weakest

receiver’s cache memory as if the cache contents were locally present at each of these receivers.

The second scheme generalizes the coded caching in [1] to account for different channel statistics and different

cache sizes at the receivers. We assign larger cache sizes to the weaker receivers and use piggyback coding to

transmit higher rates of information to the stronger receivers without harming the communication to the weaker

receivers. As a consequence, the amount of the virtual cache memory that is provided to the stronger receivers

increases compared to the original coded-caching scheme, resulting in an improved performance.

The performance criterion of interest in this paper is the capacity-memory tradeoff. That is, the largest rate, as a

function of the available cache memories, so that the transmitter can reliably send the messages demanded by the

receivers over the noisy BC.

We present a new upper bound on the capacity-memory tradeoff of degraded BCs2 that improves the previous

upper bound in [26, 28]. Using the upper bound, we show the optimality of the superposition piggyback-coding

scheme when only the weakest receiver has a cache memory and its size is below a certain threshold that depends

on the BC statistics. Moreover, we show that the generalized coded-caching scheme is optimal for a particular cache

assignment.

When the BC is a noise-free bit-pipe, the upper bound on the capacity-memory tradeoff leads to a lower bound

on the delivery rate-memory tradeoff that improves the previous lower bounds in [1, 6, 9, 10, 19].

The upper bound is asymmetric in the cache sizes: the cache memories at the weaker receivers increase the

upper bound more than the cache memories at the stronger receivers. In this sense, the upper bound reinforces the

intuition obtained from the lower bounds that the capacity-memory tradeoff increases when larger cache memories

are assigned to the weaker receivers as compared to the stronger receivers. To make this statement more precise,

we derive upper and lower bounds on the global capacity-memory tradeoff, where one is allowed to optimize

over the cache assignment subject to a global cache constraint. The lower bound is obtained using the following

cache-assignment strategy and coding schemes:

• For a small total cache-size M, all of it is assigned to the weakest receiver, and superposition piggyback-coding

is applied. This strategy is optimal in the small total cache-size regime and achieves a global capacity-memory

tradeoff that grows as M
D , where D denotes the total number of files. Thus, in this regime a perfect global

2Since for our purposes only the conditional marginal distributions matter, it suffices that the BC is stochastically degraded [61].)
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caching gain is achieved, i.e., the same performance as in a systems where all cache memories in the network

are accessible by all the receivers.

• For moderate total cache-size M, generalized coded-caching with parameters t = 1, . . . ,K − 1 and the

corresponding cache-assignments are employed. The larger the total cache-size, the larger the parameter t

needs to be chosen. However, the larger t, the smaller the global caching gain, since with increasing t the

overlap of the different cache contents increases as well, and duplicated cache contents cannot provide global

caching gain.

• When the total cache-size M equals the total cache memory of generalized coded-caching with parameter

t = K − 1, then generalized coded-caching is optimal. For total cache memories exceeding this threshold,

it is optimal to uniformly assign the additional cache memory across the K receivers. This additional cache

memory can only bring local caching gain and the same content can be stored at all the K receivers. In other

words, for total cache memory exceeding a threshold, the global capacity-memory tradeoff grows as 1
K · MD .

Finally, this paper proves analytically that for erasure BCs a uniform cache allocation is strictly suboptimal in the

regime of small cache memories, unless all receivers have same channel statistics. Numerical simulations show that

the same holds for all regimes of cache memory and also for Gaussian BCs.

B. Notation

Random variables are denoted by uppercase letters, e.g. A, their alphabets by matching calligraphic font, e.g.

A, and elements of an alphabet by lowercase letters, e.g. a ∈ A. We also use uppercase letters for deterministic

quantities like rate R, capacity C, number of users K, cache size M, and number of files in the library D. Vectors

are identified by bold font symbols, e.g., a, and matrices by the font A. We use the shorthand notation An for

(A1, . . . , An). The Cartesian product of A and A′ is A × A′, and the n-fold Cartesian product of A is An. |A|
denotes the cardinality of A.

Finally, for indices w1 and w2 taking value in
{

1, . . . , b2`1c
}

and {1, . . . , b2`2c}, respectively, we denote by

w1

⊕
w2

the index in {1, . . . , b2`maxc} that corresponds to the XOR of the length-`max binary representations of w1 and w2,

where `max := max{`1, `2}.
We will be using the abbreviation i.i.d. for independent and identically distributed.

C. Outline

The remainder of the paper is organized as follows. Section II describes the problem setup. Section III recalls

known results for the scenario without cache memories. The main results of this paper are described in Sections IV

and V, followed by applications of these results to erasure and Gaussian BCs, see Section VI. The paper is concluded

with a summary and conclusions, Section VII and various technical appendices contain the proofs of the results in

Sections V and VI.
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II. PROBLEM DEFINITION

Consider a transmitter and receivers 1, . . . ,K. The transmitter has access to a library with D independent

messages, W1, . . . ,WD, each distributed uniformly over the set
{

1, . . . , b2nRc
}
. Here, R ≥ 0 denotes the rate of

transmission and n is the transmission blocklength. We assume that there are more messages than receivers:

D ≥ K. (1)

Each receiver k ∈ K := {1, . . . ,K} is equipped with a cache of size Mk ≥ 0. Communication takes place in

two phases. For the first, i.e., the placement phase, the transmitter chooses caching functions

gk : {1, . . . , b2nRc}D →
{

1, . . . , b2nMkc
}
, k ∈ K, (2)

and places

Vk := gk(W1, . . . ,WD) (3)

in receiver k’s cache. This phase takes place in a noiseless fashion.3

The subsequent delivery phase takes place over a degraded BC [59] with finite input alphabet X , finite output

alphabets Y1, . . . ,YK ,4 and channel transition law

Γ(y1, . . . , yK |x), for x ∈ X , y1 ∈ Y1, . . . , yK ∈ YK (4)

which decomposes as

Γ(y1, . . . , yK |x) = ΓK(yK |x) · ΓK−1(yK1
|yK) · · ·Γ1(y1|y2). (5)

Without loss in generality, we order the receivers from the weakest to the strongest.

At the beginning of the delivery phase, each receiver k demands message Wdk , dk ∈ D := {1, . . . , D}. Transmitter

and all the receivers are informed of the demand vector

d := (d1, . . . , dK).

Using this information, the transmitter forms the channel input sequence Xn = (X1, . . . , Xn) as

Xn = fd(W1, . . . ,WD) (6)

for some encoding function fd : {1, . . . , b2nRc}D → Xn.
Receiver k ∈ K observes the channel output sequence Y nk := (Yk,1, . . . , Yk,n). Given the demand vector d,

cache content Vk, and channel outputs Y nk , it produces its estimate of the desired message Wdk ,

Ŵk := ϕk,d(Y nk ,Vk), (7)

3Following previous works on caching systems, we will also assume that the placement phase takes place in low-traffic hours with abundance

of bandwidth resources, and can be considered noiseless.
4The results of this paper readily extends to continuous alphabets. We will consider Gaussian BCs in Section VI-C.
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by means of a decoding function

ϕk,d : Ynk ×
{

1, . . . , b2nMkc
}
→ {1, . . . , b2nRc}. (8)

The worst-case probability of error at any receiver and any demand d is given by

Pe := P

[ ⋃
d∈DK

K⋃
k=1

{
Ŵk 6= Wdk

} ]
. (9)

A rate-memory tuple (R,M1, . . . ,MK) is achievable if for any ε > 0 there exists a sufficiently large blocklength n

and caching, encoding, and decoding functions as in (3), (6), and (7) so that Pe ≤ ε.
Definition 1: The capacity-memory tradeoff C(M1, . . . ,MK) is the largest rate R for which the rate-memory

tuple (R,M1, . . . ,MK) is achievable:

C(M1, . . . ,MK) := sup{R : (R,M1, . . . ,MK) achievable}.

Our main goal in this paper is to optimize the cache assignment (M1, . . . ,MK) to attain the largest capacity-

memory tradeoff C(M1, . . . ,MK) under the total cache constraint:
K∑
k=1

Mk ≤ M. (10)

Definition 2: The global capacity-memory tradeoff C?(M) is defined as:

C?(M) := max
M1,...,MK>0:∑K

k=1 Mk≤M

C(M1, . . . ,MK). (11)

Remark 1: The global capacity memory tradeoff depends on the BC law Γ(y1, . . . , yK |x) only through its marginal

conditional laws. All our results thus also apply to stochastically degraded BCs.

A. Minimum Delivery Rate

Previous works on caching that modelled the BC as a noise-free bit-pipe, e.g., [1], adopted a “source-coding

perspective” as opposed to a “channel coding perspective” as we have presented above. In the source coding

perspective, each message is an F > 0 bits packet, the delivery communication consists of ρ · F channel uses,

and receiver k has mkF bits of cache memory, k = 1, . . . ,K. The delivery rate ρ is said to be achievable given

normalized memory sizes m1, . . . ,mK if there exist caching, encoding, and decoding functions such that the

probability of error in (9) tends to 0 as F →∞.

The following correspondence holds between the two perspectives:

R achievable with (M1, . . . ,MK)

under the “channel-coding perspective”

⇐⇒

ρ =
1

R
achievable with

(
m1 =

M1

R
, . . . ,mK =

MK

R

)
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under the “source-coding perspective”.

For simplicity, we will adopt the “source-coding perspective” in Section VI-B where we specialize the new

upper bound on the capacity-memory tradeoff C(M1, . . . ,MK) to the noise-free bit-pipe model with uniform cache

assignment in [1]. For other BCs, we use the “channel-coding perspective” in line with similar setups in network

information theory.

III. PRELIMINARIES: CAPACITIES WITHOUT CACHE MEMORIES

In the absence of cache memories,

M1 = . . . = M2 = 0,

the capacity-memory tradeoff C(M1 = 0, . . . ,MK = 0) is well known: It is the largest symmetric rate R with

which K independent messages can be reliably sent to the K receivers. I.e.,

C(M1 = 0, . . . ,MK = 0) = CK (12)

where [59]:

CK := max min
{
I(U1;Y1), I(U2;Y2|U1), . . . , I(UK−1;YK−1|UK−2), I(X;YK |UK−1)

}
, (13)

and the maximization in (13) is over all random tuples U1, . . . , UK−1, X, Y1, . . . , YK forming the Markov chain

U1 − U2 − · · · − UK−1 −X − (Y1, . . . , YK) (14a)

satisfying the channel transition law

PY1...YK |X(y1, . . . , yK |x) = Γ(y1, . . . , yK |x). (14b)

To present the results in this paper, we will need the capacity region without cache memories of the BC to a

subset of the receivers

S := {j1, . . . , j|S|} ⊆ K, j1 < · · · < j|S|. (15)

This capacity region CS [59] is given by the set of all nonnegative rate-tuples (R1, . . . , R|S|) for which there exist

random variables U1, . . . , U|S|−1, X, Yj1 , . . . , Yj|S| satisfying (14b) and forming the Markov chain

U1 − U2 − · · · − U|S|−1 −X −
(
Yj1 , . . . , Yj|S|

)
, (16)

such that the following conditions hold:

R1 ≤ I(U1;Yj1), (17a)

Rk ≤ I(Uk;Yjk |Uk), k ∈ {2, . . . , |S| − 1}, (17b)

R|S| ≤ I
(
X;Yj|S|

∣∣U|S|−1). (17c)

We denote by CS the largest symmetric rate R ≥ 0 in CS :

CS := max
R≥0
{R : (R, . . . , R) ∈ CS}. (18)
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It equals

CS = max min
{
I(U1;Yj1), I(U2;Yj2 |U1), . . . , I(U|S|−1;Yj|S|−1

|U|S|−2), I(X;Yj|S| |U|S|−1)
}
, (19)

where the maximization is over all random tuples U1, . . . , U|S|−1, X, Yj1 , . . . , Yj|S| that satisfy (14b) and (16).

Notice that C{k} is simply the point-to-point capacity to receiver k and we will abbreviate it as Ck.

IV. CODING SCHEMES AND LOWER BOUNDS ON THE (GLOBAL) CAPACITY-MEMORY TRADEOFF

A. The Local Caching Gain

The simplest way to use receiver cache memories is to store the same information at each and every receiver. This

allows the receivers to retrieve this information locally, without transmission over the BC. Further global caching

gains are not possible under this caching strategy.

Applying the described caching strategy to only a part of the cache memory that is of size ∆ ≥ 0, while allowing

a smarter use of the remaining memory, leads to the following proposition, see also [47, Proposition 1].

Proposition 1 (Local caching gain): For all ∆ > 0 and M1, . . . ,MK ≥ 0:

C(M1 + ∆, . . . ,MK + ∆) ≥ C(M1, . . . ,MK) +
∆

D
. (20)

As a consequence, for all ∆total > 0 and M ≥ 0:

C?(M + ∆total) ≥ C?(M) +
∆total

K ·D. (21)

We will see that in some regimes this lower bound is tight.

B. Superposition Piggyback-Coding

We generalize the piggyback coding for erasure BCs in [26, 28] to general degraded BCs by introducing

superposition coding. The idea is to piggyback information of multiple stronger receivers on that of a single

weak receiver. This scheme is efficient when a receiver is strictly weaker than the others. Specifically, we assume

I(U?1 ;Y1) < I(U?1 ;Yk), k ∈ {2, . . . ,K}, (22)

where (U?1 , . . . , U
?
K−1, X

?) is a random K-tuple that achieves the symmetric-capacity CK, i.e., it is a solution to

the optimization problem in (13).

Preliminaries: Let ε > 0 be arbitrary small, and define the rates

R(A) := CK − ε, (23a)

R(B) :=
1

K − 1

(
I(U?1 ;Y2)− I(U?1 ;Y1)

)
. (23b)

The RHS of (23b) is positive by (22).

Split each message Wd, d ∈ {1, . . . , D}, into two parts:

Wd =
(
W

(A)
d ,W

(B)
d

)
,
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Fig. 3. Codebook C for superposition piggyback coding for K = 4. Each dot represents a codeword.

where W (A)
d and W (B)

d are of rates R(A) and R(B), and thus the total message rate is

R = R(A) +R(B). (24)

Define

Msingle
1 := D ·R(B) =

D

K − 1

(
I(U?1 ;Y2)− I(U?1 ;Y1)

)
, (25)

and allocate the cache size

M1 = Msingle
1 (26a)

to receiver 1 and zero cache size to the other receivers

M2 = . . . = MK = 0. (26b)

Placement Phase: Store W (B)
1 , . . . ,W

(B)
D in the cache memory of receiver 1. This is possible by (26a).

Delivery Phase: For the transmission in the delivery phase, construct a K-level superposition code C with a cloud

center of rate R(A) + (K − 1)R(B) and satellites of rates R(A) in Levels 2, . . . ,K. For the code construction, use

a probability distribution

PU?
1
· PU?

2 |U?
1
. . . PU?

K−1|U?
K−2
· PX?|U?

K−1

that achieves CK.

It will be convenient to arrange the codewords in the cloud center in an array with b2nR(A)c columns and

(b2nR(B)c)K−1 rows. The columns are used to encode message W (A)
d1

and the rows to encode the message tuple

W(B) :=
(
W

(B)
d2
, . . . ,W

(B)
dK−1

,W
(B)
dK

)
. (27)

The k-th level satellite is used to encode message W (A)
dk

, for k ∈ {2, . . . ,K}. See Figure 3 for an illustration of

the code construction.
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Let un1 (w1,column, w1,row) denote the cloud-center codeword of C in column w1,column and row w1,row. Similarly,

let xn(w1,column, w1,row;w2;w3; . . . ;wK) denote the Level-K satellite codeword of C that corresponds to the cloud

center codeword un! (w1,column, w1,row) and to the w2-th, w3-th ,w4-th, etc. satellite codewords in Levels 2, 3, 4, . . ..

The transmitter chooses and sends the codeword

xn
(
W

(A)
d1

,W(B); W
(A)
d2

; W
(A)
d3

; . . . ;W
(A)
dK

)
over the channel.

Decoding: Receiver k ∈ {2, . . . ,K}, decodes all messages in Levels 1, . . . , k. Recall that its desired message

parts W (A)
dk

and W (B)
dk

are encoded in levels k and 1 (i.e., the cloud center), respectively.

Receiver 1 only has to decode W (A)
d1

, because it can retrieve W (B)
d1

directly from its cache memory. To decode

W
(A)
d1

it performs the following steps:

1) It retrieves the message-tuple W(B) from its cache memory.

2) It forms the subcodebook C′(W(B)) ⊆ C that contains all level-1 codewords that are “compatible” with the

retrieved tuple W(B):

C′
(
W(B)) :=

{
un1
(
w,W(B))}⌊2nR(A)

⌋
w=1

. (28)

Figure 3 illustrates such a subcodebook in red.

3) It decodes its desired message W (A)
d1

using an optimal decoding rule for subcodebook C′(W(B)).

Error Analysis: Each receiver k ∈ {2, . . . ,K} reliably decodes messages (W
(A)
d1

,W
(B)
d2
, . . . ,W

(B)
dK

) and W (A)
d2

, . . . ,W
(A)
dk

if the following inequalities hold:

kR(A) + (K − 1) ·R(B) < I(U?k ;Yk), (29a)

(k − `) ·R(A) < I(U?k ;Yk|U?` ), ` ∈ {1, . . . , k − 1}. (29b)

One can verify that for degraded BCs the choice of R(A) and R(B) in (23) satisfies the constraints in (29).

Finally, receiver 1 can decode with arbitrarily small probability of error because subcodebook C′(W(B)) contains

b2nR(A)c codewords that are generated i.i.d. according to PU?
1

and because

R(A) < I(U?1 ;Y1).

Letting ε→ 0, we obtain the following result.

Theorem 2: Under cache assignment (26), we have

C(M1, . . . ,MK) ≥ CK +
M1

D
. (30)

Remark 2: Since receivers can always choose to ignore their cache memories, and because the superposition

piggyback coding scheme can be time- and memory-shared with a no-caching scheme, Theorem 2 remains valid

for all

0 ≤ M1 ≤ Msingle
1 , (31)
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M2, . . . ,MK ≥ 0. (32)

We will see in Corollary 7 ahead, that (30) holds with equality for all 0 ≤ M1 ≤ Msingle
1 provided that M2 =

. . . = MK = 0.

The RHS of (30) coincides with the capacity-memory tradeoff of a scenario where each and every receiver has

access to receiver 1’s cache memory. Superposition piggyback coding can thus be viewed as a coding technique

that virtually provides all stronger receivers access to the weakest receiver’s cache memory. This is achieved by

transmitting the extra-message tuple W(B) in the cloud center and by adapting the decoding at receiver 1 in a way

that this additional communication does not influence its decoding performance.

C. Generalized Coded-Caching

We generalize the coded-caching scheme of [1] to noisy BCs with unequal channel conditions and to receivers

with unequal cache sizes.

We first explain the scheme for a simple special case.

1) Special Case K = 2 and t = 1: Fix an input distribution PX and a small ε > 0, and define the rates

R(A) = I(X;Y1)− ε (33)

R(B) = I(X;Y2)− ε. (34)

Notice that by the degradedness of the BC:

R(B) ≥ R(A). (35)

Fix a blocklength n and generate a random codebook

C :=
{
xn(j)

}b2nR(B)c
j=1

(36)

by choosing all entries i.i.d. according to PX . The codebook C is revealed to all terminals of the network.

Allocate cache memories

M1 = D ·R(B) = D · (I(X;Y2)− ε), (37a)

M2 = D ·R(A) = D · (I(X;Y1)− ε), (37b)

to receivers 1 and 2, respectively.

Split each message Wd, for d ∈ {1, . . . , D}, into two parts:

Wd =
(
W

(A)
d ,W

(B)
d

)
,

which are of rates R(A) and R(B), respectively.

In the caching phase, the transmitter stores messages

W
(B)
1 , . . . ,W

(B)
D
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in receiver 1’s cache memory and messages

W
(A)
1 , . . . ,W

(A)
D

in receiver 2’s cache memory. This is possible given the cache assignment in (37).

In the delivery phase the transmitter uses codebook C to send the XOR message5

W
(A)
d1
⊕̄W (B)

d2
(38)

to both receivers using the codeword

xn
(
W

(A)
d1
⊕̄W (B)

d2

)
.

Receiver 2 decodes the XOR-message, and XORs the decoded message with W
(A)
d1

, which it has stored in its

cache memory. It then combines this guess of W (B)
d2

with the message W (A)
d2

from its cache memory.

Receiver 1 performs joint cache-channel decoding where it can exploit that it has more cache memory than

receiver 2. Specifically, it retrieves W (B)
d2

from its cache memory, and extracts a subcodebook C′(W (B)
d2

) ⊆ C
containing all codewords that are compatible with W (B)

d2
:

C′
(
W

(B)
d2

)
:=
{
w ⊕̄W (B)

d2

}⌊2nR(A)
⌋

w=1
(39)

Note that subcodebook C′(W (B)
d2

) is of rate R(A) which is smaller than the rate R(B) of the original codebook C.

Receiver 1 then decodes the XOR message in (38) using an optimal decoding rule for this subcodebook C′(W (B)
d2

),

and it XORs the decoded message with W (B)
d2

, which it has stored in its cache memory. It then combines the resulting

guess of W (A)
d1

with the message W (B)
d1

from its cache memory.

Since both receivers correctly guess their desired messages Wd1 and Wd2 whenever they successfully decode the

XOR-message in (38), and since the rate R(B) of the original codebook C satisfies

R(B) < I(X;Y2), (40)

and the rate of R(A) of the subcodebook C′(W (B)
d2

) satisfies

R(A) < I(X;Y1), (41)

the probability of decoding error at both receivers tends to 0 as the blocklength n tends to infinity.

Letting ε→ 0, we conclude that for K = 2 the rate-memory triple

R = I(X;Y1) + I(X;Y2),

M1 = I(X;Y2),

M2 = I(X;Y1),

is achievable.

5Recall that in Section I-B we defined the XOR operation ⊕̄ over the binary representations of the two messages of same length.
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Notice that the weaker receiver 1 is assigned a larger cache memory than the stronger receiver 2:

M1 ≥ M2. (42)

The described scheme can also be applied with a uniform cache assignment M1 = M2 = D ·R(A), however at the

cost of a decreased achievable rate R = 2 · I(X;Y1). In fact, assigning a larger cache memory M1 to receiver 1

allows to transmit more information to receiver 2 during the communication to receiver 1.

2) General Scheme: We will need the following definitions. Let for each t ∈ K

G(t)1 , . . . ,G(t)
(K

t )
(43a)

denote all unordered size-t subsets of K. Define their complements as:

G(t),c` := K\G(t)` , ` ∈
{

1, . . . ,

(
K

t

)}
. (43b)

Pick a small number ε > 0 and an input distribution PX . Pick further a parameter t ∈ {1, . . . ,K − 1}, and assign

the following cache size to receiver k ∈ K:

M
(t)
k := D ·

∑{
` : k∈G(t)

`

}∏
k′∈G(t),c

`

I(X;Yk′)∑( K
t+1)
j=1

∏
k′∈G(t+1),c

j
I(X;Yk′)

−D
(
K − 1

t− 1

)
ε. (44)

Notice that

M
(t)
1 ≤ M

(t)
2 ≤ · · · ≤ M

(t)
K , t ∈ {1, . . . ,K − 1},

so a larger cache memory is assigned the weaker a receiver is.

Split each message Wd into
(
K
t

)
independent submessages:

Wd =

{
W
d,G(t)

`

: ` = 1, . . . ,

(
K

t

)}
,

where each submessage W
d,G(t)

`

is of rate

RG(t)
`

:=

∏
k∈G(t),c

`

I(X;Yk)∑( K
t+1)
j=1

∏
k∈G(t+1),c

j
I(X;Yk)

− ε. (45)

The total message rate is thus

R :=

(K
t )∑

`=1

RG(t)
`

=

∑(K
t )

`=1

∏
k∈G(t),c

`

I(X;Yk)∑( K
t+1)
j=1

∏
k∈G(t+1),c

j
I(X;Yk)

−
(
K

t

)
ε. (46)

Notice that when t = K − 1 the denominator of (44), (45), and (46) all equal 1.

Placement Phase: For each d ∈ {1, . . . , D}, store the tuple{
W
d,G(t)

`

: k ∈ G(t)`
}
. (47)

in the cache memory of receiver k ∈ K. This is possible by (45) and the cache assignment in (44).
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Delivery Phase: Transmission in the delivery phase takes place in
(
K
t+1

)
subphases.

A given subphase j ∈
{

1, . . . ,
(
K
t+1

)}
is of length

nj :=

n ·
∏
k∈G(t+1),c

j
I(X;Yk)∑( K

t+1)
j′=1

∏
k∈G(t+1),c

j′
I(X;Yk)

 , (48)

and is used to transmit messages {
W
dk,G(t+1)

j \{k}

}
k∈G(t+1)

j

(49)

to the intended receivers in G(t+1)
j . For this purpose, the transmitter creates the XOR message

WXOR,G(t+1)
j

=
⊕

k∈G(t+1)
j

W
dk,G(t)

j+1\{k}
, (50)

which is of rate

RXOR,G(t+1)
j

:= max
G(t)
` ⊆G

(t+1)
j

RG(t)
`

=

(
max

k′∈G(t+1)
j

I(X;Yk′)

)
·

∏
k∈G(t+1),c

j
I(X;Yk)∑( K

t+1)
j=1

∏
k∈G(t+1),c

j
I(X;Yk)

− ε,

(51)

and generates a codebook

Cj =

{
x
nj

j (w) : w = 1, . . . ,
⌊
2
nR

XOR,G(t+1)
j

⌋}
, (52)

by drawing all entries i.i.d. according to PX .

The transmitter then sends the codeword

x
nj

j

(
WXOR,G(t+1)

j

)
(53)

over the channel.

We now describe the decoding. Each receiver k ∈ K can retrieve messages{
W
dk,G(t)

`

: k ∈ G(t)`
}

(54)

directly from its cache, see (47), and thus only needs to decode messages{
W
dk,G(t)

`

: k /∈ G(t)`
}
. (55)

For each j ∈ {1, . . . ,
(
K
t+1

)
} and k ∈ G(t+1)

j , receiver k decodes message W
dk,G(t+1)

j \{k} from its subphase-j

outputs

Y
nj

k,j :=
(
Yk,

∑j−1

j′=1
nj′+1, . . . , Yk,

∑j

j′=1
nj′

)
.

Specifically, with the messages stored in its cache memory, it forms the XOR message

WXOR,j,k :=
⊕

k′∈G(t+1)
j \{k}

W
dk′ ,G

(t+1)
j \{k′}, (56)
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and it extracts a subcodebook C′j,k(WXOR,j,k) from Cj that contains all codewords that are compatible with WXOR,j,k:

C′j,k(WXOR,j,k) :=
{
x
nj

j

(
w ⊕̄WXOR,j,k

)
: w = 1, . . . ,

⌊
2
nR
G(t+1)
j

\{k}
⌋}
.

It then decodes the XOR message WXOR,G(t+1)
j

by applying an optimal decoding rule for subcodebook C′j,k(WXOR,j,k)

to the subphase-j outputs Y nj

k,j , and XORs the resulting guess ŴXOR,G(t+1)
j

with WXOR,j,k to obtain

Ŵ
dk,G(t+1)

j \{k} = ŴXOR,G(t+1)
j

⊕̄WXOR,j,k. (57)

After the last sub-phase
(
K
t+1

)
, each receiver k ∈ K has decoded all its missing messages in (55), and can thus

produce a final guess of message Wdk .

Error Analysis: If each XOR-message WXOR,G(t+1)
j

is decoded correctly by all its intended receivers in G(t+1)
j ,

j = 1, . . . ,
(
K
t+1

)
, then all receivers 1, . . . ,K produce the correct estimate of their desired messages Wd1 , . . . ,WdK .

The probability that receiver k ∈ G(t+1)
j wrongly decodes the XOR message WXOR,G(t+1)

j
tends to 0 as n (and

thus nj) →∞ because the rate of the subcodebook C′j,k satisfies

lim
n→∞

n

nj
·RG(t+1)

j \{k} < I(X;Yk),

see (45) and (48).

By letting ε→ 0, we conclude the following result.

Theorem 3: Fix a t ∈ {1, . . . ,K − 1} and an input distribution PX , and consider the corresponding cache

assignment in (44). Then,

C
(
M

(t)
1 , . . . ,M

(t)
K

)
≥ R(t), (58)

where R(t) is calculated from PX as described in (46).

As we will see in Corollary 8, the Inequality in (58) holds with equality for t = K − 1.

D. Lower Bound on C?(M)

Proposition 1 and Theorems 2 and 3 readily yield a lower bound on C?(M). As we will see in Corollary 11

ahead, this lower bound is exact in the regimes of small and large total cache size M.

Let

R(0) := CK, M(0) := 0, (59a)

and

Rsingle := CK +
Msingle

D
, Msingle := Msingle

1 , (59b)

where CK is defined in (12) and Msingle
1 is defined in (25). Also, for given PX , recall M(t) and R(t) from (44) and

(46), and define for t ∈ {1, . . . ,K − 1}:

M(t) :=

K∑
k=1

M
(t)
k . (59c)
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Proposition 4: For any PX , all rate-memory pairs in (59) are achievable. By time- and memory-sharing arguments,

the upper-convex envelope of all these rate-memory pairs lower bounds C?(M):

C?(M) ≥ upp hull
{(
R(0),M(0)

)
,
(
Rsingle,Msingle

)
,⋃

PX

{(
R(1),M(1)

)
, . . . ,

(
R(K−1),M(K−1))}}. (60)

Notice that for any PX :

M(0) ≤ Msingle ≤ M(1) ≤ · · · ≤ M(K−1) (61)

and

R(0) ≤ Rsingle ≤ R(1) ≤ · · · ≤ R(K−1). (62)

V. UPPER BOUNDS AND EXACT RESULTS ON GLOBAL CAPACITY-MEMORY TRADEOFF

A. Results on C(M1, . . . ,MK)

The upper bound is formulated in terms of the following parameters. For each receiver set S as in (15), define

α?S,1 :=
Mj1

D
(63a)

and for k ∈ {2, . . . , |S|}:

α?S,k := min

{∑k
i=1 Mji

D − k + 1
,

1

|S| − k + 1

(
|S|
D

|S|∑
i=1

Mji −
k−1∑
i=1

αS,i

)}
. (63b)

Theorem 5: There exist random variables X,Y1, . . . , YK and for every receiver set S as in (15) random variables

{US,1, . . . , US,|S|−1} so that the channel law (14b) and the Markov chain

US,1 − US,2 − US,|S| − · · · − US,|S|−1 −X −
(
Y1, . . . , YK

)
(64)

hold and so that for each S:

C(M1, . . . ,MK) ≤ I
(
US,1;Yj1

)
+ α?S,1, (65a)

C(M1, . . . ,MK) ≤ I
(
US,k;Yjk |US,k−1) + α?S,k, ∀k ∈ {2, . . . , |S| − 1}, (65b)

C(M1, . . . ,MK) ≤ I
(
X;Yj|S| |US,|S|−1) + α?S,|S|. (65c)

Proof: See Appendix A.

Without cache memories, M1 = . . . = MK = 0, the parameters α?S,1, . . . , α
?
S,|S| equal 0 for all S ⊆ {1, . . . ,K},

and the upper bound in Theorem 5 recovers the exact capacity-memory tradeoff CK in (13).

The upper bound in Theorem 5 is asymmetric in the different cache sizes M1,M2, . . . ,MK , because the parameters

α?S,ji are not symmetric. In fact, increasing the cache memories at weaker receivers generally increases the upper

bound more than increasing the cache memories at stronger receivers.
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The converse in Theorem 5 is weakened if constraints (65) are ignored for certain receiver sets S, or if in these

constraints the input/output random variables X,Yj1 , . . . , Yj|S| are allowed to depend on the receiver set S. For this

latter relaxation, Theorem 5 results in the following corollary.

Corollary 6: Given cache sizes M1, . . . ,MK ≥ 0, rate R is achievable only if for every receiver set S ⊆ K:(
R− α?S,1, R− α?S,2, . . . , R− α?S,|S|

)
∈ CS , (66)

where CS denotes the capacity region to receivers in S (ignoring receivers in K\S) when there are no cache

memories.

Remark 3: The upper bounds of Theorem 5 and Corollary 6 are relaxed when each α?S,k is replaced by α̃S,k,

where

α̃S,1 :=
Mj1

D
, (67a)

α̃S,k :=
|S| ·∑|S|i=1 Mji −Mj1

(|S| − 1)D
, k ∈ {2 . . . , |S|}. (67b)

The same holds if each α?S,k is replaced by

α′S,k :=

∑|S|
i=1 Mji

D
. (68)

Replacing in Corollary 6 each parameter α?S,k by α′S,k recovers the previous upper bound in [26, Theorem 9] and

[28, Theorem 1].

Proof: The proof requires a close inspection of the proof of Theorem 5 in Appendix A. See Appendix D.

By comparing the new upper bounds with the three achievability results in the previous Section IV, the exact

expression for C(M1, . . . ,MK) can be obtained in some special cases.

The following corollary states that superposition piggyback coding is optimal when only receiver 1 has a cache

memory and this cache memory is small.

Corollary 7: Under a cache assignment satisfying

0 ≤ M1 ≤ Msingle
1 and M2 = . . . = MK = 0, (69)

the capacity-memory tradeoff is

C(M1, 0, . . . , 0) = CK +
M1

D
.

Proof: Achievability follows by Theorem 2. The converse from Corollary 6, where it suffices to consider only

the set S = K. In fact, under (69), αK,1 = . . . = αK,K = M1

D .

The next corollary states that generalized coded caching with parameter t = K − 1 is optimal under the

corresponding cache assignment. Moreover, any extra cache memory that is uniformly distributed over the K

receivers only brings local caching gain.

Proposition 8: For each k ∈ K, let M?(K−1)
k be given by (44) when PX is chosen as a maximizer of

CAvg :=
1

K
·max
PX

(
K∑
k=1

I(X;Yk)

)
. (70)
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For any ∆ ≥ 0:

C
(
M
?(K−1)
1 + ∆, . . . , M

?(K−1)
K + ∆

)
= CAvg +

∑K
k=1 M

?(K−1)
k

K ·D +
∆

D
. (71)

Proof: See Appendix E.

B. Results on C?(M)

Theorem 5 directly yields the following result.

Proposition 9: There exist random variables X,Y1, . . . , YK and for every receiver set S as in (15) random

variables {US,1, . . . , US,|S|−1}, such that (14b) and (64) hold, and such that for some M1, . . . ,MK ≥ 0 summing

to M and all S:

C?(M) ≤ I
(
US,1;Yj1) + α?S,1, (72a)

C?(M) ≤ I
(
US,k;Yjk |US,k−1) + α?S,k, k ∈ {2, . . . , |S| − 1},

(72b)

C?(M) ≤ I
(
X;Yj|S| |US,|S|−1) + α?S,|S|, (72c)

where {α?S,k} are defined in (63).

Solving this optimization problem numerically is computationally complex. Simpler, albeit looser, upper bounds

can be obtained by either ignoring some of the constraints (72); by replacing each parameter α?S,k in (72) by α̃S,k

or by α′S,k; or by allowing X,Yj1 , . . . , YjS in (72) to depend on the set S.

The following corollary presents a simpler bound that is obtained this way. Recall the definitions in (43).

Corollary 10: For each t ∈ K:

C?(M) ≤ 1(
K
t

) (K
t )∑

`=1

CG(t)
`

+
t

K
· M
D
. (73)

Proof: Fix t ∈ K. For each ` = 1, . . .
(
K
t

)
, specialize Corollary 6 to S = G(t)` and relax it by replacing each

parameter α?G(t)
` ,k

by α′G(t)
` ,k

. Since α′G(t)
` ,1

= . . . = α′G(t)
` ,t

, we obtain

C?(M) ≤ CG(t)
`

+ α′G(t)
` ,1

= CG(t)
`

+

∑
i∈G(t)

`

Mi

D
. (74)

Now, averaging bound (74) over all indices ` = 1, . . . ,
(
K
t

)
and upperbounding the sum M1 + . . . + MK by M

yields the desired result in the corollary.

The last result of this section contains two more simple upper bounds on C?(M). For small total cache size M

one of them is achieved by assigning the entire cache memory to the weakest receiver and applying superposition

piggyback coding. For large total cache size M the other is achieved by generalized coded caching with parameter

t = K − 1, and by first applying the cache assignment corresponding to this scheme followed by a uniform cache

assignment of any remaining cache memory.
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Corollary 11: For total cache size M ≥ 0:

C?(M) ≤ CK +
M

D
(75)

and

C?(M) ≤ Cavg +
1

K
· M
D
. (76)

For small cache sizes,

0 ≤ M ≤ M single, (77)

(75) holds with equality.

For large cache sizes,

M ≥ D · (K − 1) ·K · Cavg, (78)

(76) holds with equality.

Proof: Upper bound (75) follows by specializing Corollary 10 to t = K. Upper bound (76) is proved as

follows. Relax Theorem 9 by replacing each parameter α?S,k by α′S,k and considering only the constraints (72) that

correspond to sets S = {k}, for k ∈ K. Finally, average the K resulting inequalities and maximize over the input

distribution PX .

The tightness of (75) for M ≤ Msingle follows from Theorem 2. The tightness of (78) for M ≥ D(K − 1)KCAvg

follows from Proposition 8 because

M
?(K−1)
1 + . . .+ M

?(K−1)
K = D(K − 1)KCAvg.

We remark that for small total cache sizes, C?(M) grows as M
D . This corresponds to a perfect global caching gain,

i.e., the same performance as in a system where each receiver can directly access all cache contents in the network.

For large total cache sizes, C?(M) grows only as 1
K · MD . This corresponds to the local caching gain achieved by

Proposition 1.

VI. EXAMPLES

A. Erasure BCs

We specialize our results to erasure BCs where at time t receiver k’s output Yk,t equals the channel input Xt

with probability 1− δk and it equals an erasure symbol “?” with probability δk. The erasure probabilities satisfy:

1 > δ1 ≥ δ2 ≥ . . . ≥ δK ≥ 0. (79)

For erasure BCs,

CS =

(∑
s∈S

1

1− δs

)−1
, S ⊆ K. (80)
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Moreover, a Bernoulli-1/2 input distribution PX maximizes I(X;Yk) and I(X;Yk|U) simultaneously for all k ∈ K
and auxiliaries U that form the Markov chain U −X − Yk. Therefore, Theorem 5 and Corollary 6 coincide. Also,

Cavg =
1

K

K∑
k=1

Ck = 1−
∑K
k=1 δk
K

. (81)

Figure 4, depicts the upper and lower bounds on C?(M) in Propositions 4 and 9. For comparison, also the upper

bound in Theorem 5 under a uniform cache assignment

M1 = . . . = MK =
M

K

is plotted. This proves numerically that a smart allocation of the total cache memory M significantly increases the

global capacity-memory tradeoff of erasure BCs when different receivers have different erasure probabilities.

0 1 2 3 4 5 6 7 8
0
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1

1.5

2

2.5

M
D

R
at

e

Upper bound under uniform cache-assignment
Upper bound on C?(M)
Lower bound on C?(M)

Fig. 4. Bounds on C?(M) for a 4-user Erasure BC with δ1 = 0.9, δ2 = 0.6, δ3 = 0.1, δ4 = 0.051.

Analytically, we can prove that for small total cache size M ≤ Msingle any cache assignment that does not allocate

all cache memory to the weakest receiver is suboptimal on the erasure BC. This follows from the achievability in

Corollary 11 and the following Proposition 12.

Proposition 12: For given M1 ≥ 0 and M :=
∑K
k=1 Mk ≥ 0,

C(M1, . . . ,MK)

≤ min

{
CK +

M1

D
+

(M−M1)

D
· K · CK
(K − 1)C{2,...,K}

,
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C1 +
M1

D

}
(82)

The RHS of (82) is strictly less than CK + M
D unless M = M1 or δ1 = . . . = δK .

Proof: See Appendix F.

B. Noise-Free Bit-Pipe

Consider now the noise-free bit-pipe model with uniform cache assignment in [1]. It corresponds to an erasure

BC where each receiver has zero erasure probability,

δ1 = . . . = δK = 0. (83)

We adopt the “source-coding perspective” of [1], and assume equal cache size

m1 = · · · = mK = m.

From the upper bound on C(M1, . . . ,MK) in Theorem 5, the following lower bound on the minimum achievable

delivery rate ρ? can be obtained as a function of the normalized symmetric cache size m:

Corollary 13: For the noise-free bit-pipe model in [1]:

ρ? ≥ t−m ·min

{
t2

D
,

t∑
k=1

k

D − k + 1

}
, m ≤ D. (84)

Proof: See Appendix G.

Figure 5 compares this new converse result on ρ with the existing converse results in [1], [9], and [10], and with

the achievability result in [43]. The converse result in [10] is generally cumbersome to evaluate. The plot shows

the numerical value calculated in [10].

C. Gaussian BCs

Finally, we specialize our results to memoryless Gaussian BCs. At time t, the received symbol at receiver k is

Yk,t = Xt + Zk,t, (85)

where Xt is the input to the channel and {Zk,t} is an i.i.d. Gaussian process with zero mean and variance σ2
k > 0.

The channel inputs are subject to an average block-power constraint P . The receivers are ordered in increasing

strength:

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
K > 0.

By [60], for every set S as defined in (15),

CS =
1

2
log2

(
1 +

β1P∑|S|
k=2 βkP + σ2

1

)
, (86)

where β1, . . . , β|S| form the unique choice of |S| real numbers in [0, 1] that sum to 1 and satisfy

β1P∑|S|
k=2 βkP + σ2

1

=
βiP∑|S|

k=i+1 βkP + σ2
ji

, i ∈ {1, . . . , |S|}. (87)
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Fig. 5. Upper and lower bounds on the minimum delivery rate ρ in the source coding model of [1] for K = 12 and D = 64.

In particular,

Ck =
1

2
log

(
1 +

P

σ2
k

)
, k ∈ {1, . . . ,K}. (88)

Moreover, given a power constraint P > 0, a zero-mean variance-P Gaussian input distribution PX maximizes

I(X;Yk) and I(X;Yk|U) simultaneously for all k ∈ K and auxiliaries U that form the Markov chain U −X−Yk.

Therefore, Theorem 5 and Corollary 6 coincide. Also,

Cavg =
1

K

K∑
k=1

Ck =
1

K

K∑
k=1

1

2
log

(
1 +

P

σ2
k

)
. (89)

Figure 6 shows the upper and lower bounds on C?(M) in Propositions 4 and 9. The five blue points indicate

the rate-memory points (R(0),M(0)), (Rsingle,Msingle), (R(1),M(1)), (R(2),M(2)), and (R(3),M(3)) for a zero-mean

variance-P Gaussian distribution PX . For comparison, the figure also shows the upper bound in Theorem 5 for a

setup with uniform cache assignment M
K across all receivers. We observe that a smart cache assignment provides

substantial gains in the capacity-memory tradeoff.

VII. SUMMARY AND CONCLUSION

We have provided close upper and lower bounds on the global capacity-memory tradeoff C?(M) of degraded

BCs. The bounds coincide in the regimes of small and large total cache memory with thresholds depending on

the BC statistics. For small cache memory sizes, the weakest receiver needs to be assigned all. In this regime,
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Fig. 6. Upper and lower bounds on C?(M) on a 4-receiver Gaussian BC with input power P = 1 and noise variances σ1 = 4, σ2
2 = 1,

σ2
3 = 0.5, and σ2

4 = 0.1. We have D = 10.

C?(M) grows as M
D , which corresponds to a perfect global caching gain where all receivers can benefit from all

the cache contents of the network. This performance is achieved by the proposed superposition piggyback coding

scheme, which provides each receiver virtual access to the weakest receiver’s cache contents. For the regime of

moderate M, we propose a generalized coded caching scheme, which assigns cache memories to all the receivers,

with a larger cache memory the weaker a receiver is. Notice that the larger the total cache budget M, the larger

the coded caching parameter t ∈ {1, . . . ,K − 1} needs to be chosen. This leads to a decreasing global caching

gain because with increasing t the various cache memories have more and more overlapping contents which cannot

provide global caching gains. As a consequence, the slope of the rate-memory tradeoff achieved by generalized

coded caching decreases with increasing total cache budget M. The same behaviour is also suggested by the upper

bound. For parameter t = K−1 generalized coded caching and the corresponding cache assignment exactly achieve

the global capacity-memory tradeoff. Once the total cache memory budget exceeds the corresponding cache budget,

it is optimal to uniformly allocate all the remaining cache memory across all the receivers and to store the same

content in the extra portions of the receivers’ cache memories. Here, C?(M) grows as 1
K · MD , which corresponds

to a local caching gain. We conclude that assigning the total cache memory uniformly across all the receivers is

highly suboptimal over noisy BCs, in contrast to the noiseless setup considered in [1].
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APPENDIX A

PROOF OF UPPER BOUND IN THEOREM 5

Fix the rate of communication

R < C(M1, . . . ,MK).

Since R is achievable, for each sufficiently large blocklength n and for each demand vector d, there exist K

caching functions
{
g
(n)
k

}
, an encoding function {f (n)d }, and K decoding functions

{
ϕ
(n)
k,d

}
so that the probability

of worst-case error Pe
(n)(d) tends to 0 as n→∞.

Fix ε > 0 and a sufficiently large blocklength n (depending on this ε). Let

Vk = g
(n)
k (W1, . . . ,WD), k ∈ {1, . . . ,K} (90)

denote the cache contents corresponding to the chosen caching function, and let for each demand vector d =

(d1, . . . , dK) with all different entries

Xn
d = f

(n)
d (W1, . . . ,WD) (91)

denote the input of the degraded BC corresponding to the chosen encoding functions. Let Y nk,d denote the corre-

sponding channel outputs at receiver k.

Lemma 14: There exist random variables Xd, Y1,d, . . . , YK,d and for each set S as in (15) random variables

{US,1,d, . . . , US,|S|−1,d}, so that given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ Γ(· · · |x); (92a)

and for each S:

US,1,d − · · · − US,|S|−1,d −Xd − YK,d − YK−1,d · · · − Y1,d (92b)

forms a Markov chain and the following |S| inequalities hold:

R− ε ≤ 1

n
I
(
Wdj1

; Vj1
)

+ I
(
US,1,d;Yj1,d

)
, (93a)

R− ε ≤ 1

n
I
(
Wdjk

; Vj1 , . . . ,Vjk |Wdj1
, . . . ,Wdjk−1

)
+ I
(
US,k,d;Yjk,d|US,k−1,d),

∀k ∈ {2, . . . , |S| − 1}, (93b)

R− ε ≤ 1

n
I
(
Wdj|S|

; Vj1 , . . . ,Vj|S| |Wdj1
, . . . ,Wdj|S|−1

)
+ I
(
Xd;Yj|S|,d|US,|S|−1,d). (93c)

Proof: The proof is similar to the converse proof of the capacity of degraded BCs without caching [59].

Since the worst case error probability is bounded by ε, using Fano’s inequality we have

R−ε ≤ 1

n
I
(
Wdj1

;Y nj1,d,Vj1
)

=
1

n
I
(
Wdj1

; Vj1
)

+
1

n
I
(
Wdj1

;Y nj1,d
∣∣Vj1). (94a)
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Similarly, for k ∈ {2, . . . ,K}:

R−ε
(a)

≤ 1

n
I
(
Wdjk

;Y njk,d,Vj1 , . . . ,Vjk
∣∣Wdj1

, . . . ,Wdjk−1

)
=

1

n
I
(
Wdjk

; Vj1 , . . . ,Vjk
∣∣Wd1 , . . . ,Wdjk−1

)
+

1

n
I
(
Wdjk

;Y njk,d
∣∣V1, . . . ,Vjk ,Wdj1

, . . . ,Wdjk−1

)
, (94b)

where (a) uses Fano’s inequality as well as the fact that all messages are independent. Recall that the demand

vector d has all different entries.

We next develop the second summands in (94a) and (94b). For the second summand in (94a) we write

1

n
I
(
Wdj1

;Y nj1,d
∣∣Vj1) =

1

n

n∑
t=1

I
(
Wdj1

;Yj1,d,t
∣∣Vj1 , Y t−1j1,d

)
≤ 1

n

n∑
t=1

I
(
Wdj1

, Y t−1j1,d
;Yj1,d,t

∣∣Vj1)
= I
(
US,1,d,T ;Yj1,d,T

∣∣Vj1 , T )
≤ I
(
US,1,d;Yj1,d

∣∣Vj1) (95)

where T denotes a random variable that is uniformly distributed over {1, . . . , n} and independent of all previously

defined random variables, and where

US,1,d,T := (Vj1 ,Wdj1
, Y t−1j1,d

),

US,1,d := (US,1,d,T , T ),

Yj1,d := Yj1,d,T .

Define further for k ∈ {2, . . . , |S| − 1}:

US,k,d,T := (US,k−1,d,T ,Vjk ,Wdjk
, Y t−1jk,d

),

US,k,d := US,k,d,T ,

Yjk,d := Yjk,d,T ,

and

Yj|S|,d := Yj|S|,d,T

Xd := Xd,T .

For k ∈ {2, . . . ,K − 1}, we expand the second summand in (94b) as:

1

n
I
(
Wdjk

;Y njk,d
∣∣Vj1 , . . . ,Vjk ,Wdj1

, . . . ,Wdjk−1

)
=

1

n

n∑
t=1

I
(
Wdjk

;Yjk,d,t
∣∣Vj1 , . . . ,Vjk ,Wdj1

, . . . ,Wdjk−1
, Y t−1jk,d

)
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(a)
=

1

n

n∑
t=1

I
(
Wdjk

;Yjk,d,t
∣∣Vj1 , . . . ,Vjk ,Wdj1

, . . . ,Wdjk−1
,

Y t−1j1,d
, . . . , Y t−1jk−1,d

, Y t−1jk,d

)
≤ 1

n

n∑
t=1

I
(
Wdjk

, Y t−1jk,d
,Vjk ;Yjk,d,t

∣∣Vj1 , . . . ,Vjk−1
,

Wdj1
, . . . ,Wdjk−1

, Y t−1j1,d
, . . . , Y t−1jk−1,d

)
= I
(
US,k,d,T ;Yjk,d,T

∣∣US,k−1,d,T , T )

= I
(
US,k,d;Yjk,d

∣∣US,k−1,d), (96)

where (a) follows from the degradedness of the outputs.

Similarly, we also have

1

n
I
(
Wdj|S|

;Y nj|S|,d
∣∣Vj1 , . . . ,Vj|S| ,Wdj1

, . . . ,Wdj|S|−1

)
=

1

n

n∑
t=1

I
(
Wdj|S|

;Yj|S|,d,t
∣∣Vj1 , . . . ,Vj|S| ,Wdj1

, . . . ,Wdj|S|−1
,

Y t−1j1,d
, . . . , Y t−1j|S|−1,d

, Y t−1j|S|,d

)
≤ 1

n

n∑
t=1

I
(
Wdj|S|

, Y t−1j|S|,d
,Vj|S| ;Yj|S|,d,t

∣∣Vj1 , . . . ,Vj|S|−1
,

Wdj1
, . . . ,Wdj|S|−1

, Y t−1j1,d
, . . . , Y t−1j|S|−1,d

)
≤ I(Xd,T ;Yj|S|,d,T | US,|S|−1,d,T , T )

= I(Xd;Yj|S|,d | US,|S|−1,d). (97)

It can be verified that the defined random variables satisfy Conditions (92). Combining this observation with

(94)–(97) concludes the proof.

We average the bounds in (93) over demand vectors. Let Qdist
K be the set of all the

(
D
K

)
K! K-dimensional

demand vectors with all distinct entries. Also, let Q be a uniform random variable over the elements of Qdist
K and

independent of all other random variables. Define for each set S as in (15): US,1 := (US,1,Q, Q); US,k := US,k,Q,

for k ∈ {2, . . . , |S| − 1}; X := XQ; and Yk := Yk,Q for k ∈ K.

Notice that the defined random variables satisfy conditions (14b) and (64) in the theorem. It remains to prove

that they also satisfy (65). To this end, we average inequalities (93) over all the demand vectors in Qdist
K . Using

standard arguments to take care of the time-sharing random variable Q, and defining

αS,1 :=
1(

D
K

)
K!

∑
d∈Qdist

K

1

n
I(Wdj1

; V1), (98a)

αS,k :=
1(

D
K

)
K!

∑
d∈Qdist

K

1

n
I(Wdjk

; V1, . . . ,Vjk |Wdj1
, . . . ,Wdjk−1

),

k ∈ {2, . . . , |S|}, (98b)
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we obtain for each S as in (15):

R− ε ≤ I
(
US,1;Yj1

)
+ αS,1, (99a)

R− ε ≤ I
(
US,k;Yjk |US,k−1) + αS,k, ∀k∈{2, . . . , |S| − 1}, (99b)

R− ε ≤ I
(
X;Yj|S| |US,|S|−1) + αS,|S|, (99c)

Lemma 15: For each set S, parameters αS,1, . . . , αS,|S| satisfy the following constraints:

0 ≤ αS,k ≤
∑k
i=1 Mji

D − k + 1
, k ∈ {1, . . . , |S|}, (100a)

αS,k′ ≤ αS,k, k, k′ ∈ {1, . . . , |S|}, k′ ≤ k, (100b)

|S|∑
k=1

αS,k ≤
|S|
D

|S|∑
k=1

Mjk . (100c)

Proof: See Appendix B.

By (99)–(100) and letting ε→ 0, the following intermediate result—which is used in other proofs in this paper—is

obtained.

Lemma 16: There exist random variables X,Y1, . . . , YK and for every receiver set S as in (15) random variables

{US,1, . . . , US,|S|−1}, so that (14b) and (64) hold, and for all S:

C(M1, . . . ,MK) ≤I
(
US,1;Yj1

)
+ αS,1, (101a)

C(M1, . . . ,MK) ≤I
(
US,k;Yjk |US,k−1) + αS,k,

∀k ∈ {2, . . . , |S|}, (101b)

for parameters αS,1, . . . , αS,|S| satisfying (100).

By the following Lemma 17, because constraints (101) are increasing in αS,1, . . . , αS,|S|, and by constraint (100c),

we conclude that the choice αS,k = α?S,k in (63) makes the upper bound (101) loosest. The following Lemma 17

thus concludes the proof.

Lemma 17: Lemma 16 remains valid, if parameters αS,1, . . . , αS,|S| are further constrained to satisfy for each

k ∈ {1, . . . , |S| − 1} one of the two following conditions:

• αS,k =
∑k

i=1 Mji

D−k+1 ; or

• αS,k = αS,k+1.

Proof: See Appendix C.

APPENDIX B

PROOF OF LEMMA 15

We only prove the lemma for S = K. The other proofs are similar.

We first prove (100a). Every αK,k is non-negative, because mutual information is non-negative. To prove the upper

bound in (100a), we proceed as follows. Let Qdist
K be the set of K-dimensional demand vectors that have K distinct
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entries in {1, . . . , D}; and for each k ∈ {1, . . . ,K} and each k−1 dimensional demand vector d̃ = (d1, . . . , dk−1),

define Wd̃ := (Wd1 , . . . ,Wdk−1
). We have:

αK,k

=
1

K!
(
D
K

) ∑
d∈Qdist

K

I(Wdk ; V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
)

=
1

K!
(
D
K

) ∑
d̃∈Qdist

k−1

∑
d∈Qdist

K :

(d1,...,dk−1)=d̃

I(Wdk ; V1, . . . ,Vk|Wd̃)

(a)
=

1

K!
(
D
K

) ∑
d̃∈Qdist

k−1

∑
j∈D\d̃

I(Wj ; V1, . . . ,Vk|Wd̃)

·
(
D − k
K − k

)
(K − k)!

=
1

k!
(
D
k

) ∑
d̃∈Qdist

k−1

∑
j∈D\d̃

I(Wj ; V1, . . . ,Vk|Wd̃)

(b)
=

1

k!
(
D
k

) ∑
d̃∈Qdist

k−1

[
H(W1, . . . ,WN |Wd̃)

−
∑
j∈D\d̃

H(Wj |V1, . . . ,Vk,Wd̃)
]

(c)

≤ 1

k!
(
D
k

) ∑
d̃∈Qdist

k−1

I(W1, . . . ,WN ; V1, . . . ,Vk|Wd̃)

(d)

≤
(k − 1)!

(
D
k−1
)

k!
(
D
k

) k∑
i=1

Mi

=

∑k
i=1 Mi

D − k + 1
(102)

where (a) holds because for each value of K and j there are
(
D−k
K−k

)
(K − k)! ordered demand vectors d ∈

Qdist
K with (d1, . . . , dk−1) = d̃ and with dk = j; (b) holds by the independence of the messages; (c) holds

because for any random tuple (A1, . . . , AL) it holds that
∑L
l=1H(Al) ≥ H(A1, . . . , AL); and (d) holds because

I(W1, . . . ,WN ; V1, . . . ,Vk|Wd̃) cannot exceed
∑k
i=1 Mi. This concludes the proof of (100a).

To prove constraint (100b), we fix a K-dimensional demand vector d ∈ Qdist
K , and consider the cyclic shifts of

this vector. For ` ∈ {0, . . . ,K−1}, let d(`) be the vector obtained from d when the elements are cyclically shifted

` positions to the right. (For example, if d = (1, 2, 3) then d(2) = (2, 3, 1).) For each ` ∈ {0, . . . ,K − 1} and

k ∈ {1, . . . ,K}, let d(`)k denote the k-th index of demand vector d(`). So,

d
(`)
k = d(k−`) mod K (103)

where for each positive integer ξ the term (ξ mod K) takes value in {1, . . . ,K} so that

ξ mod K = ξ − bK for some positive integer b. (104)
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For each ` ∈ {1, . . . ,K−1} and k, k′ ∈ {2, . . . ,K} with k′ ≤ k, we write

I(Wd1 ; V1)
(a)
= I(W

d
(k′−1)

k′
; V1)

(b)

≤I(W
d
(k′−1)

k′
; V1, . . . ,Vk′ |Wd

(k′−1)
1

, . . . ,W
d
(k′−1)

k′−1

)

(a)
= I(W

d
(k−1)
k

; V1, . . . ,Vk′ |Wd
(k−1)

1+k−k′
, . . . ,W

d
(k−1)
k−1

)

(b)

≤I(W
d
(k−1)
k

; V1, . . . ,Vk|Wd
(k−1)
1

, . . . ,W
d
(k−1)
k−1

) (105)

where (a) follows by (103) and (b) is by the independence of messages.

Fix a demand vector d ∈ Qdist
K and sum up the above inequality (105) over all K cyclic shifts d(0),d(1), . . . ,

d(K−1) of d to obtain:
K−1∑
`=0

I(W
d
(`)
1

; V1)

≤
K−1∑
`=0

I(W
d
(`)

k′
; V1, . . . ,Vk′ |Wd

(`)
1
, . . . ,W

d
(`)

k′−1

)

≤
K−1∑
`=0

I(W
d
(`)
k

; V1, . . . ,Vk|Wd
(`)
1
, . . . ,W

d
(`)
k−1

). (106)

Since the set Qdist
K can be partitioned into subsets of demand vectors that are cyclic shifts of each others and all

cyclic shifts of a demand vector in Qdist
K are also in Qdist

K , we conclude from (106):∑
d∈Qdist

K

I(Wd1 ; V1)

≤
∑

d∈Qdist
K

I(Wdk′ ; V1, . . . ,Vk′ |Wd1 , . . . ,Wdk′−1
)

≤
∑

d∈Qdist
K

I(Wdk ; V1, . . . ,Vk|Wd1 , . . . ,Wdk−1
). (107)

This proves (100b).

We proceed to prove constraint (100c). For each d ∈ Qdist
K :

I(Wd1 ; V1) +

K∑
k=2

I(Wdk ; V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)

≤ I(Wd1 ,Wd2 , . . . ,WdK ; V1, . . . ,VK). (108)

So, ∑
d∈Qdist

K

[
I(Wd1 ; V1)

+

K∑
k=2

I(Wdk ; V1, . . . ,Vk|Wd1 ,Wd2 , . . . ,Wdk−1
)

]
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≤
∑

d∈Qdist
K

I(Wd1 ,Wd2 , . . . ,WdK ; V1 . . . ,VK)

(a)
=

∑
d∈Qdist

K

[
H(Wd1) +H(Wd2) + . . .+H(WdK )

−H(Wd1 , . . . ,WdK |V1, . . . ,VK)
]

(b)
=
K

D
|Qdist

K |H(W1, . . . ,WD)

−
∑

d∈Qdist
K

H(Wd1 , . . . ,WdK |V1, . . . ,VK)

(c)

≤ K

D
K!

(
D

K

)
H(W1, . . . ,WD)

− K

D
K!

(
D

K

)
H(W1, . . . ,WD|V1, . . . ,VK)

(b)
=
K

D
K!

(
D

K

)
I(W1, . . . ,WD; V1, . . . ,VK)

≤ K

D
K!

(
D

K

)
n

K∑
k=1

Mk,

where (a) holds by the chain rule of mutual information, (b) by the independence and uniform rate of messages

W1, . . . ,WD and the definition of the set Qdist
K , which is of size

(
D
K

)
K!, and (c) by the generalized Han-Inequality

(the following Proposition 18).

Proposition 18: Let L be a positive integer and A1, . . . , AL be a finite random L-tuple. Denote by AJ the subset

{Al, l ∈ J }. For every i ∈ {1, . . . , L}:
1(
L
i

) ∑
J⊆{1,...,L}:
|J |=i

H(AJ )

i
≥ 1

L
H(A1, . . . , AL). (109)

Proof: See [62, Theorem 17.6.1].

APPENDIX C

PROOF OF LEMMA 17

We prove the lemma by contradiction. Fix a random tuple (X,Y1, . . . , YK) satisfying (14b) and for each set S as

in (15) a random tuple US,1, US,2, . . . , US,|S−1 satisfying (64) and real numbers αS,1, . . . , αS,|S| satisfying (100).

Assume that for some set S as in (15) and some k̃ ∈ {1, . . . , |S| − 1}:

αS,k̃ 6= αS,k̃+1 (110)

and

αS,k̃ <

∑k̃
i=1 Mji

D − k̃ + 1
. (111)

Let

γ := max

{
1

2
,
αS,k̃+1 −

∑k̃
i=1 Mji

D−k̃+1

αS,k̃+1 − αS,k̃

}
. (112)
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Notice that by (111):

γ ∈
[

1

2
, 1

)
. (113)

Define the new parameters

ᾱS,k := αS,k, k ∈ {1, . . . , |S|}\{k̃, k̃ + 1} (114a)

ᾱS,k̃ := γαS,k̃ + (1− γ)αS,k̃+1 (114b)

ᾱS,k̃+1 := (1− γ)αS,k̃ + γαS,k̃+1. (114c)

Notice that this new set of parameters satisfies constraints (100) when αS,1, . . . , αS,|S| are replaced by ᾱS,1, . . . , ᾱS,|S|.

In particular,

ᾱS,k ≤ ᾱS,k+1, k ∈ {1, . . . , |S| − 1}. (115)

We will show that there exist new auxiliary random variables ŪS,1, ŪS,2, . . . , ŪS,|S|−1 satisfying the Markov

chain (64), and so that upper bound (93) is looser for these new auxiliares and the new parameters ᾱS,1, . . . , ᾱS,|S|

than for the original auxiliaries US,1, . . . , US,|S|−1 and parameters αS,1, . . . , αS,|S|−1.

To simplify notation in the following, we define

US,|S| := X. (116)

Notice that since αS,k̃ 6= αS,k̃+1 and by (100b), the strict inequality

αS,k̃ < αS,k̃+1 (117)

must hold. Choose

ŪS,k = US,k, k ∈ {1, . . . , |S| − 1}\{k̃}, (118)

and

ŪS,|S| = US,|S| = X. (119)

The choice of ŪS,k̃ depends on whether

I(US,k̃;Yk̃|US,k̃−1) ≤ I(US,k̃+1;Yk̃+1|US,k̃), (120a)

or

I(US,k̃;Yk̃|US,k̃−1) > I(US,k̃+1;Yk̃+1|US,k̃). (120b)

If (120a) holds, choose

ŪS,k̃ = US,k̃. (121)

If (120b) holds, let E ∈ {0, 1} be a Bernoulli-β random variable independent of everything else, where

β := (1− γ)− (1− γ) ·
I(US,k̃+1;Yk̃+1|US,k̃)

I(US,k̃;Yk̃|US,k̃−1)
. (122)

February 26, 2017 DRAFT



33

Choose

ŪS,k̃ =

(US,k̃, E), if E = 0

(US,k̃−1, E), if E = 1.

(123)

Notice that in both cases the proposed choice satisfies the Markov chain ŪS,1 − Ū2,S − · · · − ŪS,|S|−1 −X .

Trivially, for k /∈
{
k̃, k̃ + 1

}
, constraint (93) is unchanged if we replace (US,1, US,2, . . . , US,|S|−1, X) by

(ŪS,1, ŪS,2, . . . , ŪS,K−1, X) and (αS,1, . . . , αS,|S|) by (ᾱS,1, . . . , ᾱS,|S|).

If (120a) holds, then the proposed replacement relaxes constraint (93) for k = k̃
(
because ᾱS,k̃ > αS,k̃

)
and it

tightens it for k = k̃ + 1
(
because ᾱS,k̃+1 < αS,k̃+1

)
. However, the new constraint for k = k̃ + 1 is less stringent

than the original constraint for k = k̃:

ᾱS,k̃+1 + I(ŪS,k̃+1;Yk̃+1|ŪS,k̃)

(a)
= (1− γ) · αS,k̃ + γ · αS,k̃+1 + I(US,k̃+1;Yk̃+1|US,k̃)

(b)
> αS,k̃ + I(US,k̃+1;Yk̃+1|US,k̃)

(c)

≥ αS,k̃ + I(US,k̃;Yk̃|US,k̃−1), (124)

where (a) holds by (114c); (b) holds by (117); and (c) holds by holds by assumption (120a). We conclude that

when (120a) holds, the upper bound on C(M1, . . . ,MK) in (93) is relaxed if everywhere one replaces

(US,1, US,2 . . . , U|S,|S|−1) and (αS,1, . . . , αS,|S|) by (ŪS,1, ŪS,2, . . . , ŪS,|S|−1) and (ᾱS,1, . . . , ᾱS,|S|).

We now assume that (120b) holds. We show that the new constraints obtained for k = k̃ and for k = k̃ + 1

cannot be more stringent then the tighter of the two original constraints for k = k̃ and k = k̃ + 1.

Consider k = k̃. By (122) and (123) we have

I(ŪS,k̃;Yk̃|ŪS,k̃−1)

= I(US,k̃;Yk̃|ŪS,k̃−1E)

= (1− β) · I(US,k̃;Yk̃|US,k̃−1)

= γ · I(US,k̃;Yk̃|US,k̃−1)

+(1− γ) · I(US,k̃+1;Yk̃+1|US,k̃).

(125)

By (114b) and (125):

ᾱS,k̃ + I(ŪS,k̃;Yk̃|ŪS,k̃−1)

=
(
γαS,k̃ + (1− γ)αS,k̃+1

)
+γI(US,k̃;Yk̃|US,k̃−1) + (1− γ)I(US,k̃+1;Yk̃+1|US,k̃)

≥ min
{
αS,k̃ + I(US,k̃;Yk̃|US,k̃−1),

αS,k̃+1 + I(US,k̃+1;Yk̃+1|US,k̃)
}
. (126)
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Let now k = k̃ + 1. We have:

I(ŪS,k̃+1;Yk̃+1|ŪS,k̃)

(a)
= (1− β)I(US,k̃+1;Yk̃+1|US,k̃)

+βI(US,k̃+1;Yk̃+1|US,k̃−1)

(b)
= (1− β)I(US,k̃+1;Yk̃+1|US,k̃)

+βI(US,k̃+1, US,k̃;Yk̃+1|US,k̃−1)

(c)
= I(US,k̃+1;Yk̃+1|US,k̃) + βI(US,k̃;Yk̃+1|US,k̃−1)

(d)

≥ I(US,k̃+1;Yk̃+1|US,k̃) + βI(US,k̃;Yk̃|US,k̃−1)

(e)
= γI(US,k̃+1;Yk̃+1|US,k̃) + (1− γ)I(US,k̃;Yk̃|US,k̃−1),

(127)

where (a) follows by the definition of ŪS,k̃ and ŪS,k̃+1; (b) by the Markov chain (64); (c) by the chain rule of

mutual information and Markov chain (64); (d) by the degradedness of the channel (14b); (e) by the definition of

β in (122).

Therefore, by (114c):

ᾱS,k+1 + I(ŪS,k̃+1;Yk̃+1|ŪS,k̃)

≥ (1− γ) · αS,k̃ + γ · αS,k̃+1

+(1− γ) · I(US,k̃;Yk̃|US,k̃−1) + γ · I(US,k̃+1;Yk̃+1|US,k̃)

≥ min
{
αS,k̃ + I(US,k̃;Yk̃|US,k̃−1),

αS,k̃+1 + I(US,k̃+1;Yk̃+1|US,k̃)
}
. (128)

We thus conclude that also when (120b) holds, the upper bound on C(M1, . . . ,MK) in (93) is relaxed if one replaces

(US,1, US,2, . . . , US,|S|−1) and (αS,1, . . . , αS,K) by (ŪS,1, ŪS,2, . . . , ŪS,|S|−1) and (ᾱS,1, . . . , ᾱS,|S|).

APPENDIX D

PROOF OF REMARK 3

We first prove that the bound in Theorem 5 is loosened when each α?S,k is replaced by α̃S,k. Consider the

intermediate Lemma 16 in the proof of Theorem 5, Appendix A. Relax the upper bound in this lemma by replacing

for k = 2, . . . ,K constraint (100a) by

αS,k ≥ 0. (129)

Following similar steps as in the proof of Lemma 17, see also [26, Lemma 12], it can be shown that this relaxed

upper bound is not changed when one imposes that

αS,2 = αS,3 = . . . = αS,|S|,
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and

αS,1 =
M1

D
or αS,1 = αS,2.

Since constraints (101) are increasing in αS,1, . . . , αS,|S|, by constraint (100c), we conclude that the relaxed upper

bound is loosest for

αS,1 =
M1

D

αS,k =
|S|∑|S|i=1 Mji −Mj1

(|S| − 1)D
, k ∈ {2, . . . , |S| − 1},

i.e., for αS,k = α̃S,k.

We now prove that the bound in Theorem 5 is loosened when each α?S,k is replaced by α′S,k. Consider again the

intermediate Lemma 16 in Appendix A. Relax constraint (100a) by replacing it with αS,k ≥ 0, for all k = 1, . . . ,K.

Following the steps in [26, Lemma 12], it can be shown that the new constraints are loosest if each

αS,k = α′S,k. (131)

This concludes the proof.

APPENDIX E

PROOF OF PROPOSITION 8

For ∆ = 0, achievability follows by specializing Theorem 3 to t = K − 1 and to the input distribution PX that

maximizes (70). In fact, for this input distribution:

R(K−1) = KCavg = Cavg +

∑K
k=1 M

?(K−1)
k

K ·D .

For ∆ > 0, achievability follows from Proposition 1.

The converse is proved as follows. Apply Theorem 5, but consider only the constraints (65) corresponding to

the sets S = {k}, for k ∈ K. Taking the average over the resulting K constraints, establishes that there exists a

random variable (X,Y1, . . . , YK) satisfying (14b) and so that

C(M1, . . . ,MK) ≤ 1

K

∑
k∈K

I(X;Yk) +
1

K

∑
k∈K

Mk

D
. (132)

Maximizing the right-hand side over input distributions PX yields the desired converse.

APPENDIX F

PROOF OF PROPOSITION 12

Relax the upper bound in Theorem 5 by considering constraints (65) only for the set of all receivers S = K,

and by replacing each α?S,k by α̃S,k. Specializing the resulting relaxed bound to the erasure BC, one obtains the

following upper bound:

C(M1, . . . ,MK) ≤ max min

{
(1− δ1)β1 +

M1

D
, (1− δ2)β2 +

KM−M1

D · (K − 1)
, . . . , (1− δK)βK +

KM−M1

D · (K − 1)

}
,
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(133)

where the maximization is over the choice of parameters β1, β2, . . . , βK ≥ 0 satisfying
K∑
k=1

βk ≤ 1. (134)

The upper bound in the proposition is established by solving this maximization problem. In fact, by noticing that

the bound is increasing in β1, β2, . . . , βK ≥ 0, and by first fixing β1 and optimizing over the choices β2, . . . , βK ≥ 0

summing to 1− β1, we obtain

C(M1, . . . ,MK)

≤ max
β1∈[0,1]

min

{
β1C1 +

M1

D
,

(1− β1)C{2,...,K} +
KM−M1

(K − 1) ·D

}
,

= max
β1∈[0,1]

min

{
β1C1, (1− β1)C{2,...,K} +

K(M−M1)

(K − 1) ·D

}
+
M1

D
.

(135)

If
K(M−M1)

(K − 1) ·D ≥ C1,

then the maximum is achieved at β1 = 1 and the upper bound results in

C(M1, . . . ,MK) ≤ C1 +
M1

D
. (136)

Otherwise the maximum is at β = β?, where

β?1 :=
C{2,...,K} + K(M−M1)

(K−1)·D
C1 + C{2,...,K}

, (137)

and the upper bound results in

C(M1, . . . ,MK) ≤ CK +
K(M−M1)

(K − 1) ·D ·
C1

C1 + C{2,...,K}
+

M1

D
,

= CK +
K(M−M1)

(K − 1) ·D ·
CK

C{2,...,K}
+

M1

D
, (138)

where we used that for erasure BCs

CK =
C1 · C{2,...,K}
C1 + C{2,...,K}

. (139)
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APPENDIX G

PROOF OF COROLLARY 13

Fix t ∈ K and S = {1, . . . , t}. For the considered channel

(r1 . . . , rt) ∈ CS ⇐⇒
t∑

k=1

rk ≤ 1. (140)

The upper bound in Corollary 6 thus states that for this noise-free BC a rate-memory tuple (R,M1, . . . ,MK) is

achievable only if

tR−
t∑

k=1

α?S,k ≤ 1. (141)

This is equivalent to the following bound on the capacity-memory tradeoff

C(M1, . . . ,MK) ≤ 1

t

(
1 +

t∑
k=1

α?S,k

)
. (142)

Notice that the sum
∑t
k=1 α

?
S,k takes on only two different values, depending on the outcomes of the minimizations

defining α?S,k. It is either
t∑

k=1

α?S,k =
t
∑t
k=1 Mk

D
(143a)

or
t∑

k=1

α?S,k =

t∑
k=1

∑k
i=1 Mi

D − k + 1
. (143b)

Combining (142) with (143), applying the correspondence ρ = R−1 and mk = Mk

R , and setting m1 = m2 =

. . . = mk = m yields,

1 ≤ 1

t

(
ρ+m ·min

{
t2

D
,

t∑
k=1

k

D − k + 1

})
, (144)

which is equivalent to the bound in the corollary.
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