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Abstract—Degraded K-receiver broadcast channels (BC) are
studied when receivers have cache memories. Lower and upper
bounds are derived on the capacity-memory tradeoff, i.e., on the
largest rate that can be achieved over the BC as a function of the
receivers’ cache sizes. The lower bounds are achieved by two new
coding schemes that benefit from non-uniform cache assignment.
In some special cases, the lower and upper bounds coincide.
The paper also provides lower and upper bounds on the global
capacity-memory tradeoff of degraded BCs, i.e., on the largest
capacity-memory tradeoff that can be attained by optimizing
the receivers cache-assignment subject to a total cache memory
budget. The bounds coincide when the total cache memory
budget is sufficiently small or sufficiently large, with thresholds
depending on the BC statistics. For a small total cache budget
M, it is optimal to assign all the cache memory to the weakest
receiver. In this regime, the global capacity-memory tradeoff
grows as M

D
, where D denotes the total number of files in the

system. For a large total cache budget, it is optimal to assign a
positive cache memory to every receiver, where weaker receivers
are assigned larger cache memories than stronger receivers.
When the total cache budget M exceeds a threshold, then the
global capacity-memory tradeoff grows as 1

K
· M

D
. A uniform

cache-assignment policy is suboptimal.

I. INTRODUCTION

This paper studies the degraded broadcast channel (BC)
when the receivers are equipped with cache memories and can
store (i.e., cache) contents before the actual communication
phase (the so called delivery phase). Our previous work in
[2]–[4] on asymmetric erasure BCs with caching receivers has
shown that assigning larger cache memories to the weaker
receivers significantly improves the performance compared to
the traditional uniform cache assignment that is studied in [1],
[6]–[13]. In addition to mitigating the rate-bottleneck of the
network, a non-uniform cache assignment creates new coding
opportunies by joint cache-channel coding [2]–[5]. We con-
tinue the sprit embodied in the previous work, i.e., the benefit
brought upon by non-uniform cache sizes, and generalize it in
the channel model, coding techniques, and bounds.

The quantity of interest in this paper is the capacity-
memory tradeoff, i.e., the largest rate R permitting reliable
communication as a function of the cache sizes. We provide
upper and lower bounds on the capacity-memory tradeoff for
degraded BCs. The lower bounds are obtained by two new
coding schemes that exploit unequal cache assignments and
asymmetric channel conditions. More specifically, the first
scheme combines the piggyback-coding idea in [2] with super-

position coding, and the second combines it with Maddah-Ali
and Niesen’s coded caching [1].

The new upper bound improves on the existing ones in
[3, 14]. It coincides with the superposition piggyback-coding
lower bound when only the weakest receiver is provided with a
cache memory and the size is below a certain threshold (which
depends on the BC statistics). It coincides with the generalized
coded-caching lower bound for a particular cache assignment
that assigns larger cache memories to the weaker receivers.

The proposed upper and lower bounds suggest that in a
good cache assignment, weaker receivers are provided with
larger cache memories compared to the stronger receivers.
To make this statement more precise, we derive upper and
lower bounds on the global capacity-memory tradeoff, where
the cache assignment is optimized subject to a total cache
constraint. The bounds coincide for small and large total cache
memories. The lower bound is achieved by assigning all the
cache memory to the weakest receiver when the total cache
memory is small, and by distributing it among all the receivers
when its size exceeds some threshold.

Numerical evaluations of the new upper bound confirm that
uniform cache assignment is suboptimal in all regimes.

II. PROBLEM DEFINITION

Consider a transmitter and receivers 1, . . . ,K. The trans-
mitter has access to a library with D independent mes-
sages, W1, . . . ,WD, each distributed uniformly over the set{

1, . . . , b2nRc
}
. I.e. R ≥ 0 denotes the rate of transmission

and n is the transmission blocklength. In this work, we assume
that there are more messages than receivers, D ≥ K.

Each receiver k ∈ K := {1, . . . ,K} is equipped with a
cache of size Mk ≥ 0. Communication takes place in two
phases. For the first so called placement phase, the trans-
mitter chooses caching functions

{
gk : {1, . . . , b2nRc}D →{

1, . . . , b2nMkc
}}K

k=1
and places

Vk := gk(W1, . . . ,WD) (1)

in receiver k’s cache.
The subsequent delivery phase takes place over a de-

graded BC [21] with finite input and output alphabets X and
Y1, . . . ,YK , and the channel transition law Γ(y1, . . . , yK |x)
that decomposes as follows for all x ∈ X , y1 ∈ Y1, . . .,
yK ∈ YK :

Γ(y1, . . . , yK |x) = ΓK(yK |x) ·ΓK−1(yK1
|yK) · · ·Γ1(y1|y2).



Without loss of generality, we order the receivers 1, . . . ,K
from the weakest to the strongest.

At the beginning of the delivery phase, each receiver k ∈ K
demands the message Wdk

, dk ∈ {1, . . . , D}. The transmitter
and all the receivers are informed of the demand vector d =
(d1, . . . , dK). Using this information, the transmitter forms the
channel input sequence Xn := (X1, . . . , Xn),

Xn = fd(W1, . . . ,WD), (2)

using the encoding function fd : {1, . . . , b2nRc}D → Xn.
Receiver k ∈ K observes the channel output sequence

Y n
k = (Yk,1, . . . , Yk,n). Given the demand vector d, the cache

content Vk, and the channel output Y n
k , it produces its estimate

of the desired message Wdk
as

Ŵk := ϕk,d(Y n
k ,Vk), (3)

where ϕk,d : Yn
k ×

{
1, . . . , b2nMkc

}
→ {1, . . . , b2nRc} is the

decoding function.
The worst-case probability of error at any receiver and for

any demand d is given by

Pe := P

[ ⋃
d∈D

K⋃
k=1

{
Ŵk 6= Wdk

} ]
.

A rate-memory tuple (R,M1, . . . ,MK) is achievable if for
any ε > 0 there exists a large enough blocklength n and
caching, encoding, and decoding functions (1)–(3) so that
Pe ≤ ε.

Definition 1: The capacity-memory tradeoff
C(M1, . . . ,MK) is the largest rate R for which the
rate-memory tuple (R,M1, . . . ,MK) is achievable:

C(M1, . . . ,MK) := sup{R : (R,M1, . . . ,MK) achievable}.

Our main goal in this paper is to optimize the cache as-
signment (M1, . . . ,MK) to attain the largest capacity-memory
tradeoff C(M1, . . . ,MK) under the total cache constraint

K∑
k=1

Mk ≤ M. (4)

Definition 2: The global capacity-memory tradeoff is

C?(M) := max
M1,...,MK>0:∑K

k=1 Mk≤M

C(M1, . . . ,MK). (5)

Remark 1: The global capacity memory tradeoff depends on
the BC law Γ(y1, . . . , yK |x) only through its marginal con-
ditional laws. All our results thus also apply to stochastically
degraded BCs [21].

Without cache memories, i.e., M1 = . . .=M2 =0, we have

C(M1 = 0, . . . ,MK = 0) = CK (6)

where CK is (see [21]) :

CK := max min
{
I(U1;Y1), I(U2;Y2|U1),

. . . , I(UK−1;YK−1|UK−2), I(X;YK |UK−1)
}
. (7)

The maximization in (7) is over all auxiliary random variables
U1, . . . , UK−1, X, Y1, . . . , YK that satisfy

PY1···YK |X(y1, . . . , yK |x) = Γ(1, . . . , yk|x) (8)

and form the Markov chain U1 − · · · − UK−1 − X −
(Y1, . . . , YK).

III. RESULTS ON THE CAPACITY-MEMORY TRADEOFF

A. Upper Bound on Capacity-Memory Tradeoff

The upper bound is formulated in terms of the following
parameters. For each receiver set

S = {j1, . . . , j|S|} ⊆ K, j1 < · · · < j|S|, (9)

define

α?
S,1 :=

Mj1

D
(10a)

and for k ∈ {2, . . . , |S|}:

α?
S,k := min

{∑k
i=1 Mji

D − k + 1
,

1

|S| − k + 1

(
|S|
D

|S|∑
i=1

Mji −
k−1∑
i=1

α?
S,i

)}
.(10b)

Theorem 1: There exist random variables X,Y1, . . . , YK
and for every receiver set S as in (9) random variables
{US,1, . . . , US,|S|−1}, such that (8) and the Markov chain

US,1−US,2−US,|S|− · · · −US,|S|−1−X −
(
Yj1 , . . . , Yj|S|

)
(11)

are satisfied and the following inequalities hold for all S:

C(M1, . . . ,MK) ≤ I
(
US,k;Yjk |US,k−1) + α?

S,k,

∀k ∈ {1, . . . , |S| − 1}, (12a)
C(M1, . . . ,MK) ≤ I

(
X;Yj|S| |US,|S|−1) + α?

S,|S|. (12b)

Proof: Omitted. See [23].
The converse in Theorem 1 is weakened if the constraints

in (12) are relaxed for certain receiver sets S, or if in these
constraints the input/output random variables X,Yj1 , . . . , Yj|S|
are allowed to depend on the receiver set S. For this latter
relaxation, Theorem 1 results in the following corollary.

Corollary 2: The rate-memory tuple (R,M1, . . . ,MK) is
achievable only if for every receiver set S ⊆ K:(

R− α?
S,1, R− α?

S,2, . . . , R− α?
S,|S|

)
∈ CS , (13)

where CS denotes the capacity region of the degraded BC with
the receivers in S (disregarding the receivers in K\S) when
there are no cache memories [21].

Remark 2: The upper bounds in Theorem 1 and Corollary 2
can be made looser by replacing the parameters {α?

S,k} by

α̃S,k =

∑k
i=1 Mji

D − k + 1
. (14)



The same is true also if they are replaced by

α′S,k =
1

D

|S|∑
i=1

Mji . (15)

Replacing the parameters {α?
S,k} by the parameters {α′S,k}

in Corollary 2, we recover the previous upper bounds in [3,
Theorem 9] and [14, Theorem 1].

B. Lower Bounds on the Capacity-Memory Tradeoff

We start with a general lower bound that simply exploits the
local caching gain. Similar to [20, Proposition 1], we have:

Proposition 3 (Local caching gain): For all ∆ > 0:

C(M1 + ∆, . . . ,MK + ∆) ≥ C(M1, . . . ,MK) +
∆

D
. (16)

Proof: The lower bound is achieved by storing a rate-
∆
D submessage of every message of the library in the cache
memory of every receiver. These submessages can be retrieved
locally and thus not be transmitted in the delivery phase.

We next present two lower bounds on the capacity-memory
tradeoff based on the coding schemes sketched in Sections V
and VI. The first assigns a cache memory only to the weakest
receiver and the second assigns a cache memory to every
receivers, but such that weaker receivers are assigned larger
cache memories compared to the stronger receivers.

Let (U?
1 , . . . , U

?
K−1, X

?) be a K-tuple of random variables
that achieves the symmetric-capacity C0; i.e., it is a solution
to the optimization problem in (7). Define

Ms
1 :=

D

K − 1

(
I(U?

1 ;Y2)− I(U?
1 ;Y1)

)
. (17)

Theorem 4 (Superposition Piggyback Coding): When M1 ≤
Ms

1, then irrespective of cache sizes M2, . . . ,MK we have

C(M1, . . . ,MK) ≥ CK +
M1

D
, M1 ≤ Ms

1. (18)

Proof: Achieved by the scheme in Section V, see also
[23].

For each t ∈ K, let

G(t)
1 , . . . ,G(t)

(K
t )

(19)

denote all the unordered subsets of {1, . . . ,K} that are of size-
t. Also, let G(t),c

` := {1, . . . ,K}\G(t)
` for all ` ∈ {1, . . . ,

(
K
t

)
}.

For a given input distribution PX , define for each t ∈
{1, . . . ,K − 1} the memory sizes

M
(t)
k := D ·

∑{
` : k∈G(t)

`

}∏
k′∈G(t),c

`

I(X;Yk′)∑( K
t+1)

j=1

∏
k′∈G(t+1),c

j
I(X;Yk′)

, k ∈ K,

(20a)

where the denominator is defined to be 1 when t = K − 1.
Also, for each t ∈ {1, . . . ,K−1}, define the transmission rate

R(t) :=

∑(K
t )

`=1

∏
k′∈G(t),c

`

I(X;Yk′)∑( K
t+1)

j=1

∏
k′∈G(t+1),c

j
I(X;Yk′)

, (20b)

where the denominator is again 1 for t = K − 1.
Theorem 5 (Generalized Coded Caching): Fix an input

distribution PX . For each t ∈ {1, . . . ,K − 1}:

C
(
M

(t)
1 , . . . ,M

(t)
K

)
≥ R(t), (21)

where M
(t)
1 , . . . ,M

(t)
K and R(t) are defined by (20) and the

chosen input distribution PX .
Proof: The lower bound is achieved by the scheme

outlined in Section VI, see [23].

C. Exact Results

The upper and lower bounds match in two special cases.
Proposition 6 (Small Cache Memory at the Weakest Re-

ceiver): Suppose M1 > 0 and M2 = . . . = MK = 0. Then,

C(M1, 0, . . . , 0) = CK +
M1

D
, M1 ≤ Ms

1, (22)

where Ms
1 is defined in (17).

Proof: The achievability is by superposition piggyback
coding, see Theorem 4, and the converse is by Corollary 2,
where one only considers S = K.
The performance in (22) corresponds to a perfect global
caching gain where each and every receiver can benefit from
receiver 1’s cache content as if it was locally present.

Proposition 7 (Large Cache Memories): For each k ∈ K,
let M?(K−1)

k be given by (20a) when PX is a maximizer of

CAvg :=
1

K
·max

PX

K∑
k=1

I(X;Yk). (23)

For any ∆ ≥ 0:

C
(
M

?(K−1)
1 + ∆, . . . , M

?(K−1)
K + ∆

)
= CAvg +

∑K
k=1 M

?(K−1)
k

K ·D
+

∆

D
. (24)

Proof: For ∆ = 0, the achievability is by the generalized
coded caching with t = K − 1, see Theorem 5. For ∆ > 0,
it follows from the case ∆ = 0 and from Proposition 3. The
converse follows from Theorem 1 for S = {k}, k ∈ K, by
relaxing the parameters α?

S,k to α′S,k.

IV. RESULTS ON THE GLOBAL CAPACITY-MEMORY
TRADEOFF

A. Upper Bounds

Theorem 1 directly yields the following result.
Theorem 8 (Upper Bound): There exist random variables

X,Y1, . . . , YK and for every receiver set S as in (9) random
variables {US,1, . . . , US,|S|−1}, so that (8) and (11) hold, and
so that for some M1, . . . ,MK ≥ 0 summing to M and all S:

C?(M) ≤ I
(
US,k;Yjk |US,k−1) + α?

S,k, k ≤ |S| − 1

C?(M) ≤ I
(
X;Yj|S| |US,|S|−1) + α?

S,|S|
(25)

where {α?
S,k} are defined in (10).

Solving this optimization problem numerically is compu-
tationally complex. Simpler, albeit looser, upper bounds can



be obtained by either ignoring some of the constraints in (25);
replacing the parameters α?

S,k by α̃S,k or α′S,k (see (14),(15));
or allowing X,Yj1 , . . . , YjS in (25) to depend on the set S. We
present three simpler bounds that will be used in the sequel.

Corollary 9:

C?(M) ≤ CK +
M

D
(26)

and

C?(M) ≤ Cavg +
1

K
· M
D
. (27)

For each set G(t)
` (see (19)), let CG(t)

`

denote the largest

symmetric rate that can be achieved at the receivers in G(t)
`

(ignoring the receivers in K\G(t)
` ) when there are no cache

memories.
Corollary 10: For each t ∈ K:

C?(M) ≤ 1(
K
t

) (K
t )∑

`=1

CG(t)
`

+
t

K
· M
D
. (28)

B. Lower Bound

Let M(0) := 0 and Ms := Ms
1 (see (17)), and let R(0) := CK

and Rs := CK+ Ms

D . Also, recall M(t)
k and R(t) from (20) and

define M(t) :=
∑K

k=1 M
(t)
k for t ∈ {1, . . . ,K − 1}.

Theorem 11 (Lower Bound):

C?(M) ≥ upp hull
{

(R(0),M(0)), (Rs,Ms),

(R(1),M(1)), . . . , (R(K−1),M(K−1))
}
. (29)

Proof: The proof follows by Theorems 4 and 5, and uses
standard memory-sharing arguments [1, 3].

C. Exact Results

Proposition 12 (Small M): For small total cache size M:

C?(M) = CK +
M

D
, M ≤ Ms. (30)

Proof: The achievability follows from Theorem 11 and
the converse is by inequality (26).

Proposition 13 (Large M): For large total cache size

M ≥ D · (K − 1) ·K · Cavg, (31)

the global capacity-memory tradeoff C?(M) is

C?(M) = Cavg +
1

K
· M
D
, (32)

where Cavg is defined in (23).
Proof: The achievability is by Propositions 3 and 7, and

the converse is by inequality (27). See [23].
For small total cache sizes, C?(M) grows as M

D . This
corresponds to a perfect global caching gain as if each receiver
could access all cache contents in the network locally. For
large total cache sizes, C?(M) grows as 1

K ·
M
D . This corre-

sponds to only a local caching gain under a uniform cache
assignment. This is, in this regime, each receiver profits only
from its local cache contents.
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Fig. 1. Bounds on C?(M) for a 4-user Gaussian BC with P = 1, σ2
1 = 4,

σ2
2 = 1, σ2

3 = 0.5, σ2
4 = 0.1. We have D = 10.

Example 1 (4-User Gaussian BC): Consider a K = 4
receiver Gaussian BC. At time t, receiver k observes

Yk,t = Xt + Zk,t, (33)

where Xt is the transmitter’s channel input and {Zk,t} a
sequence of independent and identically distributed centered
Gaussian noise with variance σ2

k > 0. We impose an average
block-power constraint P > 0 in the channel input and order
the receivers in increasing strength:

σ2
1 = 4 ≥ σ2

2 = 1 ≥ σ2
3 = 0.5 ≥ σ2

4 = 0.1 > 0.

For Gaussian BCs, a zero-mean variance-P Gaussian input
distribution PX maximizes I(X;Yk) simultaneously for all
k ∈ K under an input power constraint P . Therefore,

Cavg =
1

K

K∑
k=1

1

2
log

(
1 +

P

σ2
k

)
=

1

K

K∑
k=1

Ck. (34)

Figure 1 shows the upper and lower bounds on C?(M)
in Theorems 8 and 11. The five blue points indicate the
rate-memory points (R(0),M(0)), (Rs,M s), (R(1),M(1)),
(R(2),M(2)), and (R(3),M(3)). For comparison, the figure also
shows the upper bound in Theorem 1 for a setup with uniform
cache assignment M

K across all receivers. We observe that a
smart cache assignment provides substantial gains in global
capacity-memory tradeoff.

In a recent work in [22], we considered Gaussian BCs and
derived related, but looser, bounds on C?(M). In particular,
the bounds in [22] do not coincide for small M.

V. SUPERPOSITION PIGGYBACK-CODING

We outline the scheme and refer to [23] for details.
Fix a tuple (U?

1 , . . . , U
?
K , X

?) that maximizes (7), and
construct a K-level superposition code according to the joint



distribution of this tuple. Split Wd =
(
W

(A)
d ,W

(B)
d

)
, and cache

messages W (B)
1 , . . . ,W

(B)
D at receiver 1.

The transmitter uses the superposition code to send:

W
(A)
d1

,W
(B)
d2
, . . . ,W

(B)
dK−1

,W
(B)
dK

in level 1

W
(A)
dk

in level k ∈ {2, . . . ,K}.

Each receiver k ∈ {2, . . . ,K} decodes levels 1, 2, . . . , k
using a standard decoder. Receiver 1 only decodes level 1
to which it applies a joint cache-channel decoding rule. It first
retrieves messages W (B)

d2
, . . . ,W

(B)
dK

from its cache memory,
and extracts a subcodebook C′1 that contains all “compatible”
level-1 codewords, i.e., all codewords encoding the tuple
(w,W

(B)
d2
, . . . ,W

(B)
dK

) for some w ∈ {1, . . . , b2nR(A)c}. It then
decodes its desired message W (A)

d1
using an optimal decoding

rule for C′1. Notice that the rate of C′1 is the rate of W (A)
d1

,
and receiver 1’s decoding performance is not degraded by the
fact that the additional messages W (B)

d2
, . . . ,W

(B)
dK

are sent in
level 1.

VI. GENERALIZED CODED CACHING

We only sketch the scheme for K = 2 and t = 1. See [23]
for the general scheme and its analysis.

Split Wd =
(
W

(A)
d ,W

(B)
d

)
, where R(A) = I(X;Y1) − ε

and R(B) = I(X;Y2)− ε for some input distribution PX and
a small ε > 0. Cache messages W (B)

1 , . . . ,W
(B)
D at receiver 1

and messages W (A)
1 , . . . ,W

(A)
D at receiver 2.

The transmitter zero pads the binary representation of W (A)
d1

to nR(B) bits and sends its XOR with W (B)
d2

over the channel
using a point-to-point code C. Receiver 2 decodes the XOR-
message directly from C, and XORs it with the zero-padded
version of W (A)

d1
stored in its cache memory. Receiver 1 in

contrast performs joint cache-channel decoding: It retrieves
W

(B)
d2

from its cache memory, and extracts a subcodebook C′ ⊆
C containing all codewords that are “compatible” with W (B)

d2
.

It then decodes its desired message W
(A)
d1

using an optimal
decoding rule for subcodebook C′. Notice that the rate of C′
is the rate of W (A)

d1
, i.e., I(X;Y1)− ε.

VII. SUMMARY AND CONCLUSION

We provided close upper and lower bounds on the global
capacity-memory tradeoff C?(M) of degraded BCs. The
bounds coincide in the regimes of small and large total cache
memory, characterized in terms of the BC statistics. Given
a small total cache memory, it is optimal to assign it to
the weakest receiver. In this regime, C?(M) grows as M

D
which corresponds to a perfect global caching gain where
all receivers can benefit from all the cache contents of the
network. In the regime of moderate M, the slope of C?(M)
seems to decrease as M increases. In this regime, we propose
to allocate cache memories to all the receivers, but such that
weaker receivers are provided with larger cache memories (as
specified in Theorem 5). Once the total cache memory budget
exceeds a certain threshold, it is optimal to uniformly allocate
all the remaining cache memory across all the receivers

and to store the same content in the extra portions of the
receivers’ cache memories. Here, C?(M) grows as 1

K ·
M
D ,

which corresponds to a local caching gain.
We conclude that assigning the total cache memory uni-

formly across all the receivers is highly suboptimal over noisy
broadcast channels in contrast to the noiseless setup considered
in [1].
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