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Abstract—We provide a general upper bound on the capacity-
memory tradeoff over degraded broadcast channels (BCs) with
cache memories at the receivers. The bound holds for arbitrary
demands and considers a worst-case scenario.

I. INTRODUCTION

We address a one-to-many broadcast scenario where many
users demand files from a single server during peak-traffic
times — periods of high network congestion. To improve
network performance, the server can pre-place information
in local cache memories near users This pre-placement of
information is called the caching communications phase, and
it occurs during off-peak times when the communications rate
is not a limiting network resource. The server typically does
not know in advance which files the users will demand, so
it can try to cache information that is likely to be useful for
many users during the delivery communications phase (the
peak-traffic time when the users demand files from the server).

The information-theoretic aspects of cache-aided communi-
cations have received significant attention in recent years [1]–
[13]. Maddah-Ali and Niesen [1] considered a cache-aided
noise-less broadcast network and presented achievability and
converse results on the total required delivery rate over the
noiseless broadcast link in function of the cache memory sizes
at the receivers. Tighter converse bounds were presented in
[2]–[5]. The converse bound in [1] applies to worst-case sce-
narios where the delivery rate needs to suffice for all possible
receiver demands. The converse bounds in [2]–[5] applied to
average-case scenarios where the receivers’ demands follow a
given probability distribution and the delivery rate is averaged
over this demand distribution.

In contrast to these previous works [1]–[5], we assume in
this paper that the delivery phase takes place over a noisy
broadcast channel (BC). (Noisy channel models for the deliv-
ery phase were also considered in [6]–[13].) For simplicity we
focus on the class of (stochastically) degraded BCs. Our main
result is a converse on the fundamental rate-memory tradeoff
for cache-aided degraded BCs. That is, we provide an upper
bound on the maximum equal rate at which messages can be
reliably communicated to the receivers over a degraded BC
in function of the receivers’ cache sizes. We assume that the
receivers’ demands are arbitrary and our converse result holds
for a worst-case scenario. Finally, we specialize our converse
result to packet erasure BCs.

This work was supported by the Alexander von Humboldt Foundation and
the Swiss National Science Foundation.
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Fig. 1: Degraded K-user BC PY1Y2···YK |X where each Re-
ceiver k ∈ {1, . . . ,K} has cache memory of size nMk bits.

II. PROBLEM DEFINITION

Consider a degraded broadcast channel (BC) with a single
transmitter and K receivers as shown in Fig. 1. Each user k ∈
K := {1, . . . ,K} has cache memory VK ∈ {1, . . . , b2nMkc}.

We model the channel from the transmitter to the receivers
by a memoryless degraded BC with input alphabet X and
equal output alphabets Y . The joint transitional law of the
memoryless BC is given by PY1Y2···YK |X(y1, . . . , yK |x). We
assume that the BC is degraded, i.e., the transition law satisfies

X − YK − YK−1 − · · · − Y1. (1)

For our problem setup only the marginal transition law is
relevant. Therefore our main result in Theorem 1 holds
also for stochastically degraded BC, i.e., for transition laws
PY1,...,YK |X for which there exist conditional probability
distributions P̃Y2|Y1

, P̃Y3|Y2
, . . . , P̃YK−1|YK

such that for all
(x, y1, y2, . . . , yK) ∈ X × Y1 × Y2 × · · · × YK the BC’s
transition law satisfies

PY1Y2···YK |X(y1, . . . , yK |x)

= PYK |X(yk|x)P̃YK−1|YK
(yk−1|yk) . . . P̃Y1|Y2

(y1|y2). (2)

The transmitter has access to a library with D ≥ K
messages

W1, . . . ,WD. (3)

These messages are all independent of each other and
each of them is uniformly distributed over the message set
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{1, . . . , b2nRc}, where R ≥ 0 is the rate of each message and
n the blocklength of transmission.

Each receiver will demand (i.e., request and download)
exactly one of these messages. Let

D := {1, . . . , D}.

We denote the demand of receiver 1 by d1 ∈ D, the demand
of receiver 2 by d2 ∈ D, etc., to indicate that receiver 1 desires
message Wd1

, receiver 2 desires message Wd2
, and so on. We

assume that the demand vector

d := (d1, . . . , dK) (4)

can take on any value in DK .
Communication takes place in two phases: a first caching

phase and a subsequent delivery phase.
During the caching phase, the transmitter sends caching

information Vk to each receiver k ∈ K, who then stores this
information in its cache memory. The demand vector d is
unknown to the transmitter and receivers during the caching
phase, and, therefore, the cached information Vk cannot de-
pend on the users’ specific demands d. Instead, Vk is a
function of the entire library:

Vk := gk(W1, . . . ,WD) k ∈ K

for some function

gk :
{

1, . . . , b2nRc
}D → Vk, i ∈ K (5)

where Vk := {1, . . . , b2nMkc}. The caching phase occurs
during a low-congestion period. We therefore assume that this
phase incurs no erasures or other types of errors, and each
receiver i ∈ K can store Vk in its cache memory.

After the caching phase and prior to the delivery phase,
the transmitter and all receivers are provided with the demand
vector d.1

Depending on the demand vector d, the transmitter chooses
an encoding function

fd : {1, . . . , b2nRc}D → Xn (6)

and it sends
Xn = fd(W1, . . . ,WD)

over the BC.
Each receiver k ∈ K observes Y n

k according to the chan-
nel transition law PY1Y2···YK |X(y1, . . . , yK |x). It attempts to
reconstruct its desired message from its channel outputs Y n

k ,
its cache content Vk and the demand vector d. More formally,

Ŵk := ϕk,d(Y n
k , Vk) (7)

where

ϕk,d : Yn
k × Vk → {1, . . . , b2nRc} k ∈ K. (8)

An error is said to occur whenever

Ŵk 6= Wdk
for some k ∈ {1, . . . ,K}. (9)

1It takes only dlog(D)e bits to describe the demand vector d. The demand
vector can thus be revealed to all terminals using zero transmission rate.

For a given demand vector d the probability of error is thus

Pe(d) := P
[ K⋃
k=1

Ŵk 6= Wdk

]
.

We consider a worst-case probability of error over all feasible
demand vectors:

Pe
worst := max

d∈DK
Pe(d).

We say that a rate-memory tuple (R,M1, . . . ,MK) is
achievable if for every ε > 0 there exists a sufficiently large
blocklength n and caching, encoding and decoding functions
as in (5), (6) and (7) such that Pe

worst < ε. The main problem
of interest in this paper is to determine the following capacity
versus cache memory tradeoff.

Definition 1: Given cache memory sizes M1, . . . ,MK , we
define the capacity-memory tradeoff C(M1, . . . ,MK) as the
supremum of all rates R such that the rate-memory tuple
(R,M1, . . . ,MK) is achievable.

III. RESULTS

For each S ∈ K, let Rsym,S denote the largest equal-rate
that is achievable over a BC with receivers in S when there
are no cache memories.

Theorem 1: The capacity-memory tradeoff C(M1, . . . ,MK)
of a degraded BC is upper bounded as

C(M1, . . . ,MK) ≤ min
S⊆{1,...,K}

(
Rsym,S +

MS
D

)
,

where MS =
∑

k∈SMk is the total cache size at receivers
in S.

Remark 1: Theorem 1 also holds for stochastically degraded
BCs.
We specialize this theorem to the packet-erasure BC.

Corollary 1.1: The capacity-memory tradeoff
C(M1, . . . ,MK) of the packet-erasure BC with packet
size F , erasure probabilities δ1, . . . , δK ≥ 0, and cache
memory sizes M1, . . . ,MK , is upper bounded as

C(M1, . . . ,MK) ≤ min
S⊆{1,...,K}

((∑
k∈S

1

1− δk

)−1
+
MS
D

)
.

(10)
As shown in [9], the upper bound in Corollary 1.1 is not
always tight. It is however tight in some special cases. Figure 2
illustrates our upper bound on the capacity memory-tradeoff
for a two-user packet erasure BC with packet size F = 10 bits,
erasure probabilities δ1 = 0.8 and δ1 = 0.2 when receiver one
has cache-memory size M1 and receiver 2 has no cache. The
upper bound is compared to the best known lower bound from
[9] that uses superposition coding and piggyback coding for
the delivery phase.

IV. PROOF OF THEOREM 1

For ease of exposition, we only prove the bound correspond-
ing to S = K:

C(M1, . . . ,MK) ≤
(
Rsym,K +

1

D

K∑
k=1

Mk

)
, (11)
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Fig. 2: Bounds on the capacity-memory tradeoff of a two-user
packet-erasure BC.

where here Rsym,K denotes the largest symmetric rate that is
achievable over the BC PY1Y2···YK |X when there are no caches.
The inequalities in the theorem that correspond to other subsets
S ⊆ {1, . . . ,K} can be proved in an analogous way.

We start the proof of (11). Fix the rate of communication

R < C(M1, . . . ,MK).

Since R is achievable, for each sufficiently large blocklength
n and for each demand vector d, there exist K caching func-
tions

{
g
(n)
i

}
, an encoding function {f (n)d }, and K decoding

functions
{
ϕ
(n)
i,d

}
so that the probability of worst-case error

Pe(d) tends to 0 as n→∞. For each n let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ {1, . . . ,K},

denote the cache contents for the chosen caching functions.
Lemma 2: For any ε > 0, any demand vector d =

(d1, . . . , dK) with all different entries, and any blocklength n
that is sufficiently large (depending on ε), there exist random
variables (U1,d, . . . , UK,d, Xd, Y1,d, . . . , YK,d) such that

U1,d−U2,d−· · ·−UK,d−Xd−YK,d−YK−1,d · · ·−Y1,d (12)

forms a Markov chain, and given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ PY1···YK |X(· · · |x),

and so that the following K inequalities hold:

R− ε ≤ 1

n
I
(
Wd1

;V
(n)
1 , . . . , V

(n)
K

)
+ I
(
U1,d;Y1,d

)
, (13a)

R− ε ≤ 1

n
I
(
Wdk

;V
(n)
1 , . . . , V

(n)
K |Wd1

, . . . ,Wdk−1

)
+ I
(
Uk,d;Yk,d|Uk−1,d), ∀k ∈ {2, . . . ,K} (13b)

Proof: The proof is similar to the converse proof of the
capacity of degraded BCs without caching [14, Theorem 5.2].
It is omitted due to lack of space.

Fix ε > 0 and a blocklength n (depending on this ε) so that
Lemma 2 holds for all demand vectors d that have all different
entries. We average the bound obtained in (19) over different
demand vectors. Let Q be the set of all the

(
D
K

)
K! demand

vectors whose K entries are all different. Also, let Q be a
uniform random variable over the elements of Q and indepen-
dent of all other random variables. Define: U1 := (U1,Q, Q);

Uk := Uk,Q, for k ∈ {2, . . . ,K}; Xk := XQ; and Yk := Yk,Q
for k ∈ {1, . . . ,K}. Notice that they form the Markov chain

U1 → U2 → · · · → UK → X → (Y1, . . . , YK) (14)

and given X = x ∈ X satisfy

(Y1, Y2, . . . , YK) ∼ PY1···YK |X(· · · |x). (15)

Averaging inequalities (19) over the demand vectors in Q
and using standard arguments to take care of the time-sharing
random variable Q, we obtain:

R− ε ≤α1 + I
(
U1;Y1

)
, (16a)

R− ε ≤αk + I
(
Uk;Yk|Uk−1), ∀k ∈ {2, . . . ,K},

(16b)

where we defined α1, . . . , αK as follows:

α1 :=
1(

D
K

)
K!

∑
d∈Q

1

n
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K ), (17a)

αk :=
1(

D
K

)
K!

∑
d∈Q

1

n
I(Wdk

;V
(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

).

(17b)

Lemma 3: Parameters αk, k = 1, . . . ,K, defined in (17),
satisfy the following constraints:

αk ≥ 0, k ∈ {1, . . . ,K} (18a)
αk′ ≤ αk, k, k′ ∈ {1, . . . ,K}, k′ ≤ k, (18b)∑

k∈K
αk ≤

K

D

∑
k∈K

Mk. (18c)

Proof: See Appendix A.
Taking ε→ 0, by (16) and (17) and by Lemma 3, we conclude
that the capacity-memory tradeoff C(M1, . . . ,MK) is upper
bounded by the following K inequalities:

C(M1, . . . ,MK) ≤ α1 + I
(
U1;Y1

)
, (19a)

C(M1, . . . ,MK) ≤ αk + I
(
Uk;Yk

∣∣Uk−1),

∀k ∈ {2, . . . ,K}, (19b)

for some α1, . . . , αK satisfying (18) and some
U1, . . . , UK , X, Y1, . . . , YK satisfying (14) and (15).

Lemma 4: Replacing each and every real number
α1, . . . , αK in (19) by 1

D

∑
k∈{1,...,K}Mk leads to a relaxed

upper bound on C(M1, . . . ,MK).
Proof: See Appendix B.

Thus,

C(M1, . . . ,MK)− 1

D

∑
k∈{1,...,K}

Mk ≤ I
(
U1;Y1

)
, (20a)

C(M1, . . . ,MK)− 1

D

∑
k∈{1,...,K}

Mk ≤ I
(
Uk;Yk

∣∣Uk−1),

∀k ∈ {2, . . . ,K}, (20b)

for some U1, . . . , UK , X, Y1, . . . , YK satisfying (14) and (15).
All K constraints in (20) have the same LHS, and their

RHSs coincide with the rate-constraints of a degraded BC
without caches. Therefore, the choice of the auxiliaries
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(U1, . . . , UK) that leads to the most relaxed constraint on
C(M1, . . . ,MK) coincides with the choice of auxiliaries that
determines the largest symmetric rate-point of the degraded
BC without caches. This establishes the equivalence of (20)
with the desired bound in (11), and thus concludes the proof.

APPENDIX A
PROOF OF LEMMA 3

Constraint (18a) follows by the nonnegativity of mutual
information. To prove Constraint (18b), we fix a demand
vector d ∈ Q, and consider the cyclic shifts of this vector.
For ` ∈ {0, . . . ,K − 1}, let

−→
d (`) be the vector obtained from−→

d when the elements are cyclically shifted ` positions to the
right. (E.g., if d = (1, 2, 3) then

−→
d (2) = (2, 3, 1).) For each

` ∈ {0, . . . ,K − 1} and k ∈ {1, . . . ,K}, let
−→
d

(`)
k denote the

k-th index of demand vector
−→
d (`). So,

−→
d

(`)
k = d(k−`) mod K (21)

where we define (K) mod K = K (and not 0).
For each ` ∈ {1, . . . ,K−1} and k, k′ ∈ {2, . . . ,K}, k′ ≤ k:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

(a)
= I(W−→

d
(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K )

(b)

≤I(W−→
d

(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(k′−1)
1

, . . . ,W−→
d

(k′−1)

k′−1

)

(a)
= I(W−→

d
(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
2

, . . . ,W−→
d

(k−1)
k−1

)

(b)

≤I(W−→
d

(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
1

, . . . ,W−→
d

(k−1)
k−1

), (22)

where (a) follows by (21) and (b) is by the independence of
messages.

Fix a demand vector d ∈ Q and sum up the above
inequality (22) over all K cyclic shifts d(0),d(1), . . . , d(K)

of d to obtain:
K−1∑
`=0

I(W−→
d

(`)
1

;V
(n)
1 , . . . , V

(n)
K )

≤
K−1∑
`=0

I(W−→
d

(`)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)

k′−1

)

≤
K−1∑
`=0

I(W−→
d

(`)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)
k−1

). (23)

Since the set Q can be partitioned into subsets of demand
vectors that are cyclic shifts of each others and all cyclic shifts
of a demand vector in Q are also in Q, we conclude from (23):∑

d∈Q
I(Wd1

;V
(n)
1 , . . . , V

(n)
K )

≤
∑
d∈Q

I(Wdk′ ;V
(n)
1 , . . . , V

(n)
K |Wd1

, . . . ,Wdk′−1
)

≤
∑
d∈Q

I(Wdk
;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

). (24)

This proves (18b).
We proceed to prove Constraint (18c). For each d ∈ Q:

I(Wd1
;V

(n)
1 , . . . , V

(n)
K )

+

K∑
k=2

I(Wdk
;V

(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

= I(Wd1
,Wd2

, . . . ,WdK−1
;V

(n)
1 , . . . , V

(n)
K ). (25)

So,∑
d∈Q

[
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

+

K∑
k=2

I(Wdk
;V

(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

]
=
∑
d∈Q

I(Wd1
,Wd2

, . . . ,WdK
;V

(n)
1 , . . . , V

(n)
K )

(a)
=
∑
d∈Q

[
H(Wd1

) +H(Wd2
) + . . .+H(WdK

)

−H(Wd1 , . . . ,WdK
|V (n)

1 , . . . , V
(n)
K )

]
(b)
=
K

D
|Q|H(W1, . . . ,WD)

−
∑
d∈Q

H(Wd1
, . . . ,WdK

|V (n)
1 , . . . , V

(n)
K )

(c)

≤K
D
K!

(
D

K

)
H(W1, . . . ,WD)

− K

D
K!

(
D

K

)
H(W1, . . . ,WD|V (n)

1 , . . . , V
(n)
K )

(b)
=
K

D
K!

(
D

K

)
I(W1, . . . ,WD;V

(n)
1 , . . . , V

(n)
K )

≤K
D
K!

(
D

K

)
n

K∑
k=1

Mk,

where (a) holds by the chain rule of mutual information, (b) by
the independence and uniform rate of messages W1, . . . ,WD

and the definition of the set Q, which is of size
(
D
K

)
K!,

and (c) by the generalized Han-Inequality (the following
Proposition 5).

Proposition 5: Let L be a positive integer and A1, . . . , AL

be a finite random L-tuple. Denote by AS the subset {A`, ` ∈
S}. For every ` ∈ {1, . . . , L}:

1(
L
`

) ∑
S⊆{1,...,L}:|S|=`

H(AS)

`
≥ 1

L
H(A1, . . . , AL). (26)

Proof: See [15, Theorem 17.6.1].

APPENDIX B
PROOF OF LEMMA 4

Fix random variables U1, U2, . . . , UK , X satisfying the
Markov chain (14) and real numbers α1, . . . , αK satisfying
(18). We will show that if αk̃ 6= αk̃+1 for some k̃ ∈ K, then we
can find new random variables Ū1, Ū2, . . . , ŪK , X̄ satisfying
the Markov chain (14) and real numbers ᾱ1, . . . , ᾱK satisfying
(18) so that the upper bound on C(M1, . . . ,MK) in (19) is
relaxed if we replace

(U1, U2, . . . , UK , X) and (α1, . . . , αK)
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by

(Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).

This proves that we obtain a relaxed upper bound on
C(M1, . . . ,MK) if in (19) we replace all numbers α1, . . . , αK

by the same number α. By (18c) this number α ≤
1
D

∑
k∈{1,...,K}Mk, and by the monotonicity of the RHSs of

(19) in α1, . . . , αK the choice α = 1
D

∑
k∈{1,...,K}Mk leads

to the most relaxed upper bound. This will conclude the proof.
Assume that αk̃ 6= αk̃+1 for some k̃ ∈ {1, . . . ,K − 1}. By

(18b), the strict inequality

αk̃ < αk̃+1 (27)

must hold. Choose

ᾱk = αk, k ∈ K, k /∈ {k̃, k̃ + 1}, (28)

ᾱk̃ = ᾱk̃+1 =
1

2
(αk̃ + αk̃+1), (29)

Ūk = Uk, k ∈ K, k 6= k̃. (30)

The choice of Ūk̃ depends on whether

I(Uk̃;Yk̃|Uk̃−1) ≤ I(Uk̃+1;Yk̃+1|Uk̃), (31a)

or
I(Uk̃;Yk̃|Uk̃−1) > I(Uk̃+1;Yk̃+1|Uk̃). (31b)

If (31a) holds, choose

Ūk̃ = Uk̃. (32)

If (31b) holds, let E ∈ {0, 1} be a Bernoulli-β random variable
independent of everything else, where

β :=
1

2
+

1

2

I(Uk̃+1;Yk̃+1|Uk̃)

I(Uk̃;Yk̃|Uk̃−1)
. (33)

Choose
Ūk̃ = (Uk̃−1+E , E) (34)

The proposed choice satisfies the Markov chain Ū1 − Ū2 −
· · · ŪK −X . Moreover, by (34) and (33):

I(Ūk̃;Yk̃|Ūk̃−1)

=
1

2

(
I(Uk̃+1;Yk̃+1|Uk̃) + I(Uk̃;Yk̃|Uk̃−1)

)
. (35)

Trivially, for k /∈ {k̃, k̃+1}, constraint (19) is unchanged if
we replace (U1, U2, . . . , UK , X) by (Ū1, Ū2, . . . , ŪK , X̄) and
(α1, . . . , αK) by (ᾱ1, . . . , ᾱK).

If (31a) holds, then the proposed replacement relaxes con-
straint (19) for k = k̃ and it tightens it for k = k̃ + 1.
However, the new constraint for k = k̃ + 1 is less stringent
than the original constraint for k = k̃. We conclude that
when (31a) holds, the upper bound on C(M1, . . . ,MK) in (19)
is relaxed if everywhere one replaces (U1, U2, . . . , UK , X) and
(α1, . . . , αK) by (Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).

If (31b) holds, then the new constraint obtained for k = k̃
coincides with the average of the two original constraints for
k = k̃ and for k = k̃ + 1, see (29) and (35). This average
constraint cannot be more stringent than the most stringent of
the two original constraints. The new constraint obtained for

k = k̃ + 1 is more relaxed than the new constraint obtained
for k = k̃, because of (29) and because

I(Ūk̃+1;Yk̃+1|Ūk̃)

(a)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1;Yk̃+1|Uk̃−1)

(b)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1, Uk̃;Yk̃+1|Uk̃−1)

(c)
= I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃+1|Uk̃−1)

(d)

≥ I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃|Uk̃−1)

(e)
=

1

2
I(Uk̃+1;Yk̃+1|Uk̃) +

1

2
I(Uk̃;Yk̃|Uk̃−1)

(f)
= I(Ūk̃;Yk̃|Uk̃−1), (36)

where (a) follows by the definition of Ūk̃ and Ūk̃+1; (b)
by the Markov chain (14); (c) by the chain rule of mutual
information; (d) by the degradedness of the channel (14); (e)
by the definition of β in (33); and (f) by (35).

We can thus conclude that also when (31b) holds,
the upper bound on C(M1, . . . ,MK) in (19) is relaxed
if one replaces (U1, U2, . . . , UK , X) and (α1, . . . , αK) by
(Ū1, Ū2, . . . , ŪK , X̄) and (ᾱ1, . . . , ᾱK).
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